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Abstract The silky shark (Carcharhinus falci-
formis) has experienced a significant population 
decline associated with intense targeted and inciden-
tal fishing pressure. Large marine protected areas 
(MPAs) are increasingly advocated for the conserva-
tion of oceanic species like silky sharks, recognising 
that the benefits of MPAs to such species depend on 
a comprehensive understanding of their distribu-
tion, abundance and life history. We combined mid-
water stereo-baited remote underwater video system 
(BRUVS) records with environmental, geographic 
and anthropogenic variables to document the distribu-
tion and abundance of silky shark populations, iden-
tify the most important predictors of their presence, 
abundance and body size, and determine if their abun-
dance is greater within MPAs than in locations not 

designated as MPAs. From 1418 deployments of mid-
water BRUVS across three ocean basins, 945 silky 
sharks were identified at 18 locations, with young-
of-year (< 87 cm TL) observed at four of these. Our 
study revealed generally low abundances of silky 
sharks as recorded on mid-water BRUVS across their 
cosmopolitan distribution, although our models iden-
tified seamounts as hotspots of abundance. Human 
pressure was a significant variable within our mod-
els, with proximity to human populations and ports 
being key drivers of silky shark abundance and body 
size. We did not observe a higher abundance of silky 
sharks inside MPAs compared to locations not desig-
nated as MPAs, suggesting that these MPAs have not 
been placed in areas where silky sharks remain rela-
tively abundant. We therefore recommend expanding 
the current MPA network in line with the 30 × 30 ini-
tiative to more effectively protect key habitats such as 
seamounts.

Keywords Silky shark · Marine predator · 
Baited remote underwater video systems · Spatial 
protection · Marine protected areas · Seamount

Introduction

The impacts of human activity on marine life are per-
vasive (O’Hara et al. 2021) and no ecosystem remains 
unaffected (Halpern et  al. 2019). Human impacts 
extend far beyond coastal zones into the pelagic realm 
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(Kroodsma et al. 2018) and consequently only 13.2% 
of the ocean can be considered refugia for wildlife 
(Jones et  al. 2018). The cumulative effects of inten-
sifying anthropogenic pressures such as climate 
change, pollution, habitat degradation and overex-
ploitation threaten pelagic biodiversity, with overex-
ploitation being the principal factor in the decline of 
oceanic sharks (White et  al. 2019; Pacoureau et  al. 
2021). Oceanic shark abundance has depleted by 71% 
in the past half century, and they now represent one 
of the world’s most threatened groups of vertebrates 
(Dulvy et al. 2014; Pacoureau et al. 2021). The wide-
spread and rapid decline of oceanic sharks is severely 
concerning due to their elevated risk of extinction 
(Field et  al. 2009) and their critical functional roles 
in ecosystem connectivity, nutrient transport and fish 
community regulation (Ferretti et al. 2010; Heithaus 
et al. 2010; Pimiento et al. 2020).

The silky shark is a commercially important spe-
cies of conservation concern (Cardeñosa et al. 2018; 
Hueter et  al. 2018). Although one of the world’s 
most abundant sharks (Bonfil 2008), intense targeted 
and incidental fishing has substantially reduced their 
numbers by up to 54% over 45 years in some regions 
(Rigby et al. 2017). This reduction has been sufficient 
to warrant a raft of conservation measures, such as 
inclusion in Appendix 2 of the Convention on Inter-
national Trade in Endangered Species of Wild Fauna 
and Flora (CITES) (2016) and uplisting to ‘vulner-
able’ on the International Union for Conservation 
of Nature (IUCN) Red List of Threatened Species 
in 2017 (Rigby et  al. 2017). Practical measures to 
reduce bycatch mortality, such as gear modifica-
tions and retention bans, have been adopted by mul-
tiple Regional Fisheries Management Organisations 
(RFMOs) (Serafy et  al. 2012; Western and Central 
Pacific Fisheries Commission (WCPFC) 2013; Inter-
American Tropical Tuna Commission (IATTC) 2019; 
Schaefer et  al. 2019). Combined, however, these 
measures fall short to halt and reverse the ongoing 
global decline in silky sharks (Clarke et al. 2018). A 
growing focus for the conservation of mobile pelagic 
species such as silky sharks has been the designation 
of large marine protected areas (MPAs), in which 
extractive activities are prohibited or limited (Game 
et al. 2009; O’Leary et al. 2016; Dwyer et al. 2020). 
This growing need resonates with the global initiative 
to designate at least 30% of oceans as protected areas 
by 2030 (30 × 30) (Zhao et al. 2020). However, the 

applicability and effectiveness of static spatial protec-
tion to silky shark conservation remain unassessed 
and questionable due to their high mobility, vast 
home range and population structure (Le Quesne 
and Codling 2009; Mizrahi et al. 2018; Boerder et al. 
2019; Kraft 2020). The effectiveness of MPAs for 
sharks is further limited by poor enforcement, inad-
equate governance and placement based on avoiding 
conflict with extractive or commercial uses rather 
than the actual ecological value of the site (Agardy 
et  al. 2011; Edgar et  al. 2014; Devillers et  al. 2015; 
Jacoby et al. 2020).

