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Abstract
The way animals select their breeding habitat may have great impacts on individual 
fitness. This complex process depends on the integration of information on various 
environmental factors, over a wide range of spatiotemporal scales. For seabirds, 
breeding habitat selection integrates both land and sea features over several spatial 
scales. Seabirds explore these features prior to breeding, assessing habitats' quality. 
However, the information-gathering and decision-making process by seabirds when 
choosing a breeding habitat remains poorly understood. We compiled 49 historical 
records of larids colonies in Cuba from 1980 to 2020. Then, we predicted potentially 
suitable breeding sites for larids and assessed their breeding macrohabitat selection, 
using deep and machine learning algorithms respectively. Using a convolutional neural 
network and Landsat satellite images we predicted the suitability for nesting of non-
monitored sites of this archipelago. Furthermore, we assessed the relative contribu-
tion of 18 land- and marine-based environmental covariates describing macrohabitats 
at three spatial scales (i.e. 10, 50 and 100 km) using random forests. Convolutional 
neural network exhibited good performance at training, validation and test (F1-scores 
>85%). Sites with higher habitat suitability (p > .75) covered 20.3% of the predicting 
area. Larids breeding macrohabitats were sites relatively close to main islands, fea-
turing sparse vegetation cover and high chlorophyll-a concentration at sea in 50 and 
100 km around colonies. Lower sea surface temperature at larger spatial scales was 
determinant to distinguish the breeding from non-breeding sites. A more comprehen-
sive understanding of the seabird breeding macrohabitats selection can be reached 
from the complementary use of convolutional neural networks and random forest 
models. Our analysis provides crucial knowledge in tropical regions that lack complete 
and regular monitoring of seabirds' breeding sites.

K E Y W O R D S
animal habitat modeling, convolutional neural networks, gulls and terns breeding, remote 
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1  |  INTRODUC TION

The quality of environment in breeding habitats may greatly affect 
animal fitness (Danchin et al.,  1998). Thus, individuals are under 
strong selective pressure for optimal breeding habitats (Orians & 
Wittenberger, 1991; Piper, 2011). This complex selection process in-
volves environmental conditions over a large range of spatial scales 
and relies on hierarchical and sequential decision-making by animals 
(Block & Brennan, 1993).

Several factors have been suggested for explaining how sea-
birds choose a place to breed: geographical features of the nesting 
area (area, spatial isolation) (Greer et al., 1988; Orians & Witten-
berger,  1991); vegetation characteristics (coverage, height, den-
sity) (Muzaffar et al., 2015; Raynor et al., 2012); climate variability 
(temperature, rainfall, wind) (Córdoba-Córdoba et al., 2010; Mu-
zaffar et al., 2015) and socio-ecological factors (competition, ter-
ritoriality, predation pressure, fidelity to the breeding site, group 
cohesion, information exchange between individuals, colony 
recruitment, previous breeding experience) (Córdoba-Córdoba 
et al., 2010; García Borboroglu & Yorio, 2007; Greer et al., 1988). 
Commonly, adult seabirds gather information on habitat quality 
(Doligez et al., 2002) over a range of spatial scales through pro-
spective movements before breeding (Kristan,  2006; Ponchon 
et al., 2013). A range of oceanographic conditions surrounding the 
nesting sites may also be assessed by seabirds when selecting a 
place to nest: water masses characteristics (temperature, salin-
ity), bathymetry and productivity-related variables (chlorophyll-a 
concentration, distance to food sources, prey availability and 
abundance). In particular, water mass properties and zooplankton 
abundance have been shown as important factors for this selec-
tion process in boobies and auklets (Oppel et al., 2015; Sorensen 
et al., 2009).

Existing studies on breeding habitat selection by seabirds are 
mostly focusing either on terrestrial habitats, where nests and colo-
nies are installed, or on the surrounding marine areas, that birds use 
to forage during the breeding (e.g. García Borboroglu & Yorio, 2007; 
Raynor et al., 2012). Also, most of these studies focused on a sin-
gle spatial scale of analysis and were often species or colony spe-
cific. More integrative (over land and seascapes), multi-specific 
and multi-scale approaches should improve our understanding of 
the breeding habitat selection process by seabirds. In addition to 
these existing limitations, seabird habitat selection in the tropics is 
much less understood than that of temperate and polar species. In 
tropical waters, primary productivity is generally low and season-
ally stable compared to the cooler waters of polar and temperate 
regions (Hockey & Wilson, 2003; Jaquemet et al., 2008). One might 
therefore expect key factors for habitat selection to differ between 
tropical, temperate or polar seabirds, and hypothesize that tropical 

seabirds are comparatively more influenced by terrestrial than ma-
rine features.

