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Abstract: Salmonellosis caused by Salmonella sp. has long been reported all over the world. Despite
the availability of various diagnostic methods, easy and effective detection systems are still required.
This report describes a dialysis membrane electrode interface disc with immobilized specific antibod-
ies to capture antigenic Salmonella cells. The interaction of a specific Salmonella antigen with a mouse
anti-Salmonella monoclonal antibody complexed to rabbit anti-mouse secondary antibody conjugated
with HRP and the substrate o-aminophenol resulted in a response signal output current measured
using two electrode systems (cadmium reference electrode and glassy carbon working electrode)
and an agilent HP34401A 6.5 digital multimeter without a potentiostat or applied potential input. A
maximum response signal output current was recorded for various concentrations of Salmonella viz., 3,
30, 300, 3000, 30,000 and 300,000 cells. The biosensor has a detection limit of three cells, which is very
sensitive when compared with other detection sensors. Little non-specific response was observed
using Streptococcus, Vibrio, and Pseudomonas sp. The maximum response signal output current for a
dialysis membrane electrode interface disc was greater than that for gelatin, collagen, and agarose.
The device and technique have a range of biological applications. This novel detection system has
great potential for future development and application in surveillance for microbial pathogens.

Keywords: Salmonella species; biosensor; immunosensor; dialysis membrane electrode interface disc;
glassy carbon electrode; salmonellosis

1. Introduction

Salmonellosis continues to plague human populations in both developed and devel-
oping countries. According to the World Health Organization, salmonellosis is projected
to affect over 550 million people worldwide including 220 million people under the age
of 5 years [1,2]. Salmonella is one of the major foodborne pathogens and all the species of
Salmonella are known to be pathogenic, causing morbidity and mortality in both humans
and animals [3]. Within the genus, Salmonella typhimurium causes gastroenteritis leading to
diarrhea, abdominal cramps, vomiting, and fever, while Salmonella typhi causes typhoid
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fever, leading to complications including liver damage, swelling of the heart and gut and
internal bleeding [4]. Early detection, diagnosis and treatment of Salmonella infections is
important to control the spread of infection [5]. At present, disease control and prevention
relies upon the basic diagnostic methods that are currently used in clinical medicine, food
safety and environmental settings. Various conventional methods exist for the detection
and identification of Salmonella sp., largely dependent on standard culture techniques
involving the use of enrichment and selective media, as well as specific tests for the ability
of the organism to grow under a range of environmental conditions [6].

Biochemical and serological tests are widely used for detection of Salmonella sp. [7].
Several techniques, viz. flow cytometry, optical and calorimetry methods, ultrasound
techniques, radiometry, infrared (IR) spectroscopy, and microbial identification systems
have also been used to identify Salmonella sp., though they are prohibitively labor-intensive
and time-consuming, requiring a week to obtain reliable results [6]. In addition, they are
inappropriate for testing a large number of samples [7–15]. Some newer technologies such
as polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA) are
very sensitive but analysis time is protracted [10–12]. A number of other tools are avail-
able for the diagnosis of a wide range of pathogenic bacteria including: electrochemical
immunosensors, genosensors, aptasensors and phagosensors [13,16–20], nanoparticle-
based bio-barcoded DNA sensor [11,12,21,22], electrochemical DNA biosensor consisting
of nanoporous glassy carbon electrode with differential pulse voltammetry (DPV) and elec-
trochemical impedance spectroscopy (EIS) [23–25] microfluidic nano-biosensor, Salmonella
aptasensor, impedimetric potentiometric magnetic immunoassay, label-free impedimetric
biosensor and amperometric immunoassays [26–37]. MALDI-TOF has limited ability to
distinguish between closely related species, which may be due to the organism’s inherent
similarities [38]. Despite the fact that smartphone-based sensors for detecting pathogens
have been developed, it is still unclear if they have sufficient sensitivity to discriminate
between species. Limited resolution, and variance across devices are also problematic
features [39,40].

The proposed technique is sensitive, specific, rapid, accurate, does not require labeling,
and is cost-effective. In the current study, the aim was to develop an electrochemical-based
prototype device for the detection of the foodborne pathogen, Salmonella typhimurium. The
prototype was constructed by immobilizing Salmonella monoclonal antibodies on a glassy
carbon biomembrane electrode interface disc to capture the specific enzyme-substrate
reaction through measurement of the response signal output current. Change in impedance
occurred after selective capturing of the target antigen by the specific Salmonella monoclonal
antibody on the surface of the electrodes, and was evaluated using Agilent software. A
thorough study has been performed on the immobilization of antibodies with different
membranes, using various concentrations of antibodies and antigens. Additionally, the
sensor’s sensitivity and specificity were tested using bacterial genera other than Salmonella.

Electrochemical biosensors are based on enzymatic catalysis of a substrate producing
or consuming electrons, and a variety of devices are used to measure the output voltage.
The amperometric method consists of three electrodes, whereas potentiometic methods
include biological and chemical field-effect transistor (FET) sensors, miniature FETs and ion-
sensitive FETs [41]. However, most of these tools and methods are complex and laborious,
requiring a higher cost and longer time for detection, with limitations on sensitivity. Thus,
there exists a need to develop simple tools and techniques for easy use and rapid detection
of Salmonella sp. at a low concentration of cells. In the current study, a prototype device and
method consisting of antigenic Salmonella cells immobilized on a biomembrane electrode
interface disc (dialysis membrane electrode interface disc, collagen, gelatin or agarose) was
found to produce a measurable response signal output current through specific enzyme-
substrate reactions. The response signal output current generated using a two-electrode
system was measured with the Agilent HP34401A 6.5 digital multimeter.

The aims of the study were: (i) to develop a new approach for detecting antigen-
antibody interactions using an enzyme-substrate chemical reaction that has better detection
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limits than previous sensors; (ii) to create an electrochemical-based prototype device for
the detection of Salmonella typhimurium, a foodborne pathogen, by immobilizing Salmonella
monoclonal antibodies on a glassy carbon electrode interfaced with a disposable biomem-
brane electrode interface disc that enables capture of the specific enzyme-substrate reaction
via a response signal output current; (iii) to choose from agarose, gelatin, collagen, and dial-
ysis membrane, the best biomembrane electrode interface disc for electrode fabrication and
primary Salmonella monoclonal antibody immobilization, based on the maximum response
signal output current generated; (iv) to record the response signal output current curve
from the fabricated glassy carbon electrode carrying a disposable dialysis membrane inter-
face disc following the addition of, respectively, phosphate buffer, mouse anti-Salmonella
monoclonal antibody immobilized on the membrane, bovine serum albumin, Salmonella
cells, rabbit anti-mouse secondary antibody-enzyme conjugate, o-aminophenol substrate;
and (v) finally to determine the optimal concentration of specific Salmonella antigen cells,
the lowest detection limit of Salmonella cells, the range of response signal output current
produced by varying Salmonella cell concentrations (antigen), and the relationship between
detected response signal output current and Salmonella cell concentrations.

