
HAL Id: hal-04264711
https://hal.umontpellier.fr/hal-04264711

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Constraint Networks over Unknown Constraint
Languages

Christian Bessiere, Clément Carbonnel, Areski Himeur

To cite this version:
Christian Bessiere, Clément Carbonnel, Areski Himeur. Learning Constraint Networks over Unknown
Constraint Languages. IJCAI 2023 - 32nd International Joint Conference on Artificial Intelligence,
International Joint Conferences on Artificial Intelligence Organization, Aug 2023, Macao, China.
pp.1876-1883, �10.24963/IJCAI.2023/208�. �hal-04264711�

https://hal.umontpellier.fr/hal-04264711
https://hal.archives-ouvertes.fr

Learning Constraint Networks over Unknown Constraint Languages

Christian Bessiere , Clément Carbonnel , Areski Himeur
University of Montpellier, CNRS, LIRMM, Montpellier, France

{bessiere, clement.carbonnel, areski.himeur}@lirmm.fr

Abstract
Constraint acquisition is the task of learning a con-
straint network from examples of solutions and
non-solutions. Existing constraint acquisition sys-
tems typically require advance knowledge of the
target network’s constraint language, which signif-
icantly narrows their scope of applicability. In this
paper we propose a constraint acquisition method
that computes a suitable constraint language as part
of the learning process, eliminating the need for any
advance knowledge. We report preliminary experi-
ments on various acquisition benchmarks.

1 Introduction
Constraint programming (CP) is a powerful technology for
solving combinatorial problems. It has gained significant at-
tention in the last decades. Its ability to efficiently solve
complex problems has made it a popular choice for a vari-
ety of real-world applications. However, one bottleneck in
the use of CP is the process of expressing the problem with
constraints, which often requires advanced knowledge in both
CP and the problem to model.

Constraint acquisition addresses this issue by automati-
cally generating a model from examples of past solutions or
non-solutions, or by asking queries of the user. In this paper,
we are interested in passive learning approaches, that is, those
in which the user provides a set of solutions and non-solutions
of a target model.

Given a set of examples of solutions and non-solutions
and a set of candidate constraints, CONACQ.1 computes a
SAT formula representing all the constraint models expressed
with constraints from the candidate set and consistent with
the examples [Bessiere et al., 2005; Bessiere et al., 2017].
Given a set of examples, MODELSEEKER proposes a set of
constraints taken from the global constraints catalog that are
consistent with the given examples [Beldiceanu and Simo-
nis, 2012]. As proposing all possible constraints to the user
would be far too heavy, MODELSEEKER is limited to con-
straints involving variables from a common topology, such as
rows or columns in a matrix. BAYESACQ follows a statistical
approach [Prestwich et al., 2021]. BAYESACQ takes as inputs
a set of examples and a set of candidate constraints. For each
candidate constraint, BAYESACQ computes a score based on

the ratio of the number of negative examples the constraint
violates to the number of positive examples it violates. These
ratios are used to return the most probable set of constraints.
The method presented in [Pawlak and Krawiec, 2017] ex-
presses the constraint acquisition problem as a mixed integer
linear programming problem whose solutions are sets of con-
straints correctly classifying all examples. The constraints
can be taken from the sets of linear, quadratic or trigonomet-
ric constraints, depending on the problem to model.

All the constraint acquisition approaches cited above re-
quire knowledge of the constraint language that is used to
generate the set of candidate constraints. This narrows the
scope of applicability of these approaches because a non-
expert user might not be able to provide a constraint language
that suits his problem. The objective of this paper is to present
a general approach where constraint acquisition only requires
the user to provide a set of examples of solutions and non-
solutions of the target constraint network. No set of candidate
constraints is required. We first define the decision version of
the constraint acquisition problem over unknown constraint
language when the maximum number k of relations in the un-
known language and the maximum arity r of its relations are
given. We prove that the problem is NP-complete, even when
k = r = 1. Given a number k of relations and an arity r, we
encode the problem of finding a constraint network over un-
known language as a partial maximum satisfiability problem.
We then propose a method to solve the problem of finding a
constraint network over unknown language when k and r are
not given. We just need to assume a preference order on the
pairs (k, r). We finally validate our method by analyzing its
behavior on a set of benchmark problems.

There already exist a couple of approaches that could be
considered as very close to ours because they do not explic-
itly require the set of candidate constraints to be given as input
to the acquisition problem. ARNOLD learns integer programs
from examples of feasible solutions by generating potential
constraints that only include sums, products, and compar-
isons among of terms [Kumar et al., 2019]. The generation
of constraints follows a general-to-specific order and collects
those that are satisfied by the example solutions in order to
produce an integer program model. COUNT-CP also learns
a network of constraints from examples of solutions [Kumar
et al., 2022]. COUNT-CP uses a grammar and a generate-
and-aggregate approach to determine the constraints on this

grammar from the examples. Though not explicitly given as
input, the generated constraints must belong to the language
of the given grammar, which is able to express a large bunch
of “counting” constraints (see [Bessiere et al., 2009]), but is
not able to express any kind of constraints.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background on constraint acquisition. In
Section 3, we present the formalization of constraint acqui-
sition problem over unknown constraint languages and we
prove that it is NP-complete. In Section 4, we describe our
method. In Section 5, we study the effectiveness of our
method through several experiments. Finally, in Section 6,
we conclude with a summary of our contribution and we dis-
cuss directions for future work.