Furthermore, many tropical regions lack a full and regular 
monitoring of seabirds' breeding sites due to economical and lo-
gistical constraints, as well as the scarcity of qualified human re-
sources. For instance, Laridae (gulls, terns and skimmers; Winkler 
et al., 2020) in Cuba are the most abundant seabird group with 25 
species recorded (Navarro,  2021), 36% of them breeding in the 
archipelago (Jiménez et al., 2009). However, information on their 
colonies is presently very limited: scarce records of sites, species, 
number of breeding pairs, and basic habitat features and breed-
ing parameters (e.g. Acosta et al., 2022; Jiménez et al., 2009). In 
particular, the most important environmental variables affecting 
breeding habitat selection remain poorly known. In order to pri-
oritize the areas to be monitored, an important prerequisite is to 
predict potential breeding sites as well as to identify the main driv-
ers of breeding habitat selection at the scale of the entire archipel-
ago. Considering both terrestrial and marine areas should provide 
a more realistic and eco-functional approach to predict tropical 
seabirds' breeding sites.

The synergy of the aforementioned characteristics (dependence 
on terrestrial and marine factors, multi-scale influence, multi-species 
breeding) makes the study of seabird breeding macrohabitat (i.e. the 
breeding location such as island, peninsula, beach) complex. Appar-
ently, few tools have enough potential to assess, holistically, the suit-
ability and selection of these macrohabitats. But a solution could 
be found within the field of machine learning, a family of artificial 
intelligence tools that aims to learn functional relationships from 
data (Borowiec et al., 2022; Fincham et al., 2020; Olier et al., 2021). 
Since their dissemination in the 1990s, machine learning models 
have shown marked statistical and predictive superiority over classi-
cal approaches, such as the maximum likelihood estimation and null 
hypothesis significance testing (Pichler & Hartig, 2023).

Among the most popular models are the neural networks (such 
as convolutional neural networks [CNN]), and random forest (RF). 
CNNs belong to the deep learning subfield and have become a 
state-of-the-art approach in the field of computer vision and re-
mote sensing (Borowiec et al.,  2022; Ghanbari et al.,  2021; Ma 
et al.,  2019). CNNs are composed of multiple layers of process-
ing units which can learn from complex features and represent 
data with a high level of abstraction at multiple scales. They are 
known for their outstanding ability to segment and classify images 
within end-to-end learning framework, i.e. without requiring any 
preliminary feature engineering (Fincham et al., 2020; Kattenborn 
et al.,  2021; Ma et al.,  2019). RF (Breiman, 2001) is highlighted 
for its robustness to heterogeneous predictors, its high accuracy 
(Ma et al., 2019) and its ability to provide a contribution level or 
importance of each covariate. CNNs usually outperform RFs for 
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classification and prediction purposes (Kattenborn et al.,  2021; 
Mahdianpari et al.,  2018). Yet, an important advantage of RFs 
over CNNs is their more explicit understanding of the associations 
between the response variable and its covariates. In the remote 
sensing research area, CNNs have been identified as potentially 
well-suited to prediction of habitat suitability for animals such 
as birds (e.g. Chilson et al.,  2019; Su et al.,  2018). “A picture is 
worth a thousand words” and a satellite image represents an ex-
cellent example of that due to its stack of spectral bands with high 
potential for seabird macrohabitat description. Su et al.  (2018) 
used CNNs (and Support Vector Machine) with satellite images 
to model the habitat suitability for a migratory geese species. 
Others, as Chilson et al. (2019) and Wang et al. (2021), identified 
birds' habitat elements using radar data and photographic images, 
respectively. Deneu et al.  (2021) used CNNs to improve species 
distribution modeling by capturing complex spatial structures of 
the environment.

Despite the development of some alternative procedures, the 
main limitation of CNNs (and deep learning in general) is that they 
operate as a “black box,” which prevents the ecological interpreta-
tion of the processes under study (Borowiec et al.,  2022; Pichler 
& Hartig, 2023). However, considering the main strengths of CNN 
(high performance for prediction) and RF (assessing of ecological 
hypotheses through the covariates contribution), the complemen-
tary use of both methods could increase our understanding of the 
patterns and processes involved in macrohabitat selection and be 
helpful for developing effective management and conservation 
strategies (Figure 1). Here, we predict the suitability of macrohabitat 
for the breeding of Laridae in Cuba (using CNN) and investigate the 
ecological variables driving their habitat selection (using RF) from 
satellite data. More precisely we (1) predict the breeding macrohab-
itat suitability of Laridae at the scale of the entire Cuba archipelago 
using CNN, and (2) assess the selection of the breeding macrohabitat 
by these seabirds considering the contribution of landscape and sea-
scape covariates, at different spatial scales, using RFs.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This study focuses on the marine coastal ecosystems of the 
Cuban archipelago (Figure 2). Cuba is the largest Caribbean island 
(length = 1256.2 km, maximal width = 191 km) and includes four in-
sular groups (Los Colorados, Sabana-Camagüey, Canarreos and Jar-
dines de la Reina) featuring >1600 cays (small, low-elevation, sandy 
islands on the surface of the coral reef) and islets with large variation 
in relief, geology and landscapes. Climate is tropical hot and season-
ally wet with marine influence and semi-continental traits (www.
insmet.cu). Annual mean temperature varies between 24°C in the 
plains of the main island and >34°C at the eastern coasts. Mean rela-
tive humidity in the island is high (≈82%–90%) and mean annual pre-
cipitation ≈1375 mm. Daily weather variations are more important 

between November and April while the weather is more stable dur-
ing May–October due to the influence of a North Atlantic anticy-
clone (www.insmet.cu). The mean sea surface temperature over the 
continental shelf varies from ~23 to 28°C in January and from ~29 
to 32°C in September, from North to South, with the largest spatial 
gradients at the vicinity of the shelf break. The mean chlorophyll-a 
varies from ~0.5 to >10 mg m−3 with the largest values observed be-
tween the coast and the northern islands as well as in the Southwest 
region, with moderate seasonal variations.