The effectiveness of conservation measures for 
silky sharks is additionally constrained by limited 
knowledge of their distribution, abundance, and 
population structure, of which an improved under-
standing is urgently required as the foundation of 
successful temporal and spatial management strat-
egies (Anderson and Jauharee 2009; Rigby et  al. 
2017; Hueter et al. 2018). The challenges of study-
ing elusive species in the open ocean have led to a 
reliance on fishery-dependent data, which provide 
valuable information on geographic distribution 
but are limited by gear size selectivity, non-random 
distribution of fishing effort, and underreporting of 
shark landings (Kendall et  al. 2009; Jacquet et  al. 
2010; Temple et al. 2019). The recent development 
of mid-water stereo-baited remote underwater video 
systems (BRUVS) has facilitated non-extractive 
sampling within previously inaccessible environ-
ments (Santana-Garcon et al. 2014; Letessier et al. 
2019) and reduced our reliance on fishery-depend-
ent data to enhance our understanding of pelagic 
wildlife (Letessier et  al. 2017; Thompson et  al. 
2021).

We mined data from a mid-water BRUVS database 
curated by the Marine Futures Lab for 39 locations 
across three ocean basins to: (1) document the distri-
bution, abundance and size structure of silky shark 
populations, (2) identify the most important envi-
ronmental, geographic and anthropogenic predictors 
of their presence, abundance and body size, and (3) 
assess if their abundance is greater within designated 
MPAs than in locations not designated as MPAs. 
We focus our study on Exclusive Economic Zones 
(EEZs) to allow consideration of socioeconomic fac-
tors, which influence the distribution, abundance and 
diversity of marine wildlife (Brewer et al. 2012; Jaiteh 
et al. 2016) and the effectiveness of spatial protection 
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(Mizrahi et al. 2018). Our results will allow insight as 
to whether MPAs have been designated in areas with 
remaining relatively high abundances of silky sharks, 
increase our ecological understanding of this vulnera-
ble but poorly understood species and provide a base-
line for future monitoring.

Methods

Survey methods

Our analysis is based on a dataset of video-based 
records of ocean wildlife collected using mid-
water BRUVS. Each mid-water rig is composed of 
a lightweight 1.45-m long stainless-steel frame, a 
perpendicular 180-cm long bait arm, a 45-cm long 
perforated PVC canister containing 1 kg of pil-
chards (Sardinops sagax) and two high-definition 

small action cameras, in waterproof housings, that 
are mounted 80 cm apart and angled inwards by 8° 
on a horizontal base bar (Fig.  1). Stereo cameras 
enable identification, counts and length measure-
ments of individuals present in the field of view 
within a range of ca. 10 m. Individual mid-water 
BRUVS are deployed in a longline configuration of 
‘sets’ of three to five rigs, each separated by 200 m 
of horizontal line. Mid-water BRUVS are deployed, 
suspended at a depth of 10 m and then recovered 
following a 2-h soak time. All mid-water BRUVS 
were deployed during daylight hours to minimise 
the influence of crepuscular behaviour of fishes 
(Myers et  al. 2016). Sampling design within loca-
tions was based on either stratified random sam-
pling or generalised random tessellation stratifica-
tion (Stevens and Olsen 2004) depending on survey 
purpose. All sampling followed standard protocols 
outlined in Bouchet et al. (2018) and was conducted 

200 m

Rig 2 Surface buoys

Bungee 
cord

Pelagic 
wildlife GoPro

cameras

Bait 
cannister Bait arm Weight 

plates

Rig (stainless 
steel frame)

Ocean surface

10 m

Safety clip

Fig. 1  Schematic of mid-water stereo-BRUVS in-water configuration. Adapted from Bouchet and Meeuwig (2015)
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under University of Western Australia ethics per-
mit RA/3/100/1484 and appropriate Australian and 
international field permits.

Video treatment and analysis

This analysis is based on video imagery from 1418 
deployments of mid-water BRUVS during 66 surveys 
at 39 locations between April 2012 and March 2020 
held in a dataset curated by the Marine Futures Lab 
at the University of Western Australia (Supplemen-
tary Information Appendix 1; Appendix 2). All loca-
tions were within the latitudinal range of silky sharks, 
between 42° N and 43° S (Ebert et  al. 2013). Each 
longline of three to five mid-water BRUVS was con-
sidered and analysed as a single deployment given 
that the number of rigs per set varied and because the 
rigs on a given set are not statistically independent 
of each other (Hurlbert 1984). For each deployment, 
video analysts identified all observed individuals to 
the greatest taxonomic resolution possible, estimated 
the relative abundance of each taxon recorded as the 
maximum number of individuals in a given frame 
(MaxN), and measured individual fork lengths (FL). 
Each deployment was analysed for 120 min as a 
standardised sampling unit.

We first filtered the mid-water BRUVS dataset for 
all records of silky sharks. For consistency with the 
broader silky shark literature, in certain aspects of 
the analysis, we converted FL into total length (TL) 
with the equation: TL = −1.16 + 1.2 × FL (Branstet-
ter 1987). We also allocated individuals into three 
life history classes: young-of-year (YOY), juveniles 
and adults. These categories were based on reports 
that silky sharks are born at sizes between 57 and 87 
cm TL (Compagno 1984), and thus YOY were those 
individuals < 87 cm or less. To categorise adults, we 
assigned our sampling locations to each of the cen-
tral Atlantic, central Indian, eastern Indian, eastern 
Pacific, western Pacific and southern Pacific Ocean 
regions, as sexual maturity is reached at different 
lengths depending on the varying life history charac-
teristics of specific populations by region (Grant et al. 
2018). Although there is a paucity of understand-
ing surrounding the life history parameters of many 
pelagic shark, species and methods of estimation may 
influence observed differences in vital rates (Mukherji 
et  al. 2021), and genetic analysis has revealed that 
silky sharks have multiple genetically distinct stocks 

within ocean basins (Kraft 2020). This genetic dis-
tinction likely contributes to intrinsic intraspecific 
variation in life history parameters, rather than these 
differences stemming from experimental design. 
Adults were classed as > 223 cm in the central Atlan-
tic, > 180 cm in the eastern Pacific, > 194 cm in the 
western and southern Pacific and > 212 cm in the 
eastern and central Indian Ocean regions based on the 
review by Grant et al. (2018). Juveniles were classed 
as those individuals > 87 cm and less than the adult 
size of the region in which they were recorded.