2 Background
2.1 Constraint Programming
Constraint programming consists in expressing a problem as
a constraint network and finding solutions, that is, assign-
ments of values to all the variables so that no constraint is
violated. Given a domain D, a constraint is a pair ⟨R,S⟩,
where R is a relation of arity r over D (that is, R is a subset
of Dr) and S is a sequence of r variables (called the scope
of the constraint). A vocabulary is a pair ⟨X,D⟩, where X is
a finite set of variables and D is a finite domain. An assign-
ment A : X → D satisfies a constraint ⟨R,S⟩ if A[S] ∈ R;
otherwise, the assignment violates the constraint.

Definition 1 (Constraint network). A constraint network is
a tuple N = ⟨X,D,C⟩, where ⟨X,D⟩ is a vocabulary and
C is a set of constraints on subsets of X . An assignment
A : X → D satisfies N iff A satisfies all constraints in C.

A constraint language Γ is a set of relations over a finite
domain. The arity of Γ is the maximum arity over all relations
of Γ. A constraint network N is over a constraint language Γ
if the relation R of each constraint of N is such that R ∈ Γ.

2.2 Constraint Acquisition
Given a vocabulary ⟨X,D⟩, an example on this vocabulary
is a pair e = ⟨ϕ(e), b(e)⟩, where ϕ(e) is an assignment, and
b(e) is a Boolean. We say that e is a positive example if b(e)
is true; otherwise e is a negative example. We say that a con-
straint network N accepts (resp. rejects) an example e iff
ϕ(e) satisfies (resp. does not satisfy) N . A constraint net-
work N is consistent with a positive (resp. negative) example
e if and only if N accepts (resp. rejects) e

A training set E is a set of examples over a given vocab-
ulary. A constraint network N is consistent with a training
set E if and only if N is consistent with every example in E.
Given a training set E, E+ (resp. E−) denotes the subset of
all positive (resp. negative) examples of E.

2.3 Boolean Satisfiability
As our method will use a WEIGHTED PARTIAL MAX-SAT
solver, we introduce some basics about Boolean satisfiability.
A literal is a Boolean variable or its negation. A clause is
a disjunction of literals. The Boolean satisfiability problem
(SAT) on a set of clauses CL asks whether it is possible to

assign values to the variables of CL such that all clauses are
satisfied, i.e. CL evaluates to True. If µ is a truth assign-
ment of Boolean variables and l is a literal, we will slightly
abuse notation and write µ(l) to denote the truth value of l un-
der µ. The partial maximum satisfiability problem, PARTIAL
MAX-SAT, is a variant of SAT in which the goal is to find
an assignment such that all clauses in a first set called hard
clauses are satisfied, and the number of satisfied clauses in
another set of clauses called soft clauses is maximized. In the
WEIGHTED PARTIAL MAX-SAT problem, each soft clause
has a weight and we maximize the sum of the weights of sat-
isfied soft clauses.

3 Language Acquisition
In this paper, we consider the constraint acquisition prob-
lem without any language of constraints or set of candidate
constraints given as input data. Rather than working with a
fixed constraint language, we compute a constraint language
Γ alongside a constraint network over Γ that is consistent with
the training set.

An important difficulty with this approach is that there may
exist a large number of constraint languages that are consis-
tent with a given training set. Some of these languages are
clearly unsatisfactory from a practical point of view; for ex-
ample, every training set over n variables is trivially consis-
tent with a constraint network over a constraint language of
arity n and size 1. This constraint network has a single con-
straint covering all variables. Its satisfying assignments are
exactly the positive examples in the training set.

Our intuition is that the best constraint language is the sim-
plest. Because “simplicity” is difficult to define formally, we
instead consider (as a first, rough approximation) that the best
language is the smallest in terms of its maximum arity and
number of relations. This leads us to the following definition
for the constraint acquisition problem without language.
Definition 2 (LANGUAGE-FREE ACQ). Given a training set
E and two natural numbers k, r, the problem LANGUAGE-
FREE ACQ asks whether there exists a constraint network
over a language of size at most k and arity at most r con-
sistent with E.