2.1.1  |  Breeding and available sites

We compiled and filtered (deletion of duplicates, erroneous and im-
precise data about species identification, location of colonies and 
date of breeding) all available informations on observed breeding 
sites of Laridae (i.e. cay, islet or coastal site) from scientific publi-
cations, books, thesis, project reports and unpublished data. A 
database was built with the names and spatial coordinates of the 
49 reported breeding sites (Figure 2), years of observation (1980–
2020), breeding species and information sources (Table  S1). Ob-
served breeding species of Laridae were Laughing Gull Leucophaeus 
atricilla (LAGU), Brown Noddy Anous stolidus (BRNO), Sooty Tern 
Onychoprion fuscatus (SOTE), Bridled Tern Onychoprion anaethetus 
(BRTE), Least Tern Sternula antillarum (LETE), Gull-billed Tern Gelo-
chelidon nilotica (GBTE), Roseate Tern Sterna dougallii (ROST), Royal 
Tern Thalasseus maximus (ROYT) and Sandwich Tern Thalasseus sand-
vicensis (SATE). Breeding records of Common Tern Sterna hirundo 
were treated as ROST due to the misidentification of these species' 
colonies (Navarro,  2021; Nisbet,  2020). Additionally, we selected 
(non-randomly) 52 sites distributed along the coast of Cuba where 
none of the nine species was observed breeding in 2020 (Figure 2, 
Table S1). These non-breeding sites represented the potential mac-
rohabitat available. Both terrestrial and marine features surrounding 
the observed breeding sites were considered for predicting suitable 
breeding macrohabitats.

2.2  |  Acquisition and formatting of breeding 
macrohabitat data

2.2.1  |  Satellite images

For each breeding and available site we extracted satellite imagery 
of Landsat 5 and 7 (Table  S2) from EOS Data Analytics platform 
(https://eos.com). The date of the image was matched to the year of 
the breeding colony presence record, while images from 2020 were 
used for non-breeding sites. Several images were associated to each 
site (depending on availability) to ensure a good representation of 
the natural variability during the breeding period (May–August) and 
to reduce the influence of clouds in some images. In some cases, we 
incorporated images of both months of April and September (clima-
tology similar to the May–August period) when none was available 
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from May to August of the current year. In total, we selected 136 sat-
ellite images describing the conditions of the study sites (Table S2).

We then resized the Landsat images into scenes (9.0 × 9.0 km 
square areas centered on the sites) and standardized them 
through the “Dark Subtraction” (based on the bands minimum 

digital number) to apply atmospheric scattering corrections to the 
imagery data and “SLC Gap-Filled” correction for Landsat 7 imag-
ery since 31 May 2003. In the end, GeoTIFF files (299 × 299 pixels, 
30 m-spatial resolution) were created that included the visible and 
infrared bands. Panchromatic and thermic bands were excluded 

F I G U R E  1 Complementarity approach between convolutional neural networks and random forests models to study seabird breeding 
macrohabitat.

F I G U R E  2 Map of the study area and the sites used to train and validate the modeling of the breeding macrohabitat suitability of nine 
Laridae species. Blue diamonds = breeding sites, red diamonds = non-breeding sites.
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because these do not match between Landsat satellites. The defi-
nition of scene size followed a balanced criterion: sufficiently large 
image size that included land and sea components, and sufficiently 
small to minimize the inclusion of other breeding and available 
sites in the same image scene (which would affect the prediction 
quality). We organized the data into two datasets considering the 
quality of scene images related with cloud cover (Table S3) to con-
trol for cloud-related confounding effects. We randomly mixed 
the images database of both types of sites (i.e. with and without 
breeding colonies) and then split them into two groups containing 
70% (training) and 30% (validation) of the data (Table S3) for the 
building and selection of the best CNN.

Satellite images from 2021 at 12 breeding and 52 non-breeding 
sites (verified as such that year) were used as test dataset to assess 
the predictive performance of the CNN. For predicting breeding 
macrohabitat suitability, we applied the same preprocessing to 
Landsat 7 images of 2021 (Table S2) that covered the entire Cuban 
archipelago. A mosaic was built with these images, masking mainland 
to retain only the marine-coastal ecosystems up to the insular shelf. 
Images with open water only or predominance of land of the main 
two islands (Cuba and Juventud) were excluded since they were 
irrelevant to Laridae breeding (Jiménez et al.,  2009). Finally, this 
mosaic image was gridded into 793 scenes (63,805.5 km2) with the 
same format and structure than train and validation datasets. Satel-
lite images were processed using the ENVI 4.7 (ITT VIS Inc) software.