Silky shark distribution and abundance

We evaluated the degree to which our mid-water 
BRUVS records reflect the predicted distribution of 
silky sharks from AquaMaps (www. aquam aps. org). 
AquaMaps is a tool for generating large-scale pre-
dicted range maps for marine species based on mod-
els which combine occurrence data from online data-
bases with published literature (Kaschner et al. 2019). 
We first downloaded the probabilities of silky shark 
occurrence on a 0.5° × 0.5° grid based on depth (m), 
sea surface temperature (°C), salinity (psu), primary 
productivity (mgC·m−3·day−1) and distance from land 
(km) from AquaMaps. We then calculated the cen-
troid of mid-water BRUVS sampling for each loca-
tion within our dataset and associated mean relative 
abundance of silky sharks. Mean relative abundance 
was calculated as the average abundance of silky 
sharks per longline mid-water BRUVS deployment. 
The mean relative abundance for a location was then 
calculated as the average of the deployments in that 
location.

We visually compared the mean relative abun-
dance of silky sharks with the predicted probability 
of occurrence from AquaMaps using QGIS 3.16 and 
generated a quadrant graph based on mean relative 
abundance and probability of occurrence. We also 
identified whether each location was within a desig-
nated MPA by referencing the MPAtlas (www. mpatl 
as. org). We used these outer boundaries of the MPAs 
rather than assigning locations to highly protected 
and partially protected zones within MPAs as, at the 
time of sampling, the majority of MPAs were too 
newly established to test zoning effectiveness. Moreo-
ver, as zoning can be strengthened or weakened, we 
felt that the outer MPA boundaries were the appropri-
ate spatial unit for analysis.

http://www.aquamaps.org
http://www.mpatlas.org
http://www.mpatlas.org
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To further understand our observed distribution 
and abundance of silky sharks, we tested for differ-
ences in abundance and total length among loca-
tions. Differences in abundance were tested using a 
Kruskal-Wallis test. Locations with sample sizes of 
fewer than five individuals were excluded to meet 
the requirements of the Kruskal-Wallis test (Riffen-
burgh 2006). Differences in total length were tested 
using a one-way ANOVA and Tukey’s post hoc test. 
Differences in abundance within MPAs compared to 
locations not designated as MPAs were tested using a 
non-parametric Mann-Whitney U test.

Drivers of silky shark presence, abundance and body 
size

We collated a set of 13 environmental, geographic and 
anthropogenic variables to be used as predictors of 
silky shark presence, abundance and body size (Sup-
plementary Information Appendix 3). Variables were 
chosen based on known associations with marine 
wildlife and have been used previously in modelling 
predator distributions (Letessier et  al. 2019). Envi-
ronmental and geographic predictors were collated 
across a 0.01° × 0.01° grid. The environmental vari-
ables include mean sea surface temperature (SST) 
as a proxy for latitudinal patterns in species diver-
sity universally observed across taxa (Tittensor et al. 
2010) and its standard deviation  (SSTSD) which is an 
indicator of frontal dynamics generating nutrient mix-
ing and multilevel productivity (Edwards et al. 2013; 
Queiroz et al. 2016), and chlorophyll a (Chla) which 
indicates primary productivity and available trophic 
energy (Currie et al. 2004). These environmental var-
iables were extracted from the NOAA Geophysical 
Fluid Dynamic Laboratory Earth System Model 2G 
(GFDL-ESM2G) and quantified as the annual mean 
for the sampling period. The geographic and geomor-
phological variables included depth as a dimension 
that fundamentally structures and constrains marine 
habitats vertically (Priede et  al. 2013) and slope 
which provides an indication of habitat complexity 
(Friedman et  al. 2012). We included three distance 
measures: (1) to coast as a measure of terrestrial 
energy availability (Gove et al. 2016) and a physical 
barrier restricting the horizontal extent of the marine 
habitat (Letessier et  al. 2016); (2) to seamount, the 
presence of which is known to attract predators (Mor-
ato et al. 2010; Letessier et al. 2019); and (3) to reef 

as the distance to the centre of the Coral Triangle, the 
epicentre of fish diversity (Roberts et al. 2002).

Our anthropogenic variables included distance 
to human population, market and major port, as 
defined below. These distance metrics are proxies 
for cumulative effects of noise pollution (Nowacek 
et  al. 2015), unreported fishing (Pauly and Zeller 
2016), vessel strikes (Constantine et al. 2015), infra-
structure development (Maire et al. 2016) and direct 
exploitation (Roff et al. 2018), all of which that can 
affect predators and have been previously employed 
as measures of human impact on sharks (D’agata 
et  al. 2014; Mellin et  al. 2016; Cinner et  al. 2018; 
Juhel et al. 2019; Letessier et al. 2019). These three 
metrics also reflect some historical impacts that have 
occurred before the onset of modern record keeping 
(Pauly 1995; Pauly and Zeller 2016). Distance to the 
nearest human population was calculated using the 
LandScan 2016 database (Dobson et al. 2000). Dis-
tance to market was defined as the distance to the 
nearest human density centre using the World Cities 
spatial layer (ESRI) where density centres are defined 
as provincial capital cities, major population centres, 
landmark cities, national capitals and shipping ports. 
We included both distance metrics as small popula-
tions may impact predators locally (Bellwood et  al. 
2011) but impacts scale rapidly when industrialised 
markets are present (D’agata et  al. 2014). The dis-
tance to the nearest medium or large port was cal-
culated using the World Port Index database (ESRI) 
(Andrello et al. 2017).