2. Methods
2.1. Equipment and Chemicals
2.1.1. Measuring Equipment—Hewlett Packard-Agilent, HP34401A 6.5 Digital Multimeter

The measuring equipment used for monitoring and detecting S. typhimurium based on
the response signal output current from the biosensor electrode was the Hewlett Packard-
Agilent, HP34401A 6.5 digital multimeter (Agilent Technologies, Inc., Santa Clara, CA,
USA). This was used to measure all electrochemical outputs, in particular the magnitude
of the response signal output current. The Agilent software was used to visualize and
interpret the detected signal. Electrodes have been fabricated from platinum, gold, carbon
(i.e., graphite) and silicon compounds, depending on the analyte. They are known to be
chemically stable and conductive. In the present study, a conventional electrode system
consisting of glassy carbon as the working electrode and cadmium as the reference electrode
were used. For comparison, silver and copper electrodes were also assessed as reference
electrodes. All the experiments were performed at room temperature (25 ◦C). Using this
Agilent HP34401A equipment, experiments were conducted to study the responses of the
electrodes and their characteristics such as accuracy, response time, and reproducibility.

2.1.2. Chemicals

Anti-Salmonella antibody (ICN 5974b) raised against Salmonella serotype E purified in
mouse serum was purchased from ICN. Inc. USA. Rabbit anti-mouse secondary antibody
conjugated with horseradish peroxidase (HRP) (EC1.11.1.7) was obtained from Sigma,
USA. Dialysis membrane 110 with 12–14 kDa pore size was purchased from Hi-media,
India. Agarose was provided by AB Gene, India. Collagen membrane was provided
by Cologenesis HealthCare Pvt Ltd., Salem, India. Bind silane A-174 PLUS ONE was
obtained from Pharmacia Biotech, Uppsala, Sweden. Glutaraldehyde (4% v/v solution
in double distilled deionized water) was obtained from Agar Scientific Limited, Essex,
UK. Bovine Serum Albumin (BSA) (1% v/v solution in double distilled deionized water)
was obtained from the Sisco Research Laboratories Pvt. Ltd., Mumbai, Maharashtra,
India. Ortho-amino phenol and gelatin were supplied by LOBA Chemie, India. Hydrogen
peroxide (1% v/v solution in double distilled deionized water) was obtained from Central
Drugs and Pharmaceutical, Chennai, India. Potassium phosphate (KH2PO4), di-potassium
hydrogen orthophosphate (K2HPO4), sodium chloride (NaCI), acetone and formaldehyde
(37–41% w/v solution) were obtained from Ranbaxy Fine Chemicals Ltd., New Delhi, India.
All the chemicals used were of analytical grade and the solutions were prepared with
double distilled deionized water.



Biosensors 2022, 12, 389 4 of 26

2.1.3. Buffer Solutions

The effects of buffer concentration and pH on the sensitivity of antibodies immobilized
on the sensor surface were evaluated [42]. The optimum pH and concentration of phosphate
buffered saline for maximum sensitivity were found to be 7.2 and 0.1 M, respectively. Yao
and Zhou, 1988 [43], reported that the immobilized antibody and Salmonella antigen interact
with PBS ions in a complex manner. Hence, in the current study, experiments were carried
out making use of 0.1 M PBS (pH 7.2) as a reaction buffer. Phosphate buffer stock solution
(0.2 M) was prepared by mixing solutions containing 0.2 M KH2PO4 and K2HPO4 to a pH
of 7.2.

2.1.4. Formulation of Specific Anti-Salmonella Antibody

Serial dilutions of mouse anti-Salmonella monoclonal antibody stock solution were
prepared using 0.1 M PBS pH 7.2 containing 0.9% NaCl. The dilution factors for antibody
stock solutions were as follows: 1:1000, 1:10,000, 1:20,000, 1:30,000, 1:40,000, 1:50,000 and
1:60,000.

2.1.5. Formulation of HRP Conjugated Secondary Antibody

One µL of rabbit anti-mouse secondary antibody conjugated with HRP was taken
from the stock and made up to 1 mL using 0.1 M PBS pH 7.2.

2.1.6. Formulation of Substrate

An appropriate amount of o-amino phenol (2 mg) with 1.4% of hydrogen peroxide
was dissolved in 1 mL of 0.1 M PBS pH 7.2.

2.2. Preparation of Salmonella Antigen and Source of Cultures

S. typhimurium (synonyms: Salmonella typhimurium; S. enterica serovar Typhimurium)
stock culture from the American type culture collection (ATCC 23564), and Pseudomonas sp.,
(ATCC25619), Vibrio sp., (ATCC17802) and Streptococcus sp. from our own cultures, were
used in these studies. The identity of cultures was confirmed using traditional biochemical,
cell morphology and serologic tests. The stock cultures of Salmonella sp., Pseudomonas sp.,
and Vibrio sp., were maintained in nutrient broth, whereas for Streptococcus sp., trypticase
soybean broth was used.

2.3. Growth of Cultures

S. typhimurium and Pseudomonas sp., cultures were streaked for isolation on nutrient
agar plates. For Vibrio sp., and Streptococcus sp., TCBS and TSA culture plates were used,
respectively, before inoculation of the fresh culture in broth for overnight incubation at
37 ◦C in a shaking incubator.

2.4. Determination of Cell Concentration

The cells of Salmonella sp., Vibrio sp., Pseudomonas sp. and Streptococcus sp., were
serially diluted with 0.1 M PBS to 1:105, 1:104, 1:103 and 1:102. The number of viable cells
in each dilution was determined by spread plating 0.1 mL of each dilution onto duplicate
plates of nutrient agar, TCBS and TSA separately for each culture, and incubating for 24 h
at 37 ◦C before making a final count of CFU/mL and calculating the average CFU. The
tubes with diluted cells were analyzed spectrophotometrically at the absorbance of 600 nm
and the concentration of the cells was estimated.

2.5. Electrode Preparation
2.5.1. Method for Antigen Preparation

The cells of Salmonella sp., Vibrio sp., Pseudomonas sp. and Streptococcus sp., from the
broth were fixed separately by treating with 10% formaldehyde for 30 min at 10 ◦C. The
fixed cells were then washed by centrifugation (13,416× g for 10 min) and resuspended
in 10 mL of sterile 0.1 M PBS (pH 7.2), then centrifuged again and resuspended in 500 µL
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of PBS. The concentrated cells were then heat-treated in a boiling water bath at 100 ◦C for
10 min and used for the experiments.

2.5.2. Electrode Fabrication

Copper wire was inserted at one end of a 1 cm long cylindrical rod of glassy carbon
with a diameter of 0.6 cm (R = 3 mm; area = 28.27 mm2, circumference = 18.84 mm) to make
electrodes. Before each experiment, the other end of the glassy carbon rod was polished
on fine emery paper and thoroughly washed with acetone and 0.1 M PBS solution. After
drying, the free end of the electrode surface was overlaid with a disposable biomembrane
electrode interface discs (collagen, agarose, gelatin or dialysis tubing). The biomembrane
electrode interface disc was secured to the electrode with an O-ring, and the surface of
the membrane was coated with 1 µL of binding silane which was allowed to vaporize in a
dust-free environment (Figure 1).

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 27 
 

2.5. Electrode Preparation 

2.5.1. Method for Antigen Preparation 

The cells of Salmonella sp., Vibrio sp., Pseudomonas sp. and Streptococcus sp., from the 

broth were fixed separately by treating with 10% formaldehyde for 30 min at 10 °C. The 

fixed cells were then washed by centrifugation (13,416× g for 10 min) and resuspended in 

10 mL of sterile 0.1 M PBS (pH 7.2), then centrifuged again and resuspended in 500 µ L of 

PBS. The concentrated cells were then heat-treated in a boiling water bath at 100 °C for 10 

min and used for the experiments. 