2.2.2  |  Physical and geographical covariates

Because of the absence of information on the foraging ranges of 
Cuban seabirds during their breeding period, we did a bibliographic 
compilation of all information available on the same species observed 
elsewhere during breeding, from polar to tropical zones. From this 
review, we estimated the potential maximum foraging ranges during 
breeding for each studied species (Table S4). Then, we defined three 
spatial scales (radius of 10, 50 and 100 km from the breeding site) ap-
proximately corresponding to the estimated foraging ranges of our 
study species, and computed several oceanographic characteristics 
at each spatial scale.

Twelve potentially important features for the establishment 
of Laridae breeding colonies, described through 18 metrics, were 
considered at the defined spatial scales (Table  1): 11 of them de-
scribed the conditions of the nesting landscape, and seven of them 
described the conditions of the surrounding seascape. The variables 
were measured at the date of the colony observation, and in 2020 
for the non-breeding sites.

Using the Landviewer product of the EOS Data Analytics plat-
form, we calculated the Normalized Difference Water (Gao, 1996) 
and Vegetation (Rouse et al.,  1973) Indexes (NDWI and NDVI re-
spectively) from satellite images (using Green, Red and Near Infra-
red bands) of the Landsat series. Dates of images ranged between 
May and August, matching the breeding season of Laridae in Cuba 
(Jiménez et al., 2009). Both spectral indices vary between −1 and 1 

with higher numbers corresponding to higher humidity (NDWI) or 
green vegetation (NDVI). Based on the NDWI we then calculated the 
drought emerged areas (NDWI range = −1 to 0.2) and the percentage 
of non-flooding cover (NDWI range = −1 to 0). The NDVI allowed to 
quantify the total (NDVI range = 0.2–1) moderate and dense vegeta-
tion covers (NDVI range = 0.4–1). Thus, the area, non-flooding zone 
cover and vegetal covers of each nesting site were computed from 
the satellites images. The perimeter was calculated after vectoriza-
tion of the imagery scenes.

We calculated the index of shape complexity for islets and cays 
(Hu et al.,  2011) as SI = P/[2 × (π × A)1/2], where SI = shape index, 
P = perimeter and A = area of the site. A SI value of 1 indicates an islet 
or cay with a perfect circular shape and SI increases as the shape 
becomes more irregular and complex. Isolation variables (minimum 
distances to Cuba/Isla de la Juventud (IJ) and to nearest cay, and 
cays/islets number at the three spatial scales) were estimated using 
Google Earth Pro 7.3.3 software. Minimum distances to the 200-m 
isobath were measured using a bathymetric shapefile of the exclu-
sive economic zone of Cuba (using information both from GEBCO 
and Cuban research agencies databases).

Sea surface temperature (SST) and surface chlorophyll a con-
centration (Chl a) around the sites were obtained at a spatial resolu-
tion of 1 km from level-2 MODIS-Aqua satellite data (https://ocean​
color.gsfc.nasa.gov/data/aqua/) after sampling and spatial repro-
jection of the data. For both variables we averaged the monthly 
values between May and August of the year corresponding to the 
last register of each breeding colony and for 2020 for available 
sites. Nevertheless, due to the absence of logistical support for a 
systematic monitoring of these variables before 2002, and given 
the small interannual variability of both variables in Cuba, data for 
breeding colonies observed in that period were estimated from 
the mean of 2002–2021 period for the same months (Figure S1). 
A summary of the satellite images used for the study is provided 
in Table S2.

The eldest colony record, at Rincón del Guanal (Table S1), was 
excluded from the study as we could not obtain the same variables 
from Landsat 4 satellite (fewer bands than Landsat 5 and 7). Breed-
ing macrohabitat was characterized considering both mixed and 
monospecific colonies.

2.3  |  Prediction and selection assessment of the 
breeding macrohabitats

2.3.1  |  CNN implementation

A CNN architecture is typically composed by multiple layers of pro-
cessing units where two main processes occur: convolution and 
pooling. During convolutions several filters are applied to extract 
relevant features of data that will be used for calculating the matches 
in the testing phase. Pooling operations capture large images and 
reduces the parameters to preserve important information. Katten-
born et al. (2021) and Krishna and Kalluri (2019) offer more details 
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about architectures, parameters and functions of CNNs. Here, we 
use a CNN with three consecutive layers of convolutions and max 
pooling, followed by a dense network. Finally, the last layer consists 
in a sigmoid activation so that the output of the network is a value 
between 0 and 1. This CNN aims therefore to ingest the selected 
bands of Landsat satellite images of 299 × 299 pixels (Table S3) as 
input data and to output the probability of the described habitat to 
be suitable for breeding seabirds.

Parameters were finally estimated using an Adam optimizer and 
minimizing a “Sparse categorical crossentropy” loss. In order to pre-
vent overfitting, we also added a L2 regularizer, a Deep Learning 
technique to get better generalization and predictive properties 
(Kussul et al., 2017). Finally, models were trained using the “train-
ing dataset,” and selected when minimizing accuracy score over the 
“validation dataset.” This analysis was implemented with the keras R 
package (v. 2.6.1) (Kalinowski et al., 2021).