We also included two socioeconomic indicators 
extracted at the level of sovereign state. The Human 
Development Index (HDI) captures elements of life 
expectancy, education and wealth. We used HDI 2015 
values from the 2016 Human Development Report 
published by the United Nations of Development 
Program (UNDP). Fisheries dependency scores the 
importance of a coastal country’s fisheries in terms 
of their contributions to a national economy, employ-
ment and food security.

Prior to model fitting, we evaluated the multicol-
linearity between predictors using the Pearson coef-
ficient of correlation and variance inflation factor 
(VIF). Except for one pair of predictors (log-distance 
to the coast and log-distance to the nearest popula-
tion) and the standard deviation of sea surface tem-
perature, all factors were weakly or moderately 
correlated (−0.55 > rs > 0.5) and had a variance 
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inflation factor below five (Supplementary Informa-
tion Appendix 4). We chose to keep all predictors 
except log-distance to the coast and standard devia-
tion of sea surface temperature to result in 11 predic-
tors out of 13.

We ran a first series of generalised linear models 
(GLMs) to predict silky shark occurrence, abundance 
and fork length using all predictors without interac-
tions. To model abundance and fork length, only 
locations with shark occurrence were included. We 
employed presence-only models (Elith and Leath-
wick 2009; Gomes et al. 2018) to firstly manage the 
likelihood that absences may simply reflect the fact 
that sampling was conducted outside of the natural 
habitat range of silky sharks, and to secondly manage 
the zero-inflated nature of mid-water BRUVS occur-
rence records. We therefore investigated the drivers 
of silky shark presence, abundance and body size in 
areas in which they were observed to enhance our 
understanding of their current distribution. We used 
the binomial error distribution and a logit link func-
tion to predict the probability of silky shark pres-
ence, and we then used the Gaussian distribution to 
predict the log-abundance of sharks and their body 
length. We subsequently estimated the relative impor-
tance of each predictor in each model by summing 
Akaike weight values across all models that include 
the predictor. These summed Akaike weights (WAIC) 
range from 0 to 1, hence providing a means for rank-
ing the predictors in terms of information content. 
We also estimated the significance of each predic-
tor (F-value) in each model. We then ran similar 
GLM models but including all two-term interactions 
between pairs of predictors to assess whether predic-
tions can be improved with higher model complexity. 
Models with and without interactions were compared 
using AIC values and Likelihood Ratio Tests (LRT). 
The performances of the binomial GLM models, pre-
dicting shark occurrence, were assessed using the 
area under the curve (AUC) statistic, for which val-
ues are considered random when they do not differ 
from 0.5, poor when they are in the range 0.5–0.7, 
and useful in the range 0.7–0.9, and excellent above 
0.9. For Gaussian GLM models, we used the R2 val-
ues between observed and modelled values. We then 
tested for spatial autocorrelation in model residuals 
using Moran’s I test. Finally, we built partial regres-
sion plots showing the effect of each predictor while 
controlling for all the others on the probability of 

detecting silky shark, their mean log-abundance and 
their mean fork length. All analyses were performed 
in R version 3.5.1 using the ‘glm’, ‘dredge’ and ‘vis-
reg’ functions.

Results

Silky shark distribution

The dataset contained 945 silky sharks on 413 
deployments from 18 locations (Table 1). An exami-
nation of AquaMaps with our samples superimposed 
shows that no silky sharks were observed where they 
were not expected to be (Fig.  2). However, abun-
dance was not correlated with probability of occur-
rence (Fig. 2). High abundances of silky sharks only 
occurred at three locations (8%) with a high proba-
bility of occurrence (probability > 0.5). Conversely, 
low or zero abundances were observed at 10 locations 
(26%) with a low probability of occurrence (probabil-
ity < 0.5). Interestingly, 26 locations (66%) were cat-
egorised as having a high probability of occurrence 
yet were characterised by low or zero abundance of 
silky sharks. Of the 26 high probability-low abun-
dance locations, 17 were within MPAs.

Silky shark abundance

Silky shark abundance varied significantly across 
locations (H (11) = 131.08, p < 0.001, n = 934) with 
a mean relative abundance of 0.26 ± 0.03 SE MaxN 
per mid-water BRUVS deployment (0.01–1.90 MaxN 
per mid-water BRUVS deployment, n = 945). We 
observed the greatest mean relative abundances at 
Clipperton Island (1.91 ± 0.23 SE MaxN per mid-
water BRUVS deployment), Malpelo Island (1.59 ± 
0.59 SE MaxN per mid-water BRUVS deployment) 
and Revillagigedo Islands (1.41 ± 0.17 SE MaxN per 
mid-water BRUVS deployment), which are all located 
in the eastern Pacific Ocean. In contrast, we observed 
the lowest mean relative abundances at Perth Can-
yon (0.003 ± 0.002 MaxN per mid-water BRUVS 
deployment), Shark Bay (0.003 ± 0.002 MaxN per 
mid-water BRUVS deployment) and New Caledonia 
(0.007 ± 0.006 MaxN per mid-water BRUVS deploy-
ment), located in the eastern Indian and western 
Pacific Oceans, respectively.
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Fig. 2  Observed distribution of silky shark (Carcharhinus 
falciformis) relative to predicted abundance from AquaMaps 
represented (a) spatially and (b) as a quadrant plot function of 
probability relative to observed relative abundance by location. 
Locations were plotted against four categories: (1) low prob-
ability of occurrence and high abundance, where low probabil-