2.5.2. Electrode Fabrication 

Copper wire was inserted at one end of a 1 cm long cylindrical rod of glassy carbon 

with a diameter of 0.6 cm (R = 3 mm; area = 28.27 mm2, circumference = 18.84 mm) to make 

electrodes. Before each experiment, the other end of the glassy carbon rod was polished 

on fine emery paper and thoroughly washed with acetone and 0.1 M PBS solution. After 

drying, the free end of the electrode surface was overlaid with a disposable biomembrane 

electrode interface discs (collagen, agarose, gelatin or dialysis tubing). The biomembrane 

electrode interface disc was secured to the electrode with an O-ring, and the surface of the 

membrane was coated with 1 µ L of binding silane which was allowed to vaporize in a 

dust-free environment (Figure 1). 

 

Figure 1. Fabrication of biosensor biomembrane electrode interface disc for Salmonella detection. 
Commented [M1]: Please help to update figure 1 Figure 1. Fabrication of biosensor biomembrane electrode interface disc for Salmonella detection.



Biosensors 2022, 12, 389 6 of 26

2.5.3. Immobilization of Monoclonal Antibodies

The silane-treated biomembrane electrode interface disc was coated with a layer of
mouse anti-Salmonella monoclonal antibody (Salmonella serogroup E) that was anticipated
to capture the specific pathogen Salmonella. The coating procedure was as follows: the
sensor surface was incubated for 15 min with 600 µL of monoclonal antibody to Salmonella
serogroup E (1:1000 dilution). The sensor surface was then bathed three times with PBS.
Finally, all non-specific binding sites were blocked by incubation for 15 min with 600 µL of
1% bovine serum albumin (BSA) solution in PBS. Excess bovine serum was removed by
washing with PBS.

In this study, an innovative approach using the primary mouse anti-Salmonella mon-
oclonal antibody twice was proved to enhance the binding of Salmonella antigen to the
antibody-enzyme substrate complex and as a result, a higher electrical signal was generated
and detected. By means of appropriate control reactions, this study has also verified that
non-specific binding of the rabbit anti-mouse secondary antibody conjugated with HRP
to antigen-bound primary mouse anti-Salmonella antibody was not reflected in terms of
current production. Only the reaction of the o-aminophenol substrate with the secondary
antibody-bound enzyme (HRP) resulted in the oxidation of the substrate to produce the
quinone compound, 3-amino phenol phenoxazine. This reaction was the source to measure
the response signal output current. The enzyme reaction proceeds according to the formula:

HRP
sub(red) + H2O2 → sub(oxd) + H2O

(1)

Here, sub(red) refers to the reduced state of the substrate that is oxidized to sub(oxd)
as the catalytic product. Since sub(oxd) can be regenerated, further reduction can continue
to occur at the electrode surface, with continued generation of a response signal output
current. Similarly, Li et al., 2002 [44] reported the generation of catalytic current using
voltametric ELISA-antibody-bound enzyme (HRP), with oxidation of o-aminophenol to
produce a quinone compound, 3 amino phenol phenoxazine.

2.5.4. Bacteria Binding Measurements

The sensor surface covered with the disposable biomembrane electrode interface disc
on which the antibody film was immobilized, was positioned in the probe arm of the
instrument just before the delivery of the analyte solutions into the electrode reaction
chamber. Immediately before the recording was started, 600 µL of the control solution
(PBS) was delivered into the electrode reaction chamber and the response signal output
current was recorded for 15 min. The control solution (PBS) was carefully removed, and
a new recording of output response signal was started with the addition of 600 µL of a
solution containing monoclonal antibodies Salmonella serogroup E, followed by immobi-
lization of Salmonella cells on the electrode membrane surface using a sample of 10 µL
containing 30 cells, 300 cells, 3000 cells, 30,000 cells, or 300,000 cells at dilutions of 3 × 103,
3 × 104, 3 × 105, 3 × 106, and 3 × 107 Salmonella cells/mL, respectively. This was followed
by antibody-enzyme conjugate (Rabbit anti-mouse secondary antibody conjugated with
Horseradish peroxidase (HRP) (EC 1.11.1.7)) and enzyme-substrate (o-amino phenol (2 mg)
with 1.4 percent hydrogen peroxide, dissolved in 1 mL of 0.1 M PBS pH 7.2), which were
placed consecutively in the electrode chamber. The data collected were stored and analyzed.

2.6. Experiments

In this study, five different experiments were carried out: Experiment 1, selection
of suitable membrane for the immobilization; Experiment 2, determination of antigen-
antibody interaction via immuno enzyme substrate reaction; Experiment 3, optimization of
immobilized primary monoclonal antibody concentration; Experiment 4, optimization of
Salmonella antigen concentration, and Experiment 5, to demonstrate the specificity of the
sensor.
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2.6.1. Experiment 1

In this experiment, a suitable disposable biomembrane electrode interface disc for the
immobilization of mouse anti-Salmonella monoclonal antibody was selected on the basis of
response signal output current output generated by each of the membranes. Membranes
used for the electrode fabrication were agarose, gelatin, collagen and dialysis tubing. Each
of these membranes was laid individually over the electrode surface, silanized and tested
by the procedure as described above. The dilution of primary mouse anti-Salmonella
monoclonal antibody immobilized on the sensor surface was 1:1000 and the Salmonella
cell concentration used was 3000 cells (10 µL of 3 × 105 cells/mL). The membrane that
generated the maximum response signal output current was chosen as the most suitable
surface for the immobilization (Figure 2).
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2.6.2. Experiment 2

In this experiment, the interaction of Salmonella cells antigen with mouse anti-Salmonella
monoclonal antibody (MCA) was determined through an enzyme substrate reaction, follow-
ing the procedure described in Section 2.5.4. The response signal output current generated
was recorded. A dialysis membrane electrode interface disc was used in this experiment to
immobilize the mouse anti-Salmonella monoclonal antibody (MCA) (1:1000), which was
allowed to interact with Salmonella antigen, 3000 cells (10 µL of 3 × 105 cells/mL) (Figure 3).
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2.6.3. Experiment 3

In this experiment, an electrode fabricated with a dialysis membrane electrode inter-
face disc was used to study the influence on the detection signal caused by varying the
concentration of immobilized mouse anti-Salmonella monoclonal antibody (MCA). The
Salmonella cell (antigen) concentration used was 3000 cells (10 µL of 3 × 105 cells/mL) and
the dilutions of the primary mouse anti-Salmonella monoclonal antibody (MCA) were as
follows 1:1000, 1:10,000, 1:20,000, 1:30,000, 1:40,000, 1:50,000 and 1:60,000. The rest of the
steps followed for this experiment were the same as explained above and the response
signal output current for each cell concentration was recorded (Figure 4).