We performed this training procedure for distinct parameters 
and the best CNN (better performance and lowest loss in validation 
and test datasets) was used to predict the breeding macrohabitat 
suitability using the satellite images of 2021 along all marine-coastal 
ecosystems of the archipelago. The most frequently reported 

metrics, Overall Accuracy, Precision, Recall and F1-score (Table S5) 
were used to assess CNN performance. All analysis was imple-
mented in R 4.1.1 (R Core Team, 2021).

2.3.2  |  RF implementation and 
contribution of variables

Variables were compared among sites using Mann–Whitney U-tests 
considering significance at p < .01. Breeding macrohabitat selection 
was analyzed through random classification forests (RFs) models 
considering the measured variables at three spatial scales. Similar to 
CNN, we mixed and split the data to create the training and valida-
tion datasets (70% vs. 30% proportions) for the building and selec-
tion of the best RF. The same training and validation datasets were 
used in all RFs to compare their classification performances. We im-
plemented three RFs, one that processed physical-geographical vari-
ables registered within a radius of 100 km from the breeding colony 
(RF_100; 300 trees and four variables by split), a second within a 
50 km radius (RF_50; 200 trees and four variables by split) and a third 
one within a 10 km radius (RF_10; 150 trees and three variables by 

TA B L E  1 Potentially important variables for Laridae breeding macrohabitat selection (breeding site, i.e. cay, islet or coastal site) in Cuba.

Feature Variable Unit Ecological meaning

Site extent Area km2 Available space for nests establishment

Site perimeter Perimeter km Indicator of the availability of potential coastal zones for breeding

Site shape Shape index based on perimeter/
area ratio

– Related to geographical features (e.g. peninsulas) that could be 
important for breeding

Isolation degree Minimum distance from the colony to 
the nearest cay/islet

km Indicator of accessibility for predators and other disturbance sources

Minimum distance from the colony 
to the nearest main island (Cuba 
or Isla de la Juventud) of the 
archipelago

km Indicator of accessibility for predators and high disturbance sources 
(higher risk)

Cays/islets number within 10, 50 and 
100 km of the colony

– Indicator of the number of potential sources (at different spatial 
scales) of predators, alien species and other disturbances that 
could affect the colonies

Terrain Non-flooding zone cover % Suitability of the locality for colony establishment based on flooding 
risk

Vegetation Vegetal covertotal % Surface occupied by plants (species-specific suitability for breeding, 
Burger & Gochfeld, 1981; Raynor et al., 2012)

Vegetal covermoderate + dense % Surface occupied by moderate to dense vegetation that could 
affect the establishment of colonies (some Laridae tend to avoid 
high vegetation cover while others are attracted, Bukacinska & 
Bukacinsky, 1993; Burger & Gochfeld, 1986)

Oceanographic Sea surface temperature within 
10, 50 and 100 km radius of the 
colony

°C Reflects thermal conditions that influence primary productivity and 
prey availability at different foraging ranges

Bathymetric Minimum distance to the 200-m 
isobath

km Indicates the limit of the insular shelf in Cuba and therefore is a 
proxy for suitable foraging areas for most Laridae (Schreiber & 
Burger, 2002).

Phytoplanktonic 
biomass

Chlorophyll a concentration at sea 
surface within 10, 50 and 100 km 
radius of the colony

mg m−3 Proxy for phytoplanktonic biomass, primary productivity and prey 
availability at different foraging ranges
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    |  7 of 13GARCIA-­QUINTAS et al.

split). For each RF type we used the 10 best runs in order to get an 
average and variance of model performance.

Same performance metrics than CNN (Table  S5) were used to 
assess the training, validation and test of RFs. Variables contribu-
tions were calculated from the mean decreasing Gini index (values 
are directly proportional to variable importance) derived from the 
RF with better performance. The randomForest R package (v. 4.6-14) 
(Breiman et al., 2018) was used to this analysis.

3  |  RESULTS

3.1  |  Prediction of macrohabitats breeding 
suitability

The performance of CNN was high, exhibiting indicators values 
≥80.0% for the validation datasets (Table 2). Image quality (accord-
ing to cloud cover) had no significant consequence on the classifi-
cation power of CNNs (F1-score validation = 85.7% and 84.6% for 
CNNs that used all and best images, respectively; Table  S3). We 
thus worked with the architecture that used all images. Based on 
the test dataset, the CNN exhibited good performance test indica-
tors with accuracy = 79.7%, precision = 91.5%, recall = 82.7% and 
F1-score = 86.9%.

When used for predicting over the entire Cuba archipelago, the 
CNN estimated 32,184, 12,069, 6598 and 12,954 km2 of suitable 
habitat for breeding within 0–.25, .26–.50, .51–.75 and .76–1 prob-
ability ranges, respectively (Figure 3). Thus, the probability ranges 
>.50 and >.75 covered 30.6% and 20.3% of the predicted area, re-
spectively. The best areas (high suitability scores) tended to be con-
centrated in three general types of ecosystems: (1) remote cays/
reef islets of all subarchipelagos (Figure 2, with Jardines de la Reina 
archipelago under-represented), (2) coastal zones with sand, rocks 
or interior lagoons and (3) interior of bays, gulfs and swamps that 
contained small islets and sand banks (Figure 3). The southern region 
of Cuba had less suitable breeding macrohabitats than the northern 
region (Figure 3).