ity of occurrence is < 0.5; (2) low probability of occurrence 
and low abundance; (3) high probability of occurrence and low 
abundance, where high probability of occurrence is > 0.5; (4) 
high probability of occurrence and high abundance. Sampling 
effort is indicated by diameter of location marker and repre-
sents the number of mid-water stereo-BRUVS deployments
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At the time of sampling, 20 of the 39 locations 
were designated as MPAs (Supplementary Informa-
tion Appendix 1). MPAs had a median age of 6.5 
years. The sites at which sampling took place around 
Ascension Island, the Azores, the Cocos (Keel-
ing) Islands, Niue, Palau, the Selvagens Islands and 
Tristan da Cunha gained spatial protection after the 
sampling period (Supplementary Information Appen-
dix 1).There was no significant difference in the 
abundance of silky sharks between MPAs (n = 20) 
and locations not designated as MPAs (n = 19) (W = 
226, p = 0.28).

Silky shark body size

We estimated FL for 511 (44%) individuals with the 
remainder not measured due to distance from or poor 
orientation of the individual shark to the BRUVS. The 
mean FL was 141 cm ± 0.07 SE (range of 57–275 
cm). The mean converted TL was 168 cm ± 0.09 SE 
(range of 68–329 cm). Most individuals ranged in 
size between 140 and 150 cm TL (Fig. 3). Mean TL 
of silky sharks varied significantly among locations 
(ANOVA, F (11, 490) = 17.42, p < 0.001, n = 502) 
and among regions (ANOVA, F (4, 497) = 26.17, p 
< 0.001, n = 509). Silky sharks in the eastern Indian 
Ocean region had a significantly larger mean TL than 
individuals in the central Indian Ocean region (p < 
0.01), and those in the eastern Pacific Ocean region 
had a significantly larger mean TL than individu-
als in the western Pacific Ocean Region (p < 0.001) 
(Fig. 3).

Juveniles were the most frequently observed life 
stage with 377 records (74%), while 125 individu-
als were classified as adults (24%), and 9 individu-
als were classified as YOY (2%). The YOY were 
recorded at four locations; juveniles were recorded at 
14 locations; and adults were recorded at 17 locations 
(Fig. 4). There was no strict spatial segregation by life 
history stage since YOY co-occurred with juveniles 
and adults at 10% of locations. Juveniles were exclu-
sively present at one location (Montebello Islands 
in the eastern Indian Ocean) and adults were exclu-
sively present at four locations (New Caledonia in the 
western Pacific Ocean, Niue in the southern Pacific 
Ocean, and Perth Canyon and Shark Bay in the east-
ern Indian Ocean). There were no locations where 
YOY were exclusively present.

Drivers of silky shark presence, abundance and body 
size

Our GLM models accurately predicted the presence, 
abundance and body size of silky sharks (Table  2), 
and in the cases of abundance and body size, included 
at least one measure of human pressure among the 
most important factors. Models with interactions per-
formed significantly better than no-interaction mod-
els for shark abundance and body size but it was the 
opposite for shark presence (Table  3). A full report 
of the parameters and their interactions is available in 
Supplementary Information Appendix 5. For all mod-
els, the Moran’s I statistic was not significant (p > 
0.05) showing that there is no spatial autocorrelation 
in the residuals. To highlight the main effects of pre-
dictors, we only present no-interaction model outputs.

The presence of silky sharks was best predicted 
by the model with an AUC value of 0.82 (Table 3). 
Variation in presence was primarily explained by 
SST, depth, distance to reef, distance to seamount 
and chlorophyll a (Fig. 5). The likelihood of presence 
increased with warmer SST, decreasing depth and 
greater distance to reef, and decreased with greater 
distance to seamount and increasing chlorophyll a.

The model for silky shark abundance explained 
53% of variation (Table  3). Variation in abundance 
was primarily explained by distance to port, depth, 
fisheries dependency, HDI, and distance to seamount 
(Fig.  6). Abundance increased with greater distance 
to port and decreasing depth, and decreased with 
higher fisheries dependency, higher HDI and greater 
distance to seamount.

The model for silky shark fork length explained 
only 29% of variation with no interactions but 66% 
with interactions (Table 3). Variation in body size was 
primarily explained by distance to port, HDI, distance 
to population, distance to seamount, SST and distance 
to reef (Fig. 7). Body size increased with greater dis-
tance to port, higher HDI, greater distance to popula-
tion and greater distance to seamount, and decreased 
with warmer SST and greater distance to reef.

Discussion

This rare opportunity to study a cosmopolitan mobile 
predator on a large spatial scale yields new insights 
into their distribution, abundance and demographics. 
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BRUVS have facilitated marine management through 
enabling non-extractive sampling within previously 
difficult-to-access environments (Letessier et  al. 

2014; Santana-Garcon et  al. 2014; Letessier et  al. 
2019). The versatility of BRUVS in their applica-
tion to both seabed and mid-water environments is 

Fig. 3  a Length frequency distribution of silky sharks (Car-
charhinus falciformis) (n = 513) and b variation in mean total 
length (TL) across ocean regions where they were recorded, 

with error bars displaying standard error (n = 512). The south-
ern Pacific region was omitted from the graph due to only 
being able to measure one individual
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demonstrated at the species and ecosystem-level, 
with insights gained into the impact of anthropo-
genic pressures on shark abundance (Goetze et  al. 
2018), size (Letessier et  al. 2019) and behaviour 
(Juhel et  al. 2019). Our study represents the first 

application of mid-water BRUVS to the silky shark 
across such a broad spatial scale and the creation 
of a baseline mid-water BRUVS dataset provides 
a valuable foundation for ongoing monitoring and 
management.