In practice we will solve an optimization and search vari-
ant of this problem, in which we attempt to find a constraint
network with minimum (k, r) that is consistent with E. The
problem is multi-objective (both the language arity and size
must be minimized), so multiple strategies are possible: for
example, one could define a real-valued cost function f(k, r)
to be minimized or compute a Pareto front. The next theo-
rem states that LANGUAGE-FREE ACQ is NP-complete even
when (k, r) = (1, 1), so solving the optimization/search vari-
ant is likely to be difficult regardless of the chosen strategy.
Theorem 1. LANGUAGE-FREE ACQ is NP-complete even
when k = r = 1.

Proof. We first prove membership in NP. Suppose that there
exists a constraint network N = (X,D,C) over a language
Γ = (R1, . . . , Rk) of arity r and size k that is consistent with
E. We can further assume that each constraint rejects at least
one negative example that is accepted by all other constraints,

in which case N has at most |E| constraints. We specify each
relation Rj ∈ Γ succinctly by listing only the tuples t ∈ Rj

such that there exists a constraint c = (Rj , S) and an example
e ∈ E such that ϕ(e)[S] = t; the number of such tuples is at
most |C| · |E| ≤ |E|2. This succinct representation of N
has polynomial size (even when r, k are part of the input) and
can be checked for consistency with E in polynomial time,
so LANGUAGE-FREE ACQ ∈ NP.

In order to prove NP-hardness, we reduce SAT to
LANGUAGE-FREE ACQ. Let CL = {Z1, Z2, ..., Zm} be a
set of m clauses over a set V = {v1, v2, ..., vn} of n Boolean
variables. We define a training set E over a vocabulary
⟨X,D⟩ with X = {xv | v ∈ V } ∪ {x¬v | v ∈ V } and
D = {v | v ∈ V } ∪ {¬v | v ∈ V } ∪ {⋆} such that:

• e+⋆ ∈ E+ such that ∀x ∈ X,ϕ(e+⋆)[x] = ⋆

• ∀v ∈ V, e+v ∈ E+ such that:

∀x ∈ X,ϕ(e+v)[x] =

¬v if x = xv

v if x = x¬v

⋆ otherwise

• ∀v ∈ V, e−v ∈ E− such that:

∀x ∈ X,ϕ(e−v)[x] =

v if x = xv

¬v if x = x¬v

⋆ otherwise

• ∀Z ∈ CL, e−Z ∈ E− with ϕ(e−Z)[xl] =

{
l if l ∈ Z

⋆ otherwise

We claim that there exists a constraint network N =
⟨X,D,C⟩ over a language {R} of size 1 and arity 1 which is
consistent with E if and only if CL is satisfiable.

Let us assume that there exists such a network N consistent
with E. We show that this implies that CL is satisfiable. N
must accept e+⋆ , so ⋆ ∈ R. For each v ∈ V , N must reject
e−v . Hence, we have either v /∈ R and ⟨R, {xv}⟩ ∈ C, or
¬v /∈ R and ⟨R, {x¬v}⟩ ∈ C. We cannot have both v and
¬v forbidden by R because e+v must be accepted by N . We
thus have exactly one among v and ¬v forbidden by R, and
we can define the assignment µ : V → {False, True} such
that for each v ∈ V we have µ(v) = True ⇔ v /∈ R and
µ(v) = False ⇔ ¬v /∈ R. We also know that for all Z ∈
CL, N has to reject e−Z . Now, ϕ(e−Z)[x] = ⋆ for all x except
those literals composing Z. As a result, there is at least one
literal l in Z such that l /∈ R, and then µ(l) = True. We
conclude that µ satisfies CL. Let us now assume that there
exists an assignment µ that satisfies CL. We show that this
implies that there exists a network N = (X,D,C) over a
language {R} of size 1 and arity 1 which is consistent with
E. We define the relation R = D \ {l | µ(l) = True} and
C = {⟨R, ⟨xv⟩⟩ | ∀v ∈ V, µ(v) = True} ∪ {⟨R, ⟨x¬v⟩⟩ |
∀v ∈ V, µ(v) = False}. N accepts e+⋆ because ⋆ ∈ R. For
all v ∈ V , either ⟨R, {xv}⟩ ∈ C with ¬v ∈ R and v /∈ R,
or ⟨R, {x¬v}⟩ ∈ C with v ∈ R and ¬v /∈ R, but not both.
Hence, N accepts e+v and rejects e−v . As µ satisfies CL, for
each Z ∈ CL, there exists l ∈ Z such that µ(l) = True.
Thus, ⟨R, {xl}⟩ ∈ C with l /∈ R and N rejects e−Z . We
conclude that the network N constructed above, which is over
a language {R} of size 1 and arity 1, is consistent with E.

Both N and E are computable in polynomial time from
CL.

4 Solving the LANGUAGE-FREE ACQ
Problem

In this section we present our method for constraint acqui-
sition, which is based on repeatedly solving instances of the
LANGUAGE-FREE ACQ problem.