3.2  |  Breeding macrohabitat selection and 
importance of covariates

The general statistics (median, quartiles) of most covariates were 
quite similar between breeding and non-breeding sites (Figure  4, 
Table S6). Only SST at the three spatial scales and Chl a at 50 and 
100 km radii exhibited significant differences: SST was lower and 
Chl a higher at breeding sites (Figure 4). Additionally, breeding sites 
tended to have a smaller number of cays/islets within 10 km com-
pared to non-breeding sites (p = .01, Figure 4). Performance metrics 
for RF_50 and RF_100 were very similar and outperformed RF_10 
(Table 2). For RF_100, SST had the highest contribution to discrimi-
nate breeding from non-breeding sites (Figure  5). A second group 
of covariates with lower contribution included isolation-related vari-
ables (number cays/islets within 10 and 50 km from colonies) and 
Chl a within 100 and 50 km radius (Figure  5). Remaining variables 
exhibited relatively low contributions and non-flooding area cover 
had the lowest importance (Figure 5).

4  |  DISCUSSION

4.1  |  Prediction of breeding macrohabitat 
suitability

According to our results, prediction of habitat suitability can be 
successfully obtained by processing satellite images with CNN ex-
clusively. This constitutes a significant advance for habitat ecology 
studies and expands the applications and perspectives of image 
analysis via deep learning approaches. Deep architecture of CNNs 
conveys a high computation cost (Kattenborn et al.,  2021) but, at 
the same time its versatility provides a great generalization capacity 
with a broad applicability in the remote sensing field (Kattenborn 
et al., 2021; Ma et al., 2019; Mahdianpari et al., 2018). Our CNN had 
relatively good performance and provided a map of macrohabitats 
suitability for Laridae over the whole Cuban archipelago for the year 
2021. Predictions were based on physical-geographical suitability of 

TA B L E  2 Training and validation performance (in %) of a convolutional neural network (CNN) and three random forest (RF) models used 
to respectively predict breeding site suitability and assess breeding site (macrohabitat) selection by Laridae in Cuba.

Model 
type

Training 
accuracy

Training 
F1-score

By image By site

Validation 
accuracy

Validation 
precision

Validation 
recall

Validation 
F1-score

Validation 
accuracy

Validation 
precision

Validation 
recall

Validation 
F1-score

CNN 98.4 98.7 75.7 75.5 76.9 76.2 86.7 80.0 92.3 85.7

RF_10 72.0 ± 2.5 71.2 ± 2.3 – – – – 70.0 ± 1.6 67.4 ± 2.0 69.3 ± 3.4 68.3 ± 1.9

RF_50 81.7 ± 2.4 80.7 ± 2.4 – – – – 77.3 ± 2.1 77.8 ± 3.4 72.1 ± 2.3 74.8 ± 2.0

RF_100 85.1 ± 1.1 84.5 ± 1.4 – – – – 76.7 ± 0a 76.9 ± 0a 71.4 ± 0a 74.1 ± 0a

Note: RF_10, RF_50 and RF_100 indicate models that used physical-geographical variables within 10, 50 and 100 km radius from localities, 
respectively; CNN = model that used Landsat images with 9 × 9 km square areas. Statistics indicate the mean (± standard deviation) of the best 10 
runs for each RF.
aThere was no variability in the indicator.
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8 of 13  |     GARCIA-­QUINTAS et al.

marine-coastal ecosystems (from the images) but it does not imply 
per se the existence of breeding colonies at areas with higher habitat 
suitability. Deep learning algorithms, such as CNNs, do not neces-
sarily “learn” the right causal dependencies between input features 
and the response (Pichler & Hartig,  2023). However, these areas 
represent sites with favorable conditions for breeding in 2021 and 
thus constitute alternatives or additional breeding sites for Laridae 
around Cuba.

The most suitable breeding sites (probability range >.50) for 
Laridae exhibited a scattered general distribution along the coasts 
of Cuba. Although a slightly higher concentration of sites occurred 
in the northern marine-coastal ecosystems. Nevertheless, areas 
of Los Colorados, Canarreos and Sabana-Camagüey archipelagos 
showed higher number of favorable breeding sites acting as po-
tential hotspots for Laridae reproduction (Figures 2 and 3). These 
predictions are relatively consistent with current field knowledge in 
these areas, and with the location of historical persistent breeding 
colonies.

In particular, breeding habitats for Laridae such as beaches, 
rocky platforms and sand banks in distant or difficult-access cays 
and islets were often true positive predictions. Two of the most sci-
entifically studied regions, the Sabana-Camagüey and Jardines de la 
Reina archipelagos, had respectively high and low predicted breed-
ing habitat suitability depicted by CNN, a point confirmed by field 
observations (Figures 2 and 3). Nevertheless, some predicted areas 
seemed irrelevant for breeding because of the presence of extensive 
anthropogenic infrastructures (cities, towns, industries, agricultural 
fields) that might cause disturbance. Although this study focused on 
the physical-geographical suitability of Laridae breeding macrohabi-
tats, the satellite images processed through our CNN also contained 
spectral information on some anthropogenic features. This provides 
a more comprehensive aspect to our predictions.