Fig. 4  Locations where young-of-year (YOY), juvenile and adult silky sharks (Carcharhinus falciformis) were recorded by stereo-BRUVS. 
Sampling effort is indicated by diameter of location marker and represents the number of mid-water stereo-BRUVS deployments

Table 2  Results from generalised linear models (GLMs) predicting the presence, the mean log-abundance and mean fork length of 
silky sharks (Carcharhinus falciformis) as a function of two environmental, four geographic and five human factors

df is the degree of freedom for each factor; AIC weight represents the importance of each factor in the best models; and the F-value 
its influence on the predicted variable along with significance
NS Not significant, *p < 0.05, **p < 0.01, ***p < 0.001)

df Presence of shark Mean abundance Mean fork length

AIC weight F-value AIC weight F-value AIC weight F-value

Mean SST 1 1 51.1*** 0.29 0.2NS 1 12.5***
Chlorophyll a 1 1 17.8*** 0.30 0.1NS 0.27 0.1NS

Bathymetry 1 1 67.1*** 1 16.3*** 0.27 0.1NS

Slope 1 0.31 0.4NS 0.26 0.3NS 0.25 0.1NS

Distance to seamount 1 0.99 9.1** 1 45.4*** 1 16.1***
Distance to reef 1 0.89 6.6* 0.85 3.4NS 0.94 5.6**
Distance to population 1 0.54 1.7NS 0.32 1.0NS 0.59 4.1 *
Distance to market 1 0.28 0.2NS 0.28 0.1NS 0.41 1.2NS

Distance to port 1 0.41 1.3NS 0.99 10.7** 1 13.6***
Fisheries dependency 1 0.68 3.1NS 0.85 7.1** 0.28 0.2NS

Human development index 1 0.50 0.6NS 0.69 4.3* 1 14.3***
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The presence, abundance and body size of silky 
sharks can be predicted by a parsimonious set of 
environmental, geographic and anthropogenic factors. 
The outcomes of our models were mainly expected 
and consistent with previous findings (Lezama-Ochoa 

et al. 2016; Letessier et al. 2019; Lopez et al. 2020; 
Thompson et  al. 2021). Temperature and depth 
were the primary environmental and geographic 
factors driving presence and abundance, with 
silky sharks being most abundant in the relatively 

Table 3  Comparison of generalised linear models (GLMs) predicting the presence, the mean log-abundance and mean fork length 
of silky sharks (Carcharhinus falciformis) without any interaction between the 12 factors or with all second order interactions

df is the degree of freedom for each factor; AIC is the Akaike Information Criterion estimating the relative quality of the model with 
lower value for the best model (in bold); AUC  is the area under the curve estimating prediction accuracy for binomial models; and 
R2 estimates prediction power for Gaussian models. LR test reports the Chi-squared statistic and corresponding p-value of the Likeli-
hood ratio test of nested models which compares the quality of GLMs without and with second order interactions
NS Not significant, *p < 0.05, **p < 0.01, ***p < 0.001)

df Presence of shark Mean abundance Mean fork length

AIC AUC LR test AIC R2 LR test AIC R2 LR test

No interaction 12 846 0.82 −121 0.53 1655 0.27
With interactions 90 10298 0.72 9342*** −100 0.72 89*** 1643 0.65 122***
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warm and shallow waters of the epipelagic zone. 
Indeed, previous studies have revealed that silky 
sharks spend nearly all of their time in the top 200 
m of the water column in temperatures of 24–30 
°C (Hueter et  al. 2018; Hutchinson et  al. 2019; 
Curnick et  al. 2020). Temperature was also an 
important factor in predicting body size, with smaller 
individuals associated with warmer temperatures. 
The effect of temperature on the size of marine 
ectotherms is well-documented (Bergmann 1847; 
Audzijonyte et  al. 2019), with the Gill Oxygen 
Limitation Theory arguing that smaller individuals 
with lower oxygen demands are able to survive in 
warmer, less oxygenated waters (Pauly 2019). Our 
study consequently demonstrates the applicability 
of environmental preference modelling, based on 
physiology, in identifying areas of high silky shark 
probability at different life stages.

Our models also demonstrate the impacts of humans 
on silky shark abundance and body size. The contri-
bution of human footprint in our models is unsurpris-
ing given the intensified fishing pressure and habi-
tat degradation associated with human settlements 
(Ward-Paige et al. 2010; Cinner et al. 2018). Proximity 
to port was an important factor in determining abun-
dance, mirroring the findings of previous studies that 
document lower abundances of sharks in less remote 
areas (Goetze et al. 2018; Juhel et al. 2019; Letessier 
et  al. 2019; MacNeil et  al. 2020). Our documented 
size structure of observed silky sharks can addition-
ally provide insight into the influence of human pres-
sures on this trait. Variation in mean length across 
ocean regions may reflect differences in the life history 
parameters of distinct populations resulting from natu-
ral variation (Grant et  al. 2020). Alternatively, varia-
tion in body size may reflect heterogeneity in fishing 
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pressure across locations as overfishing typically leads 
to populations with reduced size (Tu et al. 2018). As 
our models identified proximity to population and port 
as primary drivers of silky shark body size independ-
ent of ocean basin, fishing pressure is likely to affect 
silky shark size and consequently population life stage 
structure. This is consistent with data for other oceanic 
shark species with documented declines in the aver-
age length of great hammerheads (Sphyrna mokar-
ran), scalloped hammerheads (Sphyrna lewinii) and 
tiger sharks (Galeocerda cuvier) by 16–22% from 
1997 to 2017 (Roff et  al. 2018) and of whale sharks 
(Rhincodon typus) by nearly 2 m from 1995 to 2004 
(Bradshaw et al. 2008). Given the importance of age-
structured demographic models in the management of 
silky sharks (Grant et al. 2020), further investigation is 
required to establish whether our results reflect varia-
tion in life history characteristics, seasonality, fishing 
effort or study design.