4.1 Method Overview
Given a training set E, our goal is to compute a constraint
network consistent with E with minimum (k, r). As noted in
Section 3, multiple strategies are possible. The most direct
approach would be to output a constraint network with mini-
mum k + r. We believe that increasing the arity should incur
a greater penalty than increasing the number of relations, so
we will minimize k + r2 instead. We break ties by giving
preference to lower arity (for example, six relations of arity
two are preferred over one relation of arity three).

It may be the case that multiple constraint networks have
the same arity and number of distinct relations. In that case,
we output a network with the largest number of constraints.
Our intuition behind this decision is that for sufficiently large
training sets, the fact that few relations can be applied to
many scopes without rejecting any positive example is un-
likely to be observed by chance. For the same reason, if mul-
tiple constraint networks have the same (k, r) and number of
constraints, we output one whose constraints are the tightest,
i.e. whose relations contain the fewest tuples on aggregate.

For fixed (k, r), we compute the desired constraint net-
work (or prove that none exists) using a WEIGHTED PARTIAL
MAX-SAT model, which we describe in the next sub-section.
Since our model is particularly efficient for small values of
(k, r), we perform bottom-up minimization, constructing and
solving a model for each (k, r) by increasing order of k+ r2.
We then output the first constraint network found.

4.2 The Model
Suppose that (k, r) is fixed. Our goal is to compute a con-
straint network N = ⟨X,D,C⟩ over a language of size k
and arity r that is consistent with E, whose number of con-
straints is maximum, and with the tightest constraints possi-
ble. We model this optimization problem as an instance of
WEIGHTED PARTIAL MAX-SAT. In the following, RT (E)
will denote the set of all pairs (t, v) such that t ∈ Dr, v ∈ Xr,
and there exists an example e in E such that t = ϕ(e)[v].

For each relation Ru of the target language {R1, . . . , Rk},
we have three kinds of Boolean variables in the WEIGHTED
PARTIAL MAX-SAT model:

• For all t in Dr, rut is true iff t /∈ Ru;

• For all v in Xr, suv is true iff ⟨Ru, v⟩ ∈ C;

• For all (t, v) in Dr ×Xr, cu(t,v) ≡ rut ∧ suv .

First, for each (u, t, v) ∈ {1, ..., k}×Dr ×Xr, we ensure
that cu(t,v) ≡ rut ∧ suv with the following hard clauses:

rut ∨ ¬cu(t,v)
suv ∨ ¬cu(t,v)
¬rut ∨ ¬suv ∨ cu(t,v)

(1)

Second, we make sure that all positive examples are ac-
cepted by the corresponding constraint network with the fol-
lowing set of hard clauses:

∀u ∈ {1, ..., k},∀(t, v) ∈ RT (E+), ¬cu(t,v) (2)

Similarly, we make sure that all negative examples are re-
jected:

∀e ∈ E−,
∨

∀u∈{1,...,k},∀(t,v)∈RT ({e})

cu(t,v) (3)

Finally, in order to maximize the number of constraints in
the network and, in a second time, minimize the number of
tuples in the relations, we add a soft clause (suv) with weight
1 for each u ∈ {1, . . . , k} and v ∈ Xr, and a soft clause (rut)
with weight ϵ < 1/(k · |Dr|) for each u ∈ {1, . . . , k} and
t ∈ Dr. This completes the description of the model.

The size of this WEIGHTED PARTIAL MAX-SAT model is
defined by its number of clauses and their sizes. The number
of –constant-size– clauses of type (1) and (2) is O(|D|r ·|X|r ·
k). There are |E−| clauses of type (3), each of size bounded
above by |D|r · |X|r · k. Finally, the number of –constant-
size– soft clauses (suv) and (rut) is bounded above by (|X|r+
|D|r) · k . This gives a total size of our model in O(|E−| ·
|D|r · |X|r · k).

Observe that the exponential dependency on the maximum
arity r is not a necessary feature of all models for this prob-
lem because LANGUAGE-FREE ACQUISITION is in NP (even
when r is part of the input). However, this model has the ad-
vantage of being flexible (it is easy, for example, to maximize
the number of constraints in the learned constraint network)
and very efficient for small values of r. In addition, this up-
per bound is quite loose as not all variables/clauses need to be
generated. For any u, t, v such that (t, v) /∈ RT (E−), we do
not need to generate the variable cu(t,v) and the corresponding
clauses of type (1) because it will never appear in the clauses
of type (2) or (3). The same is true for all u, t, v such that
(t, v) ∈ RT (E+). These refinements are particularly effec-
tive when the number of examples is small.

Finally, we note that the model contains some symmetries.
For example, its solution set is invariant under permutation of
the relational indices u ∈ {1, . . . , k} and permutation of the
entries of (t, v) for a fixed u. These symmetries can easily be
broken using standard techniques. It was unnecessary for our
experiments as k, r were always fairly small.