On the other hand, main false negatives of the predictions were 
located at Mono Grande, Cinco Leguas, Felipe de Barlovento and 
Las Salinas breeding sites (Table  S1). Prediction scenes (grid cells) 

containing these breeding sites were not highly different (from a vi-
sual interpretation) from the training sites. Then, this suggests the 
importance of incorporating oceanographic (e.g. SST, Chl a) or eco-
logical variables (e.g. prey availability-related) into the CNN to im-
prove its prediction quality. Scene classification with an emphasis on 
land cover, vegetation and crop types is one of the most common ap-
plications of CNNs (e.g. Kattenborn et al., 2021; Kussul et al., 2017; 
Mahdianpari et al., 2018). However, these classifications are based 
on relatively easily distinguishable element classes (e.g. water, bare 
soil, marsh, fen, forest, grassland, paddy rice) whereas animal habitat 
suitability is a more complex phenomenon.

It is important to point out that the habitat suitability diversity 
predicted by the model (that addressed all Cuban Laridae) could 
result from the different species-specific breeding habitats require-
ments; especially LETE that has a high dynamic and opportunistic 
behavior to select its breeding sites (this species may change it nest-
ing sites between consecutive breeding seasons depending on the 
availability of isolated sand bodies). For this reason, even if CNN 
obtained relevant predictive performance metrics, the prediction 
map (Figure 3) should be interpreted carefully, and further studies 
would be required to improve its accuracy. However, the good global 
quality of the model highlights its potential for application to other 
species and regions of the world. Normally, CNNs are excellent tools 
for capturing complex hierarchical patterns from images (Borowiec 
et al., 2022).

4.2  |  Breeding macrohabitat selection pattern

Simplistic approaches to the study of breeding habitat selection 
have been criticized decades ago (e.g. Burger & Shisler, 1978) as the 
environment of many animals, such as seabirds, consists in hetero-
geneous composition of habitat characteristics along several spatial 
and temporal scales (Danchin et al., 1998). The abundance of food 
resources, microclimate and physical-geographical attributes of the 

F I G U R E  3 Convolutional neural network prediction of macrohabitat suitability for the breeding of Laridae in Cuba, for the 2021 breeding 
season, using Landsat images.
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    |  9 of 13GARCIA-­QUINTAS et al.

F I G U R E  4 Comparison of 18 physical-geographical variables corresponding to 48 breeding and 52 non-breeding sites (available 
macrohabitats) for Laridae in Cuba. Some variables were log-transformed for visualization purpose exclusively. *Significant differences.
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local landscape are elements usually relied upon by colonial seabirds 
for the selection of good breeding habitats (García Borboroglu & 
Yorio, 2007). Here, we found that breeding macrohabitat selection 
by Laridae in Cuba could be partly explained through seascape and 
landscape features of the breeding sites.

Overall, breeding site (macrohabitat) selection by Laridae was 
mainly explained by lower SST values within 100 and 50 km from col-
onies. Thus, we show that SST at larger scales played an important 
role in Cuban Laridae habitat selection, despite its relative seasonal 
stability throughout tropical waters (Hockey & Wilson, 2003; Jaque-
met et al.,  2008). The greater contribution of larger spatial scales 
for SST probably reflects the role of oceanographic conditions (e.g. 
thermal fronts) at relatively large distances from breeding habitats, 
coinciding with the foraging range of most species which often ex-
ceeds 30 km from colonies (Table S4). Chl a at the same spatial scales 
was also important, although to a lesser extent, for breeding site 
selection, highlighting the role of marine productivity for breeding. 
However, it should be noted that Chl a is an index of phytoplanktonic 
biomass that does not match exactly in space with the maximum of 
forage fish abundance (e.g. Zavalaga et al., 2010).

Sea surface temperature (indirectly) and Chl a could be con-
sidered as proxies of marine productivity and food availability, 
and hence key factors for breeding habitat selection by seabirds 
(Vilchis et al.,  2006). However, mismatching patterns between 
both variables may occur (e.g. Zavalaga et al.,  2010). In several 
regions of the world these variables have been shown as having 
important effects on seabirds foraging, demography and popu-
lation dynamics, with generally cooler SST favoring higher Chl a, 
and hence the foraging and breeding success of seabirds (Barbraud 
et al., 2012; Carroll et al., 2015). The selective pattern of breeding 
macrohabitat found for Laridae in Cuba is consistent with this gen-
eral pattern, although the effect of Chl a appears lesser than for 
SST (Figure S1).

The lower contribution of Chl a could be consequence of ter-
restrial runoff leading to eutrophication processes, as occurs in 
some marine ecosystems of northwestern Cuba (Rey-Villiers 
et al., 2021). Thus, such excessive and polluted upwelling of pri-
mary productivity may not be attractive for Laridae feeding. This 
also could be magnified in areas of low marine circulation as in the 
interior macro-lagoons (water bodies between the cays and the 
island of Cuba) of the Sabana-Camagüey archipelago. In addition, 
differences in marine current patterns between regions (e.g. Arri-
aza et al., 2008) and the influence of extreme climate events such 
as rainfall and hurricanes (Alvarez-Socorro et al.,  2021) should 
cause differences in local oceanography (e.g. SST, Chl a) between 
coastal areas of Cuba.