2.6.4. Experiment 4

In this experiment, the detection limit for the electrode with attached dialysis mem-
brane electrode interface disc was determined by varying the Salmonella cell concentra-
tion, with the optimized concentration of primary antibody (mouse anti-Salmonella mon-
oclonal antibody (MCA)) immobilized on the membrane. The range of concentrations of
Salmonella cells used was 300,000 cells (10 µL of 3 × 107 cells/mL), 30,000 cells (10 µL of
3× 106 cells/mL), 3000 cells (10 µL of 3× 105 cells/mL), 300 cells (10 µL of 3× 104 cells/mL),
30 cells (10 µL of 3 × 103 cells/mL) and 3 cells (3 × 102 cells/mL) (Figure 5).
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2.6.5. Experiment 5

In this experiment, the effects of non-specific organism like Vibrio sp., Pseudomonas sp.,
and Streptococcus sp., were investigated in order to verify the specificity of the immunosen-
sor, using optimized concentrations of cells and primary mouse anti-Salmonella monoclonal
antibody (MCA) (Figure 6).
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2.7. Electrochemical Experimental Procedure

The following electrochemical experimental procedures were followed. The electro-
chemical experiments were carried out in a dry sample cell, keeping cadmium as the
reference electrode and glassy carbon as the test electrode. The electrodes were connected
to a multimeter (Agilent 34401 A), which captures the response signal output current gen-
erated by the working electrode when a solution was introduced. An electrolyte solution of
0.1 M PBS at pH 7.2 was introduced into the dry sample cell at the start of an experimental
run and the response signal output current was recorded for about 15 min. This response
served as a control. A solution containing the mouse anti-Salmonella monoclonal antibody
(MCA) with glutaraldehyde was then introduced into the cell, first washing out the PBS.
The response signal output current was then detected for 15 min. During this stage, the
monoclonal antibody was immobilized onto the membrane by means of the cross linker,
glutaraldehyde. After immobilization, the unbound antibodies were removed by washing
the surface of the working electrode five times with 0.1 M PBS at pH 7.2 solution. Then, a
solution of 1% BSA (10 mg/mL) was added to block the unbound areas, and the response
signal output current readings were recorded from the point of introduction of BSA, up to
15 min. After blocking, the electrode reaction chamber and the sensor surface were washed
five times with 0.1 M PBS solution to remove the unbound BSA. Then, the heat killed cells
of Salmonella antigen were added and incubated for 30 min. The response produced by
the binding of Salmonella antigen with the antibody was detected for about 15 min, and
then the probe surface with captured Salmonella antigen was consecutively washed with
0.1 M PBS and dipped into an electrode reaction chamber containing a rabbit anti-mouse
secondary antibody conjugated with HRP (1 µL/mL of PBS). The response signal output
current detected by the sensor was measured for about 15 min. After 15 min, the sensor
surface was rinsed five times with 0.1 M PBS. The substrate (o-amino phenol (2 mg) with
1.4% hydrogen peroxide dissolved in 1 mL of 0.1 M PBS at pH 7.2 was added, to react
with HRP. As the interaction between HRP and substrate proceeded, a steady response
signal output current was generated which was related to the association rate constant of
antibody and antigen. This was detected and recorded using the Agilent software. All
electrochemical measurements were carried out, keeping the working electrode as well as
the cadmium electrode upside down in a sample cell. The sample volume was 600 µL for
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all the experimental steps. All operations were carried out at room temperature (25 ◦C)
(Figure 7).

Figure 7. Diagrammatic illustration of immunosensor membrane preparation, operating procedure
and detection of Salmonella cells.

2.8. Statistical Analysis and Graphs

The statistical differences among the data were computed using one way analysis of
variance (ANOVA) and the post hoc Tukey test at the p < 0.05 significance level. All of
the statistical testing and graphs in this manuscript were created using OriginPro-2020.
The mean and standard deviation for each data set (n = 5 samples) was calculated. The
electrical response signal output current values for the bare electrode versus the collagen
membrane, the collagen membrane versus the agarose membrane, the dialysis membrane
electrode interface disc versus the bare electrode, the dialysis membrane electrode interface
disc versus the gelatin membrane, the dialysis membrane electrode interface disc versus the
agarose membrane, and the dialysis membrane electrode interface disc versus the collagen
membrane were compared, and statistical significances were determined.

3. Results
3.1. Electrodes and Electrochemical Measurement Device

Our studies indicate that the two electrode system viz., the glassy carbon working
electrode and the cadmium reference electrode (without potentiostat), connected to an elec-
trochemical measurement device, a high performance 6 1

2 digital Agilent 34401A multimeter
(Agilent Technologies, Inc., Santa Clara, CA, USA) with Agilent software, is sufficient to
detect the response signal output current generated by the enzyme-substrate reaction result-
ing from the binding of antigen with immobilized antibody on the disposable biomembrane
electrode interface surface. The study further demonstrates that the sensor system in the
presence of the analyte transduces electrons and conducts an electrical response signal
up to 30 nA without applying any potentiostat current to the electrode system. This may
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be because of the high potential generated by the cadmium reference electrode. Other
reference electrodes viz., silver and copper, that were used in the present study, failed to
detect any response signal (data not shown). The electrode measures the current output in
milliampere (mA). However, for simplicity in the text, we have referred to the output in
nanoampere (nA) (1 milliampere equals to 1,000,000 nanoampere). We have retained the
use of milliamp (mA) format in the figures.

3.2. Fabrication of Biomembrane Electrode Interface

The dialysis membrane electrode interface disc was found to provide the best electrode
interface membrane, giving a more consistent maximum output response signal than
gelatin, agarose or collagen. The response signal transduced by the glassy carbon electrode
through dialysis membrane electrode interface disc was found to be higher (29 nA), than
that generated by the other biomaterials used, namely agarose (18 nA), gelatin (16 nA)
and collagen (7 nA). The response signal was only 16 nA from the bare glassy carbon
electrode coated with the binder, silane. The gelatin and agarose membranes exhibited the
highest output response signal initially but thereafter decreased progressively. Moreover,
the response signal outputs recorded from gelatin and agarose membranes were closely
similar to those from the bare electrode used in the control experiment. Initially, the dialysis
membrane electrode interface disc exhibited a relatively low response signal output (15 nA)
compared to that of the gelatin and agarose membranes, but this slowly increased, reaching
a maximum within 2 min, and thereafter the response signal output current remained
steady over a long period of time. The collagen membrane showed the lowest output
response signal amongst the membranes tested here (Figure 8). The diameter of the dialysis
membrane interface disc on the electrode was 6 mm, which allowed retention of a maximum
of 10 µL of sample.
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Statistical one-way analysis of variance (ANOVA) was computed for pairs of data
(Figure 8, Table 1). The following pairs of data showed significant difference (p < 0.05):
bare electrode vs. collagen membrane; collagen membrane vs. agarose membrane; dialysis
membrane electrode interface disc vs. bare electrode; dialysis membrane electrode interface
disc vs. gelatin membrane; dialysis membrane electrode interface disc vs. agarose mem-
brane and dialysis membrane electrode interface disc vs. collagen membrane. “p” values
greater than 0.05, depicting lack of significant difference, were computed for the following
pairs of data: bare electrode vs. gelatin membrane; agarose membrane vs. bare electrode;
agarose membrane vs. gelatin membrane and collagen membrane vs. gelatin membrane.

Table 1. Comparative analysis among different membranes. p-value for each pair of data analyzed
using one-way ANOVA. The significance value (0, 1) provided in parenthesis beside the p-value
denotes the significance of each pair of data. Significance value 1 indicates that the data pairs are
significantly different (p-value lesser than 0.05). The significance value 0 depicts that the data pairs
are not significantly different (p-value greater than 0.05).