We did not observe the expected correlation between 
probability of occurrence and abundance. Reassuringly, 
we did not observe silky sharks where they had a 
low probability of occurrence which validates the 
underlying AquaMap. Our observation of no or low 
silky abundances in high probability locations may 
reflect a number of alternatives. The large cluster of 
high probability-low abundance locations may simply 
indicate regional heterogeneity of silky shark density, 
with individuals aggregating outside of our sampling 
sites. Our findings may also reflect a limitation of 
our sampling as mid-water BRUVS are suspended at 
10 m, which may reduce their likelihood of detection 
on BRUVS. The common depth of silky sharks is 
reported between 0 and 500 m (Last and Stevens 1994) 
and while they are known to frequent <50 m (Hueter 
et  al. 2018; Hutchinson et  al. 2019), they have been 
recorded at a maximum depth of 1112 m (Curnick 
et  al. 2020). Finally, our observed abundances could 
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reflect real declines in silky shark numbers in these 
locations. Without baseline BRUVS data we are unable 
to conclude that abundance has decreased across our 
sample locations. However, our findings that silky 
sharks appear absent from where they should be, have 
low abundance even in areas of highly suitable habitat, 
and have juvenile-dominated size structures, all suggest 
that silky shark populations are heavily depleted. We 
also demonstrate that presence, abundance and body 
size respond strongly to human impacts. Our findings 
corroborate the wider literature which reports ongoing 
declines in abundances of silky sharks and other pelagic 
sharks (Pacoureau et al. 2021). Within the past century 
there have been estimated regional declines between 
50 and 79% in shortfin mako (Isurus oxyrinchus) 
abundance (Rigby et al. 2019a) and over 80% in great 
hammerhead and smooth hammerhead (Sphyrna 
zygaena) shark abundances (Rigby et al. 2019b; Rigby 
et al. 2019c), primarily driven by fishing.

Our findings reinstate the importance of identifying 
and protecting critical habitats for silky shark 
conservation. Proximity to seamounts was a fundamental 
driver of presence and abundance, mirroring previous 
documentation of the strong association between silky 
sharks and seamounts (Melo et  al. 2003; Morato et  al. 
2010; Letessier et  al. 2014; Thompson et  al. 2021). 
Interestingly, we found that proximity to seamounts was 
associated with smaller body size, perhaps suggesting 
that seamounts provide refuges for juvenile silky sharks 
(Orr 2019) and further demonstrating the importance 
of these topographical features as key habitats for silky 
sharks (Letessier et  al. 2019). Seamounts are thought 
to aggregate pelagic species through a combination of 
their increased productivity and magnetic signatures 
which provide navigational aids for migratory species 
(Holland and Grubbs 2007; Litvinov 2007). Tagged 
silky sharks associated with a seamount complex in 
the British Indian Ocean Territory, one of the sampling 
locations within this study, exhibited diurnal movement 
patterns speculated to be related to feeding (Curnick et al. 
2020). Spatial protection of seamounts may represent an 
important avenue for the conservation of silky sharks 
and other migratory species as they serve as a landmark 
in a homogeneous pelagic environment and their 
clear boundaries enable more practical surveying and 
enforcement (Morato et al. 2010; Jacoby et al. 2020).

Nursery sites also represent important habitats for 
sharks due to the protection from predation that they 
offer to pups (Vandeperre et  al. 2014). Protection of 

nurseries is consequently an important component of 
silky shark conservation (Kinney and Simpfendorfer 
2009) as juvenile survivorship underpins the ability of 
overexploited populations to recover (Heithaus et  al. 
2008). Our observed distribution of YOY provides 
insight into the nature of silky shark nurseries. 
Nurseries are characterised by spatial segregation from 
adults (Heupel et al. 2019) which we did not observe. 
This suggests that either we did not observe any ‘true’ 
nurseries or that this generality does not apply to 
silky sharks. It is also possible that while our overall 
database is large, the number of YOY is too few to 
make inferences about nurseries. Despite the lack of life 
history segregation, the locations where we observed 
YOY did share some commonalities that enhance pup 
survival. Shark nurseries are typically characterised 
by warm waters, heterogenous bathymetry, high 
productivity and relatively high abundance of potential 
prey species (Heupel et al. 2019) as is the case at our 
Malpelo Island, Palau, Wandoo and British Indian 
Ocean Territory locations. Further research into the 
fine-scale environmental preferences of silky shark 
pups would facilitate the development of models 
specifically identifying potential nursery sites similar 
to that conducted by Oh et al. (2017).