5 Experimental Results
In this section, we evaluate our method experimentally on
several benchmark problems. For each benchmark, we will
investigate how the number of examples affects the accuracy
of the learned constraint network, the similarity of the learned
constraint network with the target (Are they over the same

constraint language? Are they logically equivalent? Are they
exactly identical?), and the observed runtime. We will then
dive deeper into the details for an archetypal benchmark of
constraint acquisition (the sudoku), examining in particular
how the fraction |E+|/|E| of positive examples in the train-
ing set affects the learning process.

We have implemented the strategy described in Section 4.1
in the Python programming language. Our program takes as
input a training set, generates the corresponding WEIGHTED
PARTIAL MAX-SAT instances and calls an external solver
given by the user as a parameter. We chose to use the UWR-
MAXSAT solver [Piotrów, 2020]. All experiments1 are run
on one core of an Intel Xeon E5-2680 v4 2.4GHz processor
with 8GB of memory.

5.1 Benchmark Problems
Sudoku
The Sudoku is a logic puzzle with a 9 × 9 grid that must be
filled with the digits 1 to 9 in such a way that all the rows,
all the columns and 9 non-overlapping 3× 3 squares contain
all the digits from 1 to 9. For this problem, the target con-
straint network has 81 variables x1, . . . , x81, domains of size
9, and a binary constraint xi ̸= xj for all i, j in the same
row, column or square. Positive examples are generated by
computing solutions of the target constraint network with a
constraint solver using a randomized domain value strategy.
Non-solutions are generated by altering one value in a solu-
tion randomly.

Jigsaw Sudoku
The Jigsaw Sudoku is a variant of the Sudoku in which the
partition in 3 × 3 squares is replaced by a partition into non-
overlapping, irregular shapes of size 9 called jigsaw shapes.
The irregularity of the jigsaw shapes makes Jigsaw Sudoku
particularly difficult (or even impossible) to learn for methods
that rely heavily on predefined constraint topologies, such as
MODELSEEKER. For this problem, the target constraint net-
work has 81 variables x1, . . . , x81, domains of size 9, and a
binary constraint xi ̸= xj for all i, j in the same row, column
or jigsaw shape. Examples are generated in the same way as
for Sudoku.

We have observed significant variance in experimental re-
sults for different types of jigsaw shapes. To reflect this, we
have divided these benchmarks into three sub-families (#1,
#2 and #3) corresponding to three different layouts.

Schur’s Lemma
The problem is to put n balls labelled 1, · · · , n into 3 boxes
so that for any triple of balls (x, y, z) with x+ y = z, not all
are in the same box. For this problem, the target constraint
network has n variables x1, . . . , xn, domains of size 3, and
a ternary constraint NotAllEqual(xi, xj , xk) for all i, j, k
such that i + j = k. We ran the experiment with n = 9
which is the parameter with the highest number of solutions
(546). Positive examples are generated by computing solu-
tions of the target constraint network with a constraint solver

1Code and data required for conducting the experiments are
available at https://gite.lirmm.fr/coconut/language-free-acq

https://gite.lirmm.fr/coconut/language-free-acq

using a randomized domain value strategy. Non-solutions are
generated by altering one value in a solution randomly.

Subgraph Isomorphism
Given two graphs G and H , subgraph isomorphism is the
problem of determining whether G contains a subgraph that is
isomorphic to H . For this problem, the target constraint net-
work has |H| variables x1, . . . , xn and domains of size |G|. A
binary constraint xi ̸= xj for all i, j ensures that the mapping
between the vertices of H and G is a one-to-one function and
another binary constraint ensures that for any edge (a, b) in
H , (xa, xb) is an edge of G. We ran the experiment with H a
cycle of size 5 and a new random graph G for each run having
20 vertices and 100 edges. Positive examples are generated
by computing solutions of the target constraint network with
a constraint solver using a randomized domain value strategy.
Non-solutions are paths and closed walks of G computed us-
ing a randomized domain value strategy.

N-Queens
The N -Queens problem is the problem of placing N queens
on a N × N chessboard such that no two queens can attack
each other. For this problem, we use the standard representa-
tion in which there is a variable per column. The target con-
straint network has N variables x1, . . . , xN , where xi repre-
sents the row in which the queen on the ith column is posi-
tioned. All domains are {1, . . . , N}. There are binary con-
straints xi ̸= xj and |xi −xj | ≠ |i− j| for all i, j. This gives
us a language of size N corresponding to all possible values
of |i − j|. The constraint language is binary and has size N .
We ran the experiment with N = 8, for which the problem
has 92 solutions. We generate positive examples by comput-
ing a random solution, and negative examples by randomly
permuting the values or altering one value in a solution.

Golomb Ruler
The Golomb Ruler problem is the problem of finding a set
of marks on a ruler such that the difference between any two
marks is unique. The target constraint network has n vari-
ables, each representing the position of a mark on the ruler,
domains of fixed size {0...m}, and a quaternary constraint
|xi − xj | ≠ |xk − xl| for all i, j, k, l. For the experiment,
we choose to use n = 10 and m = 60. Positive exam-
ples are generated by computing a random solution of the
target constraint network with the symmetry breaking con-
straint xi < xj for all i < j and then randomly permuting
the values of this solution. Non-solutions are generated by
altering one value in a solution randomly.