Bare Electrode Gelatin Agarose Collagen Dialysis Membrane
Electrode Interface Disc

Bare Electrode - 0.81662 (0) 0.99821 (0) 0.01714 (1) 0 (1)
Gelatin 0.81662 (0) - 0.093573 (0) 0.22572 (0) 0 (1)
Agarose 0.99821 (0) 0.093573 (0) - 0.03897 (1) 0 (1)
Collagen 0.01714 (1) 0.22572 (0) 0.03897 (1) - 0 (1)
Dialysis membrane
electrode interface
disc

0 (1) 0 (1) 0 (1) 0 (1) -

3.3. Response Curves for the Immuno-Enzyme-Substrate Reaction

Specific binding of Salmonella antigen with mouse anti-Salmonella monoclonal antibody
(MCA) is reflected by the reaction between the bound antibody-enzyme conjugate (rabbit
anti-mouse secondary antibody conjugated with HRP) and the substrate o-aminophenol. A
15 min incubation period was found to be sufficient for the detection of enzyme-substrate
reaction. In control experiments, the response signals generated by PBS alone or with the
addition of 1% BSA, by immobilized specific mouse anti-Salmonella monoclonal antibody
(MCA) (1:1000 dilution), by 3000 Salmonella cells (10 µL of 3 × 105 cells/mL), and by the
substrate o-aminophenol alone were similar to one another, with minor variations, and were
relatively insignificant. Further, the size of the response signal output current generated in
each of the control reactions showed minor variation from that generated with PBS, whereas
the enzyme-substrate reaction showed a dramatic increase in the current level, producing
about 23 nA in the second minute of the reaction, and maintaining a steady state of 17 nA
over a long time period (Figure 9). Though the dialysis membrane electrode interface
disc overlayed with mouse anti-Salmonella monoclonal antibody (MCA) alone produced a
response signal to the level of 23 nA in 60 s, it immediately dropped to 15 nA at the end of
120 s, and thereafter declined until the end of the reaction. Statistical one-way analysis of
variance (ANOVA) was computed for pairs of data (Figure 9; Table 2). The following pairs
of data showed significant difference (p < 0.05): O-aminophenol substrate vs. PBS, primary
antibody, BSA, 3000 Salmonella cells (3× 105 cells/mL), secondary antibody, and rabbit anti-
mouse secondary antibody conjugated with HRP with substrate; substrate alone vs. PBS,
primary antibody, BSA, 3000 Salmonella cells (3× 105 cells/mL), secondary antibody (rabbit
anti-mouse secondary antibody conjugated with HRP vs. primary antibody). “p” values
greater than 0.05, depicting lack of significant difference, were computed for the following
pairs of data: BSA vs. PBS, primary antibody, 3000 Salmonella cells (3 × 105 cells/mL);
primary antibody vs. PBS; 3000 Salmonella cells (3 × 105 cells/mL) vs. PBS, primary
antibody; rabbit anti-mouse secondary antibody conjugated with HRP vs. PBS, primary
antibody, BSA, 3000 Salmonella cells (3 × 105 cells/mL); rabbit anti-mouse secondary
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antibody conjugated with HRP vs. PBS, BSA, 3000 Salmonella cells (3 × 105 cells/mL),
secondary antibody, substrate alone.
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3.4. Optimization of the Primary Monoclonal Antibody Concentration

As the response signal of the sensor for the Salmonella antigen is dependent on the
concentration of the mouse anti-Salmonella monoclonal antibody (MCA) immobilized on
the disposable biomembrane electrode interface disc, the concentration of the immobilized
primary antibody (mouse anti-Salmonella monoclonal antibody (MCA)) was optimized,
keeping the concentration of Salmonella cells constant. The response signal output current
from the immunosensor varied depending on the concentration of immobilized primary
Salmonella antibodies, and the relationship between the response signal output current
and the Salmonella antibody concentration employed is depicted in Figure 10. For each
of the concentrations of primary antibody used (1:30,000, 1:40,000, 1:40,000, 1:60,000), the
response signal output current from the immunosensor peaked rapidly within 2 min after
the start of the reaction, and thereafter declined at a rate that depended on the antibody
concentration. In the case of the 1:30,000 dilution, a peak of 30 nA was achieved, and
thereafter the current slowly declined at a relatively uniform rate, reaching 20 nA 15 min
after the commencement of the reaction. For the 1:50,000 dilution, the initial peak was
lower (23 nA), with an initial steep decline thereafter, reaching a low plateau of 12 nA
approximately 12 min after the start of the reaction. With antibody dilutions of 1:40,000
and 1:60,000 a lower peak current was achieved (13 nA and 11 nA, respectively), with a
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relatively rapid decline to approximately 9 nA within 4–6 min of the start of the reaction,
reducing further to approximately 7 nA at 15 min after the start of the reaction, much lower
than the response signal output current maintained with the 1:30,000 dilution. Statistical
one-way analysis of variance (ANOVA) was computed for pairs of data (Figure 10, Table 3).
The following pairs of data showed significant difference (p < 0.05): mouse anti-Salmonella
monoclonal antibody (MCA) in the dilution of 1:30,000 vs. PBS, a monoclonal antibody in
the dilution of 1:40,000, 1:50,000, 1:60,000; monoclonal antibody in the dilution of 1:50,000
vs. PBS, monoclonal antibody in the dilution of 1:40,000 and 1:60,000. “p” values greater
than 0.05, depicting lack of significant difference, were computed for the following pairs of
data: PBS vs. mouse anti-Salmonella monoclonal antibody (MCA) in the dilution of 1:40,000
and 1:60,000; mouse anti-Salmonella monoclonal antibody (MCA) in a dilution of 1:40,000
vs. 1:60,000 (Table 3).

Table 2. Comparison of response signal output current recorded during the fabrication of sensor.
p-value for each pair of data analyzed using one-way ANOVA. The significance value (0, 1) provided
in parenthesis beside the p-value denotes the significance for each pair of data. Significance value
1 indicates that the data pairs are significantly different (p-value lesser than 0.05). The significance
value 0 denotes that the data pairs are not significantly different (p-value greater than 0.05).

PBS

Mouse Anti-
Salmonella
Monoclonal

Antibody

BSA

Salmonella
Cells (3 × 105

cells/mL)-
Antigen

Mouse Anti-
Salmonella
Monoclonal

Antibody

Rabbit
Anti-Mouse
Secondary
Antibody

O-
Aminophenol

Substrate

Substrate
Alone

PBS - 0.07295 (0) 0.98331 (0) 0.1858 (0) 0.70662 (0) 0.99999 (0) 0 (1) 0.04545 (1)

Mouse Anti-Salmonella
monoclonal antibody 0.07295 (0) - 0.47224 (0) 0.99993 (0) 0.90661 (0) 0.03544 (1) 0 (1) 0 (1)

BSA 0.98331 (0) 0.47224 (0) - 0.73392 (0) 0.99529 (0) 0.93439 (0) 0 (1) 0.00232 (1)

Salmonella cells (3 × 105

cells/mL)-antigen 0.1858 (0) 0.99993 (0) 0.73392 (0) - 0.98744 (0) 0.1017 (0) 0 (1) 0 (1)

Mouse Anti-Salmonella
monoclonal antibody 0.70662 (0) 0.90661 (0) 0.99529 (0) 0.98744 (0) - 0.53113 (0) 0 (1) 0 (1)

Rabbit Anti-mouse
secondary 0.99999 (0) 0.03544 (1) 0.93439 (0) 0.1017 (0) 0.53113 (0) - 0 (1) 0.09124 (0)

O-aminophenol
substrate 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) - 0 (1)

Substrate Alone 0.04545 (1) 0 (1) 0.00232 (1) 0 (1) 0 (1) 0.09124 (0) 0 (1) -

Table 3. Optimization of monoclonal anti-bodies in different concentration for sensor application.
p-value for each pair of data analyzed using one-way ANOVA. The significance value (0, 1) provided
in parenthesis beside the p-value denotes the significance for each pair of data. Significance value
1 indicates that the data pairs are significantly different (p-value lesser than 0.05). The significance
value 0 depicts that the data pairs are not significantly different (p-value greater than 0.05).