Finally, we recorded markedly low abundances of 
silky sharks within established MPAs, and there was 
no observed difference in abundance between locations 
within MPAs and locations where no MPA had been 
established. This suggests two alternatives. First, given 
the median ‘life’ of these MPAs of 6.5 years prior to 
sampling, the effectiveness of MPAs in conferring 
protection to silky sharks may be masked by this 
species’ slow maturation and low fecundity, resulting 
in a time lag between MPA enforcement and increased 
abundance. The age of MPAs (>10 years) has been 
identified as one of the five key factors in determining 
their success (Edgar et al. 2014). Thus, the benefits of the 
small increase in global MPA coverage from 1.9 to 8.2% 
since 2010 (O’Leary et al. 2018; Marine Conservation 
Institute 2023) in response to international spatial 
protection targets is unlikely to be effective at short 
term. Second, it may be that MPAs have simply not 
been placed in areas where silky sharks are abundant. 
MPAs are often planned with limited knowledge of 
the spatial ecology of highly mobile species and are 
consequently unlikely to encompass critical habitats 
(Daly et  al. 2018). It is reassuring that Ascension 
Island’s entire EEZ was designated as an MPA in 2019 
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following our sampling, given we observed over one-
third (38%) of all individuals there. Our study identifies 
the Eastern Tropical Pacific Ocean as a hotspot for silky 
sharks, with the greatest relative abundances of silky 
sharks observed at Clipperton Island, Malpelo Island 
and the Revillagigedo Islands. Again, it is reassuring 
that Clipperton Island gained spatial protection in the 
year of sampling and the marine reserve surrounding the 
Revillagigedo Islands was expanded the year following 
sampling, and we recommend ongoing monitoring to 
evaluate the effect of MPA establishment and expansion 
on silky shark abundance. Our findings additionally support 
the continued management and strengthening of the 
Eastern Tropical Pacific Marine Corridor (CMAR), which 
encompasses Malpelo Island and the Galápagos Islands 
(Enright et  al. 2021), to ensure adequate protection of 
silky sharks transiting between these locations.

The first caveat of our study relates to the detection 
of silky sharks. We may have overestimated the 
abundance of silky sharks if individuals are recorded 
on multiple mid-water BRUVS within a single longline 
deployment. This problem can be addressed by the 
use of MaxInd, a metric of the maximum number of 
animals where individuals can be reliably identified by 
markings (Sherman et  al. 2018). However, Thompson 
(2021) applied MaxInd to blue sharks (Prionace glauca) 
and found that the results of MaxInd and MaxN were 
indistinguishable in terms of overall patterns. We thus 
suggest that overall, the use of MaxN, averaged across 
the longline deployment, is informative in terms of 
silky shark distributions. Conversely, we may have 
underestimated the abundance of silky sharks owing to 
the aforementioned inherent limitation of deploying mid-
water BRUVS at 10 m. A potential solution to determine 
whether observed absences were true absences or simply 
an inability of mid-water BRUVS to detect silky sharks 
would be to cross-reference mid-water BRUVS data 
with fisheries-dependent data to confirm if silky sharks 
are present beyond the 10 m depth limit. However, 
employing fisheries-dependent data is challenging due 
to their poor taxonomic resolution, particularly within 
the Carcharhinus genus (Cashion et al. 2019; Henderson 
2020). A natural progression of this work is the validation 
of mid-water BRUVS data with fisheries-dependent 
data, which is especially pertinent given the expansion 
of monitoring pelagic wildlife with mid-water BRUVS 
as part of the UK government’s Global Ocean Wildlife 
Analysis Network.

The second caveat relates to the scope of our 
sampling: we recognise that no mid-water BRUVS were 
deployed in developing countries which are within the 
range of silky sharks and we are missing key locations 
such as the African continent. Our sampling was also 
limited to EEZs and does not extend to the high seas. 
Silky sharks are circumglobally distributed in pelagic 
waters and thus knowledge of their distribution and 
abundance in the high seas would be informative. We 
also recognise that silky sharks are highly mobile and 
therefore transit between EEZs and across the high 
seas, and between MPAs and unprotected areas. This 
has two implications; firstly, it remains unclear whether 
even large MPAs within EEZs can recover silky shark 
populations (Game et al. 2009; Le Quesne and Codling 
2009; Moffitt et  al. 2009). Secondly, it is necessary to 
consider what management measures apply to silky 
sharks outside of protected areas. Silky sharks are 
classed as no-retention species by some of the Regional 
Fishery Management Organizations (RFMOs) operating 
across several of our sampling locations (see Cardeñosa 
et al. 2020 for a review). However, the initial trauma of 
capture can still cause mortality (Tolotti et  al. 2015), 
with post-release mortality of silky sharks incidentally 
captured in purse seine fisheries reported as up to 84% 
(Hutchinson et  al. 2015) and post-release mortality 
after longline capture reported as 20–38% (Musyl and 
Gilman 2018; Musyl and Gilman 2019). Moreover, detailed 
statistics on post-release mortality and vessel compliance 
are poor (Clarke et al. 2013; Musyl and Gilman 2019) and 
thus incorporating the influence of retention bans is 
problematic. A comprehensive review of the effectiveness 
of all conservation measures which apply to silky sharks 
would be a valuable avenue of future research.

Our novel application of mid-water BRUVS to assess 
silky shark presence and abundance exemplifies the value of 
this tool in increasing our understanding of pelagic species 
inhabiting previously difficult-to-access environments. 
Whilst environmental and geographic characteristics were 
identified as important determinants of silky shark presence, 
abundance and body size, the strong response of these 
attributes to human pressures exemplifies the pervasive 
impact of anthropogenic activities on large pelagic predators 
and supports an expansion of the current MPA network to 
encompass critical habitats such as seamounts. We provide a 
platform for ongoing monitoring of silky shark populations 
to investigate the applicability of static spatial protection to 
silky sharks and other highly mobile species.
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