5.2 Network and Language Acquisition
In this first experiment, we evaluate the overall performance
of our method on the acquisition of our benchmark problems.
We first present the experimental protocol and then discuss
important points in the results.

Protocol
We conduct a series of experiments with different numbers of
examples in the training sets. For each benchmark problem
and number |E| of examples, we run our acquisition method
5 times with a new randomly sampled training set for each

run. Training sets contain positive and negative examples in
the same proportion. The timeout is set to 12 hours. The per-
formance of the model is measured in terms of the average ac-
curacy over the five runs, which is computed on a new set of
2000 examples generated independently. We also record the
optimal (k, r) values found, the number of times the learned
language is the target language (out of the 5 runs), the num-
ber of times the learned network is equivalent to the target
network (i.e. they have exactly the same solutions) and the
number of times the learned network is precisely the target
network (i.e. with exactly the same constraints). We finally
record the average runtime of the acquisition process, includ-
ing the time required to prove that there does not exist any
network consistent with E for values of (k, r) smaller than
the (optimal) one returned.

Results
We provide a summary of the results in Table 1. The target
network for the Sudoku problem is consistently learned (that
is, learned for all 5 runs) with 200 examples in the training
set, and even as few as 100 examples in 2 runs out of 5. The
Jigsaw Sudoku required significantly more examples before
reaching 100% accuracy, from 600 to 1400 depending on the
jigsaw shapes. For this problem, the target constraint net-
work is never learned no matter the size of the training set.
Equivalent networks are learned instead, which we observed
to correspond to the target network with additional redundant
constraints. (For the classical Sudoku, all possible redundant
inequality constraints are already included in the target net-
work. This is not true for all jigsaw shapes.) For Schur’s
Lemma, with only 50 examples the target constraint language
is consistently learned and the accuracy is above 85%. This
is particularly interesting because this language has arity 3,
so this means that all constraint languages with at most 6
binary relations can be ruled out with very few examples.
Learning the target network consistently requires up to 800
examples, even if 2 runs out of 5 succeeded with only 200.
Subgraph isomorphism is the first problem for which the tar-
get language contains two relations. With 100 examples, the
learned networks are over a language with a single relation
and the accuracy is below 60%. 100% accuracy and equiv-
alent networks are reached with 800 examples, although the
target network and language can never be learned. This is be-
cause it is theoretically not possible to distinguish the graph
G (whose edges correspond to the tuples of one relation in
the target language) from another graph G′ with identical 5-
cycles using only examples. For the 8-Queens problem, the
experiment is limited to at most 184 examples because the
problem has only 92 solutions and we need 50% of positive
examples in the training set. We observe that even training
sets with 184 examples are not sufficient to reach 100% accu-
racy or learn the target constraint language (which is of size
8). Instead, our method outputs constraint networks over lan-
guages of size only 3 that achieve 99% accuracy. The Golomb
Ruler is particularly challenging because the target language
has arity 4. Runtimes are extremely high, with the 12-hour
timeout being reached for 800 and 1600 examples. With 400
examples, an accuracy of 76.4% is reached with a constraint
language containing a single binary relation. Perhaps surpris-

Problem |E| Accuracy (k, r) Language Equivalent Target Runtime (s)

Sudoku 100 83.7% (1, 2) 5/5 2/5 2/5 129.3
200 100% (1, 2) 5/5 5/5 5/5 34.9
400 100% (1, 2) 5/5 5/5 5/5 25.8

Jigsaw #1 400 98.9% (1, 2) 5/5 0/5 0/5 25.1
600 99.5% (1, 2) 5/5 0/5 0/5 30.1
800 99.8% (1, 2) 5/5 3/5 0/5 33.3

1200 99.9% (1, 2) 5/5 4/5 0/5 35.8
1400 100% (1, 2) 5/5 5/5 0/5 33

Jigsaw #2 400 99.3% (1, 2) 5/5 2/5 0/5 25
600 99.9% (1, 2) 5/5 4/5 0/5 27.6
800 100% (1, 2) 5/5 5/5 0/5 31.6

Jigsaw #3 400 99.7% (1, 2) 5/5 3/5 0/5 25
600 100% (1, 2) 5/5 5/5 0/5 27.6

Schur’s Lemma 10 51.9% (1, 2) 0/5 0/5 0/5 0.3
50 86.9% (1, 3) 5/5 0/5 0/5 22.7

100 96.3% (1, 3) 5/5 0/5 0/5 1
200 98.8% (1, 3) 5/5 2/5 2/5 0.8
400 99.7% (1, 3) 5/5 3/5 3/5 1.2
800 100% (1, 3) 5/5 5/5 5/5 1.8