PBS MCA 1:30,000 MCA 1:50,000 MCA 1:60,000 MCA 1:40,000

PBS - 0 (1) 0 (1) 0.02574 (0) 0.02631 (0)
MCA 1:30,000 0 (1) - 0 (1) 0 (1) 0 (1)
MCA 1:50,000 0 (1) 0 (1) - 0.01477 (1) 0.01581 (1)
MCA 1:60,000 0.02574 (0) 0 (1) 0.01477 (1) - 1 (0)
MCA 1:40,000 0.02631 (0) 0 (1) 0.01581 (1) 1 (0) -
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cells (MCA–S.Ag 3 × 105 cells/mL) and enzyme (HRP) substrate (o-amino phenol) complex in 0.1 M
PBS pH 7.2. Data represent mean ± SD (n = 5).

3.5. Optimization of Specific Salmonella Antigen Concentration

A range of response signal output current was achieved by varying the concentration
of Salmonella cells (antigen). The electrical current transduction rapidly rose to a maximum
level of 19 nA at 60 s after the start of the reaction, and then decreased gradually to the
level of 13 nA after an incubation time of 15 min for 3000 cells (10 µL of a 3 × 105 cells/mL
suspension of Salmonella). In contrast, the response signal output current detected for other
concentrations of Salmonella cells viz., 30 cells (10 µL of 3 × 103 cells/mL), 300 cells (10 µL of
3 × 104 cells/mL, 30,000 cells (10 µL of 3 × 106 cells/mL and 300,000 cells (10 µL of
3 × 107 cells/mL) were 10.5 nA, 12 nA, 10 nA and 6 nA, respectively, after 120 s of the
reaction. The detected response signal output current increased with increasing Salmonella
cell concentrations in the range 3 cells (10 µL of 3 × 102 cells/mL), 30 cells (10 µL of
3 × 103 cells/mL), 300 cells (10 µL of 3 × 104 cells/mL), and 3000 cells (10 µL of
3 × 105 cells/mL), (Figure 11). In contrast, the detected response signal output current
for a concentration of 3 × 106 cells/mL was less than that for 3 × 103 cells/mL, while
the signal for 3 × 107 cells/mL was very low and comparable with the response for
phosphate buffer solution. The output response signal output current was found to de-
crease as the bacterial concentration increased above 3000 cells (3 × 105 cells/mL), which
was an unexpected finding, possibly indicating the presence of limiting factors such as
sensor surface area, antibody immobilization, or antigenic cell capture even under con-
trolled conditions. At higher Salmonella cell concentrations the anomaly could be due to
a lack of optimized immobilized antibody. The lowest detection limit of response signal
output current was determined to be 3 Salmonella cells/mL (10 µL of 3 × 102), however
the current produced by 3 cells was minimal (0.12 nA) (data not shown). Hence, the



Biosensors 2022, 12, 389 17 of 26

optimum level of 30 cells (10 µL of 3 × 103) was used for the detection in our further
experiments (Figure 11). Statistical one-way analysis of variance (ANOVA) was com-
puted for pairs of data (Table 4). The following pairs of data showed significant differ-
ence (p < 0.05): 3000 Salmonella cells in the dilution of 3 × 105 cells/mL vs. dilutions of
30 cells/10 µL (3 × 103 cells/mL), 300 cells/10 µL (3 × 104 cells/mL), 30,000 cells/10 µL
(3 × 106 cells/mL) and PBS; 300,000 cells/10 µL (3 × 107 cells/mL) vs. dilutions of 30 cells/
10 µL (3 × 103 cells/mL), 300 cells/10 µL (3 × 104 cells/mL), 3000 cells/10 µL
(3 × 105 cells/mL) and 30,000 cells/10 µL (3 × 106 cells/mL); PBS vs. 30 cells/10 µL
(3 × 103 cells/mL), 300 cells/10 µL (3 × 104 cells/mL) and 30,000 cells/10 µL
(3 × 106 cells/mL). “p” values greater than 0.05, depicting lack of significant difference,
were computed for the following pairs of data: 30/10 µL cells/(3 × 103 cells/mL) vs.
300 cells/10 µL (3× 104 cells/mL), 30,000 cells/10 µL (3× 106 cells/mL); 30,000 cells/10 µL
(3× 106 cells/mL) vs. 300 cells/10µL (3 × 104 cells/mL); 300,000 cells/10µL (3× 107 cells/mL)
vs. PBS.
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3.6. Determination of the Specificity of the Immunosensor

The response signal output current for nonspecific cells was compared to that for
specific cells (Salmonella) using the sensor with optimized antibody and optimized cell
concentration. Figure 12 illustrates the response signal output current profile for both
specific and non-specific cells. In the case of specific cells (Salmonella), having an antigenic
epitope complementary to the immobilized mouse anti-Salmonella monoclonal antibody
(MCA), the best response signal output current was obtained, due to the binding of antigen
to the specific antibodies on the sensor surface. In contrast, non-specific bacterial cells (Vibrio
sp., Pseudomonas sp. and Streptoccocus sp.), which lacked specific epitope complementary
to the immobilized specific mouse anti-Salmonella monoclonal antibody (MCA), could not
bind to the sensor surface and hence the response signal output current was found to be
significantly lower. The response signal output current generated by the sensor for specific



Biosensors 2022, 12, 389 18 of 26

Salmonella cells was 19 nA after 1 min of reaction, gradually reducing to 12 nA after 15 min.
For non-specific cells, Vibrio, Streptococcus and Pseudomonas, the response peaked at 7 nA,
5 nA and 3 nA, respectively, decreasing to only 2 nA within 10 min of reaction, similar to
the baseline for the PBS control. The reduced response signal found when cells of Vibrio sp.,
Pseudomonas sp., and Streptococcus sp. were used, as compared with the response when the
same number of Salmonella cells was used, implies that the sensor surface with immobilized
mouse anti-Salmonella monoclonal antibody (MCA) is specific for binding of Salmonella cells
and will not permit non-selective binding of nonspecific bacterial cells that do not possess
epitopes complementary to the immobilized antibody (Figure 12). The results clearly show
that a specific response signal is generated in the presence of more than 30 Salmonella cells,
which represents an improvement in sensitivity over existing sensors currently on the
market [4,45–50]. Statistical one-way analysis of variance (ANOVA) was computed for
pairs of data. The following pairs of data showed significant difference (p < 0.05): Salmonella
sp. vs. Vibrio sp., Pseudomonas sp., Streptococcus sp. “p” values greater than 0.05, depicting
lack of significant difference, were computed for the following pairs of data: Vibrio sp. vs.
Pseudomonas sp., Streptococcus sp.; Pseudomonas sp. vs. Streptococcus sp. (Table 5).

Table 4. Optimization of cells in different concentration for sensor application. p-value for each pair
of data analyzed using one-way ANOVA. The significance value (0, 1) provided in parenthesis beside
the p-value denotes the significance of each pair of data. The significance value 1 indicates that the
data pairs are significantly different (p-value lesser than 0.05). The significance value 0 depicts that
the data pairs are not significantly different (p-value greater than 0.05).