Similar to previous studies (e.g. Burger & Gochfeld, 1981, 1986; 
Greer et al., 1988), areas with moderate to dense vegetation cover 
were avoided by Laridae for breeding (Figure 4). For seabirds, high 
cover and dense vegetation cover usually constitutes a barrier to 
breeding as it limits the visibility and social communication between 
neighbors at colonies, and hence, may increase predation risk (Buk-
acinska & Bukacinsky, 1993; Raynor et al., 2012).

4.3  |  Complementarity of CNN and RF approaches

After visual inspection of the image mosaic of 2021, the more suit-
able predicted areas for Laridae in Cuba included heterogeneous ter-
restrial covers and waters with contrasting depths. Yet, our ecological 
understanding here is limited as we have no explicit indication on 
the metrics CNNs finally used to maximize prediction quality. Some 
technics exist in order to get insights into the metrics automatically 
extracted by the CNN, such as layer-wise backpropagation, saliency 
maps, “network dissection” and the explainable Artificial Intelligence 
(xAI) methods (see Borowiec et al.,  2022; Pichler & Hartig,  2023; 

F I G U R E  5 Contribution of marine 
and terrestrial environmental features 
to the breeding macrohabitat selection 
pattern of Laridae in Cuba based on 
random forests classification models 
(corresponding to the spatial scale of 
100 km radius from breeding colonies, but 
includes the nested scales of 10 and 50 km 
radius).
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Samek et al., 2021). It is however an active field of research, and using 
these approaches is beyond the scope of this paper.

Random forests are a classic example of so-called ensemble mod-
els (interacting sets of simple algorithms or statistical models that 
make up more complex algorithms), which typically have low predic-
tion errors and weight the contribution of the variables analyzed by 
the model (Pichler & Hartig, 2023). This last property contributes to 
the explanation of the process or phenomenon being studied. Thus, 
based on our RFs results and statistical analysis, we could yet hypoth-
esize that important features such as vegetation, number of cays/
islets but also ocean color (related to Chl a) were captured through 
Landsat spectral data. Also, the CNN performance might be probably 
increased including SST information at the radius of 100 km (consid-
ering the main results of RFs) and being trained over larger datasets.

This study illustrates the benefits obtained from a complemen-
tary analysis of CNN and RF. Here, RF can be seen as an explicative 
tool relying on features directly related to our a priori ecological 
hypotheses, while CNN can act as an evaluative tool in order to 
assess the relevance of habitat spectral features, as well as an ef-
ficient predictive tool producing large scale prediction of habitat 
suitability in a convenient manner. Particularly, CNNs are becom-
ing increasingly important in remote sensing and ecology due to 
the inclusion of the spatial dimension within their convolutional 
layers, thus facilitating the identification/characterization of rel-
evant ecological patterns and processes (Hayes et al., 2021). Our 
prediction of breeding habitat suitability with CNN should also be 
systematically updated considering the changing dynamics of ma-
rine ecosystems and seabird colonies. Finally, we recommend the 
exploration of building CNNs that use both spectral and relevant 
ecological data (identified by RF), to produce finer predictions 
supported ecologically.

4.4  |  Management and conservation implications 
from the complementary approach

The dispersed distribution pattern of suitable breeding sites in Cuba 
offers to Laridae a wide variety of options for colony establishment. 
This could buffer the effects of climate change and anthropogenic 
pressures on breeding macrohabitats due to presumed vulnerabil-
ity differences (e.g. flood risk, ease of access to predators and hu-
mans, local oceanographic anomalies) among these sites. This also 
provides flexibility for management agencies, considering the exist-
ence of a large number of alternative sites for Laridae conservation 
in Cuba. Also, the potential for legal protection of some important 
breeding colonies (e.g. predicted hotspots) is increased due to the 
low risk of spatial overlap of breeding sites with places of socioeco-
nomic interest, under an appropriate marine spatial planning.

From a practical point of view, we recommend a field valida-
tion of the effective presence of colonies in sites that are expected 
to be highly suitable. This could be done through field surveys at 
these sites, as a way to optimize logistical and economic resources 
for conservation purposes. Then, confirmed breeding sites could 

be considered to update the boundaries of Marine Protected 
Areas in Cuba, improve the governmental strategy of adaptation 
to climate change, detect negative effects due to natural and an-
thropogenic causes (McGowan et al.,  2013; Perrow et al.,  2015) 
and set up a sustainable use of marine-coastal ecosystems (tour-
ism, fishing, industry). Effective conservation measures for sea-
bird populations must necessarily include both the establishment 
sites of colonies and their surrounding waters (Oppel et al., 2018). 
More precisely, according to our complementary CNN-RF ap-
proach, conservation and management actions for Laridae breed-
ing macrohabitats in Cuba should include the areas of predicted 
breeding hotspots. Also, oceanic characteristics (SST and Chl a) 
at mesoscale (50–100 km) around the cays, as well as the degree 
of dense and moderate vegetation cover, should be considered in 
future management plans.
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