Subgraph Isomorphism 100 59% (1, 2) 0/5 0/5 0/5 0.9
400 99.7% (2, 2) 0/5 0/5 0/5 0.9
800 100% (2, 2) 0/5 5/5 0/5 2

8-Queens 100 87% (2, 2) 0/5 0/5 0/5 6.4
184 99% (3, 2) 0/5 0/5 0/5 16.7

Golomb ruler 400 76.4% (1, 2) 0/5 0/5 0/5 506
800 - - - - - > 43 200

1600 - - - - - > 43 200
3200 100% (1, 3) 0/5 5/5 0/5 23 468

Table 1: Summary of the experiment described in Section 5.2. |E| is the number of examples in the training set; Accuracy is the accuracy
measured on a new set of 2000 examples generated independently; (k, r) gives the optimal values computed for the size and arity of the
learned constraint language; Language is the number of times the target language is learned out of 5 runs; Equivalent is the number of times
the learned and target network are equivalent out of 5 runs; Target is the number of times the target network is learned out of 5 runs.

ingly, with 3200 examples an equivalent constraint network
over a language with a single ternary relation is obtained in
all five runs. This relation is symmetric and applied to all
possible triples of distinct variables, revealing some hidden
structure in the problem’s solution set.

5.3 Detailed Analysis on the Sudoku Problem
In this section, we investigate how the number of examples
and the positive-to-negative ratio in the training set affects the
accuracy and runtime of the learned constraint network with
an archetypal example of constraint acquisition : the Sudoku.

Runtime
In this experiment we take a closer look at the runtime re-
quired by our method, as a function of the number of exam-
ples. We focus on the Sudoku problem and run the experi-
ment with the number |E| of examples going from 0 to 300
by steps of 5. For each value, we run our method five times
(with |E+|/|E| = 0.5) and report the average runtime. If

any of the five runs reaches the 3-hour timeout, we ignore the
others and simply report a timeout for the corresponding |E|.

Figure 1 shows our results. An optimal constraint network
(in the sense of our objective function) is found rather quickly
when the number of examples is either extremely small (5 to
15) or sufficiently large (75 or more). This is unsurprising be-
cause examples translate into hard clauses in our WEIGHTED
PARTIAL MAX-SAT model: with very few examples the
model is underconstrained, and with sufficiently many exam-
ples the search space becomes small. The transition appears
to occur between 15 and 70 examples, where the solver sys-
tematically reaches the timeout. As we will see in the next
experiment, for such values of |E| the accuracy of an opti-
mal constraint network would be close to 0.5. This means
that very long runtimes are only observed for training sets
that are too small for our method to learn the target constraint
network (independently of the computational resources avail-
able). For 170 examples or more, the optimal solution is the
target Sudoku network and is found in less than 30 seconds.

0 50 100 150 200 250 300

101

102

103

104

Sudoku found

Number of examples

Ti
m

e
in

se
co

nd
s

Figure 1: Runtime as a function of the number of examples. The
vertical line indicates the number of examples from which the output
is the target Sudoku network.

Accuracy
In this experiment we vary the number |E| of examples from
75 to 300 by steps of 5, again with |E+|/|E| = 0.5 for all
training sets. For each value |E|, we run our method 5 times
on samples of |E| randomly generated examples. We then
measure the accuracy of each of the 5 learned constraint net-
works using 2000 additional examples. We report the average
accuracy as a function of |E| in Figure 2.

100 150 200 250 300

0.6

0.7

0.8

0.9

1

Number of examples

A
cc

ur
ac

y

Figure 2: Accuracy as a function of the number of examples.

At 75 examples, the measured accuracy is close to 0.5,
which means that the number of examples is too small to al-
low our method to learn a network capturing the problem.
From 75 to 120 examples, the accuracy increases dramati-
cally up to 0.95. From 120 to 170 examples the accuracy
slowly increases up to 1. The slowness in winning these last
percentage points of accuracy is explained by the fact that

in this range, the learned constraint network is essentially a
Sudoku model with a few additional difference constraints.
As our method maximizes the number of constraints in the
network, these extra constraints can only be ruled out a few
at a time by positive examples. The accuracy reaches 1 at
n = 170, at which point the target constraint network is
found.

Ratio of Positive Examples
In this experiment, we vary the fraction of positive ex-
amples p = |E+|/|E| in the training set. For each
p ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, we generate train-
ing sets with a fraction p of positive examples. In Table 2
we report the minimum number of examples needed by our
method to return the target Sudoku network. Results are av-
eraged over five runs.

p 0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

|E| × 343 172 137 115 106 98 99 ×

Table 2: Number of examples needed to learn the target Sudoku net-
work for a given fraction p of positive examples. A cross indicates
that the target network is never returned.