Salmonella Cells
(3 × 103 cells/mL)

Salmonella Cells
(3 × 104 cells/mL)

Salmonella Cells
(3 × 105 cells/mL)

Salmonella Cells
(3 × 106 cells/mL)

Salmonella Cells
(3 × 107 cells/mL) PBS

Salmonella cells
(3 × 103 cells/mL) - 0.35092 (0) 0 (1) 0.98036 (0) 0 (1) 0 (1)

Salmonella cells
(3 × 104 cells/mL) 0.35092 (0) - 0 (1) 0.08345 (1) 0 (1) 0 (1)

Salmonella cells
(3 × 105 cells/mL) 0 (1) 0 (1) - 0 (1) 0 (1) 0 (1)

Salmonella cells
(3 × 106 cells/mL) 0.98036 (0) 0.08345 (1) 0 (1) - 0 (1) 0 (1)

Salmonella cells
(3 × 107 cells/mL) 0 (1) 0 (1) 0 (1) 0 (1) - 0.99999

(0)

PBS 0 (1) 0 (1) 0 (1) 0 (1) 0.99999 (0) -

Table 5. Sensitivity analysis of sensor among various test samples. p-value for each pair of data
analyses using one-way ANOVA. The significance value (0, 1) provided in parenthesis beside the
p-value denotes the significance for each pair of data. Significance value 1 indicates that the data
pairs are significantly different (p-value lesser than 0.05). The significance value 0 depicts that the
data pairs are not significantly different (p-value greater than 0.05).

Non-Specific Vibrio sp. Non-Specific
Pseudomonas sp.

Non-Specific
Streptococcus sp. Specific Salmonella sp.

Non-specific Vibrio sp. - 0.39087 (0) 0.9147 (0) 0 (1)

Non-specific
Pseudomonas sp. 0.39087 (0) - 0.78309 (0) 0 (1)

Non-specific
Streptococcus sp. 0.9147 (0) 0.78309 (0) - 0 (1)

Specific Salmonella sp. 0 (1) 0 (1) 0 (1) -
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4. Discussion
4.1. Electrodes and Electrochemical Measurement Device

A novel technique for identifying antigen-antibody interaction via enzyme-substrate
chemical reactions using a two electrode systems without a potentiostat was successfully
developed and used, with a simplified experimental methodology. Electrochemical biosen-
sors with three electrodes have already been shown capable of converting a chemical signal
into an electrical signal [16,17]. In principle, secondary antibodies conjugated with enzymes
bind to antigenic proteins already immobilized on the transducer in biosensors, and as a
result of the interaction of the enzyme with the specific provided substrate, the chemical
signal is converted into an electric signal, which can be measured using sensors [4,18]. In
the two electrode systems described here, cadmium was used as the reference electrode,
as opposed to the Ag/AgCI and Calomel electrodes used by previous workers [16,17].
The system detected a maximum electrical signal of 30 nA, despite the fact that there
was no known input of applied potential to the electrode system. In the presence of an
analyte, the cadmium electrode generates a high potential, allowing it to directly detect
antigen-antibody interactions via an enzyme-substrate chemical reaction. The glassy carbon
immunosensor system used in the present study was easily applied for monitoring and
detecting S. typhimurium. The system has higher detection limits than other sensors, yet it
only takes 120 s to analyze an enzyme-substrate reaction. The findings from the current
study demonstrate the feasibility and consistency of the two-electrode biosensor system
for the sensitive detection of S. typhimurium. Its ability to provide a wide analytical range,
low non-specific binding, steady-state output, and good reproducibility, makes it a useful
tool for a wide range of biological applications. The dialysis membrane electrode interface
discs can be produced easily and made available until the necessary equipment can be
manufactured and tested on a large scale.
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4.2. Selection of Biomembrane

The current study demonstrated that immobilization of immunoglobulin biomolecules
on a disposable biomembrane electrode interface disc bound to the biosensor with silane
generates a more reproducible response signal output current than is the case when the
sensor is used without a biomembrane electrode interface disc. Howe and Harding [51],
on the other hand, reported that antibodies immobilized on the bare sensor surface with
silane binder present produced consistent results. As direct immobilization of the primary
monoclonal antibody [15] on silanized glassy carbon electrodes without biomatrix was
found to generate a lower response signal output current than glassy carbon electrodes
with silanized disposable biomembrane interface discs, the current study compared the re-
sponse signal output current transduced by four different silanized biomembrane electrode
interface discs (dialysis, agarose, gelatin, and collagen). The findings from the study clearly
show that the dialysis membrane interface disc is a suitable matrix for the glassy carbon
electrode, providing for the possibility of testing a large number of samples and automating
the technique. It also produces consistent results, in terms of response signal output cur-
rent, throughout the analysis. The response signal from the glassy carbon electrode using
dialysis membrane interface disc with silane binder was the best of the options tested, likely
because the pore size and homogeneity offered by the membrane for the binding of primary
monoclonal antibody provided the correct orientation for the immobilized antibody to
bind with the active site of the Salmonella antigen. In contrast, the response signal output
current for biomolecules immobilized on agarose, gelatin, and collagen matrices decreased
significantly over the time of reaction. This may have been due to the fact that the primary
monoclonal antibody molecules were less securely bound to the biomembrane and varied
in distribution, due to larger pore size and poorer membrane homogeneity. This resulted in
a lower response signal and rapid deterioration of the response signal output current [52].

4.3. Determination of Immuno-Enzyme Substrate Reaction

Uttenthaler et al., 2001 [53], carried out coupling of antibodies to the biomembrane
using a cross-linking reagent. In the current study, it was found that immobilizing mono-
clonal antibodies onto a dialysis membrane electrode interface disc sensor surface using
silane binder and a crosslinker, glutaraldehyde, subsequently facilitated a strong specific
binding of antigens and thus capture of Salmonella cells. This in turn helped to ensure
that the specific reaction of Salmonella monoclonal antibody-HRP-o-aminophenol (OAP)
with the captured Salmonella cells yielded a consistent reaction and response signal output
current. The purpose of incorporation of BSA in the reaction mixture was to neutralize
charges on the remaining unbound areas of the biomembranes electrode interface disc,
thus reducing non-specific adsorption of molecules and facilitating the specific binding and
reaction of Salmonella monoclonal antibody-Salmonella antigen-HRP-o-aminophenol. BSA
occupies superfluous, non-specific binding sites on the biomembrane [44] and the response
signal output current for the non-specific binding of BSA was negligible. Similar results
were observed by Quinn et al., 1999 [15], using a hydrogel-based biointerface. Successive
washing of the biomembrane electrode interface disc after each step of the experiment
facilitated the specific binding of antigen-antibody-enzyme-substrate and thus prevented
the participation in the reaction of unbound molecules on the sensor surface.

4.4. Optimization of Primary Monoclonal Salmonella Antibody Concentration

The study has shown that the 1:30,000 dilution of primary antibody (mouse anti-
Salmonella monoclonal antibody (MCA)) gave the maximum response signal output current
of 30 nA during the first 2 min of the reaction, enabling detection of the target Salmonella
analyte. The response signal output current is generally related to the amount of substrate
and to the concentration of primary antibody bound to the membrane of the sensor surface.
The variations observed in the response signal output current with different antibody
concentrations enabled the selection of the optimum antibody concentration, which was
used for subsequent experiments. The results of this study correlate with those of earlier
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investigations [15,18,19,44,54–56]. The response signal output current triggered by the
catalytic immunochemical reaction between the HRP enzyme and the substrate may relate
to the enzymatic reaction velocity, according to the Michaelis-Menten equation [44,54–56].
This, in turn, is determined by the quantity of Salmonella antigenic cells present, as well as
the primary monoclonal antibody, coupled with enzyme-attached second antibody linked
to the immunosensor membrane.

4.5. Optimization of Salmonella Antigen Concentration

When the concentration of Salmonella cells was varied, the limit of detection of the
immunosensor (LOD) ranged from 30 cells (3 × 103 Salmonella cells/mL) to 30,000 cells
(3 × 107 Salmonella cells/mL). The response signal output current was found to be reduced
as the bacterial concentration increased (i.e., above 3000 cells [3 × 105 cells/mL]), which
was an unexpected result, possibly indicating the presence of limiting factors such as sensor
surface area, antibody immobilization, or antigenic cell capture even under controlled
conditions. The anomaly could possibly reflect a lack of optimized immobilized antibody
at higher Salmonella cell concentrations. Olsen et al., 2003 [57], reported that the change
in steady-state current may be proportional to the step change in antigen concentration.
The silicon sensor detected less than 103 cells of Neisseria meningitidis in a 20-min ELISA
assay, whereas a 2.5 h enzyme-linked immunosorbent assay using the same antigen and
antibody preparations revealed a far less sensitive detection (6× 104) of cells [58]. Similarly,
Braiek et al., 2012 [18], demonstrated that an immunosensor has specificity with a linear
relationship at a concentration of S. aureus cells (10–106 CFU/mL), though reproducibility
was found to be very poor (8%). A wireless magneto-elastic mass-sensitive biosensor
was used to detect 1.6 × 102 CFU/mL of Salmonella [57,59]. Electroanalytical techniques
exhibited very low detection limits for bacterial cells (109 M) with small volumes (1–20 µL)
of samples. The detection limit of a bioenzyme (tyrosinase and horseradish peroxidase)
electrochemical biosensor for S. typhimurium was 1.09× 103 CFU/mL and the detection time
was 2.5 h [60]. Anti-Salmonella antibody with a limit of detection (LOD) of 10 CFU/mL and
a detection time of 125 min was used to detect Salmonella typhimurium lipopolysaccharide
(somatic “O” antigen) in food and water samples [61,62]. Electrochemical impedance
spectroscopy (EIS) confirmed the detection of lipopolysaccharide at 0.001–0.1 g/mL and the
LOD of bacteria at 1× 101 CFU/mL [62]. The performance of the immunosensor compared
to the traditional method for the detection of Salmonella sp. at concentrations 101 CFU/mL
and 103 CFU/mL is a remarkably interesting result. A polyclonal antibody against the
recombinant PagC protein was used to capture Salmonella from samples and the pagC
antibody IMBs-qPCR method’s efficiency, sensitivity, and specificity were demonstrated for
the detection of 30 Salmonella cells in less than 10 h [63]. In the current study, it was found
that the immunosensor device described not only improved the limit of detection (LOD) to
30 cells (3 × 103 Salmonella cells/mL) from 30,000 cells (3 × 107 Salmonella cells/mL), but
also reduced the quantity of reagents and the time required for detecting Salmonella cells to
2 min compared to that required by cultural methods (2 to 5 days).

4.6. Specificity of the Immunosensor

In order to show the specificity of the immunosensor, the interaction of the immo-
bilized primary monoclonal Salmonella antibody with other nonspecific organisms was
studied. The results showed a marked difference in response signal output current for
Salmonella, as compared to other organisms (Vibrio sp., Pseudomonas sp. and Streptococcus
sp.), indicating that bacteria which lacked the antigenic determinant site corresponding
in specificity with the immobilized Salmonella antibody did not bind to the sensor surface
and thus failed to generate a specific response signal output current. The signals generated
by nonspecific organisms such as Vibrio sp., Pseudomonas sp. and Streptococcus, sp. were
significantly lower and showed a different pattern to that observed with Salmonella cells,
due to their reduced affinity towards the primary immobilized monoclonal Salmonella
antibody. The role of BSA was to neutralize charges on the unbound areas of the mem-
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brane, other than those areas where primary monoclonal antibody was attached, and thus
avoid non-specific binding. Adsorption of the analyte (antigen) was limited to the sites
of immobilized primary Salmonella monoclonal antibodies on the biomembrane [53]. The
specificity of the immuno electrochemical biosensor in the presence of other nonspecific
organisms was therefore demonstrated [42,57,64,65]. Multiple research projects [4,59,60,64]
have lately focused on detecting Salmonella using standard analytical approaches such as
an immunosensor. As demonstrated in this investigation, monoclonal antibodies are useful
in the specific biosensor detection of Salmonella. Polyclonal anti-Salmonella antibodies were
also used to immobilize on the gold working electrode, revealing S. typhimurium’s LOD
at 10 CFU/mL with a detection time of 125 min [66]. The current recorded during the S.
typhimurium detection revealed a linear calibration curve up to 105 CFU/mL [66]. A com-
parative study of the application of various alternatives for the detection and identification
of bacteria, such as SERS-based biosensors, MALDI-TOF, colonies-scattering-based optical
biosensors [67–71] and even smart phone-based biosensors, would be interesting and in-
formative. At present, more than 2555 serovars of Salmonella have been recorded [2,72]. It
was judged that biosensor detection of a variety of Salmonella serotypes was impractical
in the present study. In Salmonella research, including genetic approaches for serovar
identification, subspecies serotypes are identified using antigenic formulas that follow the
subspecies name [72]. Eventually, further biosensor approaches will be developed and
their application in Salmonella serovar discrimination and treatment will be validated. The
equipment and experimental approaches disclosed in this paper could form a basis for
distinction of Salmonella strains and serovars. The immunosensor described here has been
optimized and validated to detect Salmonella very specifically, under various experimental
conditions, using PBS as the suspending medium. It is likely that the system would work
in other situations (and for other pathogenic bacteria), but it may be necessary to under-
take additional studies to determine if other constituents or contaminants in the bacterial
suspension (originating, for example, from soil or fecal material) would interfere with the
electrochemical detection of Salmonella serovars. However, in general, the method appears
to yield reproducible results and is well suited for bacterial assay, having the advantages of
being simple, inexpensive, highly sensitive, and rapid.

5. Conclusions

A novel method for detecting antigen-antibody interaction via enzyme-substrate
chemical reaction, using a two-electrode system without a potentiostat, has been suc-
cessfully developed and used with a simplified experimental methodology. The glassy
carbon immunosensor described not only has better detection limits than other sensors,
but also requires only 2 min for enzyme-substrate reaction analysis. The features of this
biosensor include consistency and sensitivity for the detection of Salmonella typhimurium,
providing a large analytical range, low non-specific binding, steady state output and good
reproducibility. The device and its method of application have potential use in a large
variety of biological applications. The current study has also demonstrated that a silanized
dialysis membrane interface disc placed on the glassy carbon electrode surface provides an
adequate matrix for specific immobilization of antigens and antibodies, and enables more
sensitive detection of S. typhimurium that has been possible until now. The biosensor has a
very sensitive detection limit, viz., three cells, and there is little non-specific reaction. The
dialysis membrane interface disc has a higher maximum response signal output current
than gelatin, collagen, or agarose. The manufacturing process for the disposable dialysis
membrane electrode interface discs is simple and could be employed for large-scale testing.
The glassy carbon immunosensor system developed in this study can be easily applied,
not only for monitoring and detecting S. typhimurium, but also for automated detection of
other potentially pathogenic microorganisms.
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