We observe that as the ratio of positive increases, fewer
examples are needed to acquire the target network. This is
not valid past a certain point because our method is not ca-
pable of learning the target constraint network with only pos-
itive examples. Indeed, in this case a degenerate constraint
network with (k, r) = (1, 1) correctly classifies all exam-
ples and therefore will be returned. (Likewise, our method
is incapable of learning the target network with p = 0.) We
observe a slight increase in the number of required examples
at p = 0.9 compared to p = 0.8, although the difference is
within margin of error. Overall, it seems that our method per-
forms best on the Sudoku problem when the ratio of positive
examples is comprised between 0.6 and 0.9.

6 Conclusion
We proposed a constraint acquisition method that eliminates
the need for advance knowledge of the target network’s con-
straint language. Our method computes a suitable constraint
language as part of the learning process, making it more
widely applicable. Experiments are particularly encouraging,
although they also highlight some limitations. We believe that
some of these limitations (in particular, the fairly large num-
ber of examples sometimes required to win the last percent-
age points of accuracy and the difficulty to deal with large
constraints languages) could be addressed in the future by in-
tegrating less rudimentary notions of simplicity than language
size. Automatically detecting (or guessing) topological infor-
mation about the target network, such as an eventual matrix
structure, would also help greatly the learning process.

Acknowledgments
This work was partially supported by the TAILOR project,
funded by EU Horizon 2020 research and innovation pro-
gramme under GA No 952215, by the AI Interdisciplinary

Institute ANITI, funded by the French program “Investing
for the Future – PIA3” under grant agreement no. ANR-
19-PI3A-0004, and by the ANR AXIAUM project ANR-
20-THIA-0005-01 (Data Science Institute of the University
of Montpellier). All the experiments have been performed
with the support of MESO@LR-Platform at the University of
Montpellier.

References
[Beldiceanu and Simonis, 2012] Nicolas Beldiceanu and

Helmut Simonis. A model seeker: Extracting global
constraint models from positive examples. In Michela
Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012,
Québec City, QC, Canada, October 8-12, 2012. Proceed-
ings, volume 7514 of Lecture Notes in Computer Science,
pages 141–157. Springer, 2012.

[Bessiere et al., 2005] Christian Bessiere, Remi Coletta,
Frédéric Koriche, and Barry O’Sullivan. A sat-based ver-
sion space algorithm for acquiring constraint satisfaction
problems. In João Gama, Rui Camacho, Pavel Brazdil,
Alı́pio Jorge, and Luı́s Torgo, editors, Machine Learn-
ing: ECML 2005, 16th European Conference on Machine
Learning, Porto, Portugal, October 3-7, 2005, Proceed-
ings, volume 3720 of Lecture Notes in Computer Science,
pages 23–34. Springer, 2005.

[Bessiere et al., 2009] Christian Bessiere, Emmanuel He-
brard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.
Range and roots: Two common patterns for specifying and
propagating counting and occurrence constraints. Artif. In-
tell., 173(11):1054–1078, 2009.

[Bessiere et al., 2017] Christian Bessiere, Frédéric Koriche,
Nadjib Lazaar, and Barry O’Sullivan. Constraint acquisi-
tion. Artif. Intell., 244:315–342, 2017.

[Kumar et al., 2019] Mohit Kumar, Stefano Teso, and
Luc De Raedt. Acquiring integer programs from data.
In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pages
1130–1136. ijcai.org, 2019.

[Kumar et al., 2022] Mohit Kumar, Samuel Kolb, and Tias
Guns. Learning constraint programming models from data
using generate-and-aggregate. In Christine Solnon, editor,
28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August
8, 2022, Haifa, Israel, volume 235 of LIPIcs, pages 29:1–
29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[Pawlak and Krawiec, 2017] Tomasz P. Pawlak and
Krzysztof Krawiec. Automatic synthesis of constraints
from examples using mixed integer linear programming.
Eur. J. Oper. Res., 261(3):1141–1157, 2017.

[Piotrów, 2020] Marek Piotrów. Uwrmaxsat: Efficient solver
for maxsat and pseudo-boolean problems. In 32nd IEEE
International Conference on Tools with Artificial Intelli-
gence, ICTAI 2020, Baltimore, MD, USA, November 9-11,
2020, pages 132–136. IEEE, 2020.

[Prestwich et al., 2021] Steven D. Prestwich, Eugene C.
Freuder, Barry O’Sullivan, and David Browne. Classifier-
based constraint acquisition. Ann. Math. Artif. Intell.,
89(7):655–674, 2021.

	Introduction
	Background
	Constraint Programming
	Constraint Acquisition
	Boolean Satisfiability

	Language Acquisition
	Solving the Language-Free Acq Problem
	Method Overview
	The Model

	Experimental Results
	Benchmark Problems
	Sudoku
	Jigsaw Sudoku
	Schur's Lemma
	Subgraph Isomorphism
	N-Queens
	Golomb Ruler

	Network and Language Acquisition
	Protocol
	Results

	Detailed Analysis on the Sudoku Problem
	Runtime
	Accuracy
	Ratio of Positive Examples

	Conclusion

