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Translation involves the biosynthesis of a protein sequence following the

decoding of the genetic information embedded in a messenger RNA

(mRNA). Typically, the eukaryotic mRNA was considered to be inherently

monocistronic, but this paradigm is not in agreement with the translational

landscape of cells, tissues, and organs. Recent ribosome sequencing

(Ribo-seq) and proteomics studies show that, in addition to currently

annotated reference proteins (RefProt), other proteins termed alternative

proteins (AltProts), and microproteins are encoded in regions of mRNAs

thought to be untranslated or in transcripts annotated as non-coding.

This experimental evidence expands the repertoire of functional proteins

within a cell and potentially provides important information on biological

processes. This review explores the hitherto overlooked alternative proteome

in neurobiology and considers the role of AltProts in pathological and healthy

neuromolecular processes.
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Introduction

The quantitative composition of molecules in living systems is constantly changing
(Cohn et al., 1976; Filo et al., 2019; Lehallier et al., 2019). Multiple mechanisms
modulate the molecular landscape in response to a changing environment (Stadler et al.,
2008; Geyer et al., 2016; Thiemicke et al., 2019). These variations in the molecular
landscape are particularly reflected in the proteome and the interactome (Aebersold
et al., 2018). Recently, the Human Proteome Organization reported a meritorious
human proteome coverage of 90.4% (Adhikari et al., 2020). This coverage is based
on the number of proteins with evidence of their existence at the protein level out
of the total protein entries in the NeXtProt database. However, 75% of spectra in
large-scale mass spectrometry-based proteomics studies are not matched to a specific
protein (Griss et al., 2016). Although a fraction of spectra remains unidentified because
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of unknown post-translational modifications or low signal-
to-noise events, another fraction of unmatched spectra likely
results from the incompleteness of conventional protein
sequence databases.

Protein synthesis is the process in which ribosomes read
genetic instructions in a messenger RNA (mRNA) and assemble
a chain of amino acids. Translation in eukaryotes comprises
four main phases: initiation, elongation, termination, and
recycling (Jackson et al., 2010; Aitken and Lorsch, 2012;
Hinnebusch, 2014). The initiation process involves scanning
of mRNA for the optimal initiation site and is hypothesized
to be impacted by the length of the open reading frame
(ORF) and by the position of an AUG codon. Seminal work
from Kozak (1986) established that the consensus sequence
GCCRCCAUGG (in which R is a purine, and AUG is the
start codon) is the preferred nucleotide sequence for translation
initiation. The longest ORF of a transcript is typically considered
the only protein coding sequence (CDS) and codes for the
reference protein (RefProt) (Furuno et al., 2003). As such, a
consensus exists that the majority of eukaryotic mRNAs are
monocistronic, implying translation of one distinct protein
sequence per transcript. An additional arbitrary criterion for
annotating protein-coding ORFs is that transcripts derived
from pseudogenes, and transcripts that do not contain an
ORF of >100 codons are automatically considered non-coding.
The advent of ribosome sequencing (Ribo-seq), a technique
that identifies ORFs undergoing translation, shed light on the
shortcomings of previous annotations since a large fraction of
translated ORFs do not correspond to known CDSs but to
unannotated ORFs (Ingolia, 2014). In fact, large-scale Ribo-
seq studies and proteogenomics studies including alternative
proteins (AltProts) coded by unannotated ORFs identified novel
proteins dubbed AltProts (Menschaert et al., 2013; Vanderperre
et al., 2013; Ji et al., 2015; Chen et al., 2020). These proteins
are sometimes also termed microproteins when they are shorter
than 100 amino acids. Here, we will use the term AltProt
independently of the length of the unannotated protein. AltProts
are translated from regions previously annotated as non-coding,
i.e., 5′- or 3′-UTR of mature mRNAs, from ORFs that overlap
the CDS in a different reading frame, or from transcripts that
were labeled as non-coding. Hence, AltProts are novel proteins
and should not be confounded with protein isoforms (Figure 1).
Some of these novel proteins fulfill key (patho) physiological
functions and thus expand the functional proteome landscape
in human cells (Gagnon et al., 2021).

In this review, we analyze and explore AltProts in
neurobiology. To begin, we discuss the alternative proteome
and briefly review transcription and translation in the brain.
Then we discuss the potential mechanisms elemental to aberrant
translation initiation and the impact of AltProts on protein
diversity. Finally, we review identified AltProts in the brain
and discuss their potential role in pathological or healthy
neuromolecular processes.

The alternative proteome

In the past 20 years, multiple mRNAs were found to
not only code for a RefProt but also for a novel distinct
protein sequence (dual-coding mRNA) (Klemke et al., 2001;
Kondo et al., 2007; Autio et al., 2008; Akimoto et al., 2013;
Chalick et al., 2016; Delcourt et al., 2017; Samandi et al.,
2017). This led to the identification of novel functional proteins
(e.g., AltMRVI1, AltSLC35A4, AltCDKN2, and PEP7) (Ouelle
et al., 1995; Vanderperre et al., 2013; Andreev et al., 2015;
Yosten et al., 2016). These unexpected translation events
were considered exceptional and the polycistronic features
of mRNA were disregarded in proteomics and functional
genomics studies. As such, functional studies of a specific
gene are focused on the protein encoded by the reference
CDS, or by their isoforms expressed from variably spliced
transcripts. Similarly, large-scale mass spectrometric-based
proteomics methods rely on conventional annotations that do
not include AltProts, precluding their discovery. Indeed, protein
identification involves the digestion of proteins followed by
the detection of peptide fragments and their corresponding
experimental spectra. Subsequently, the data is compared to
theoretical spectra that are generated in silico, based on protein
sequence databases. Identified peptides are then matched to
their corresponding proteins. Hence, “identification” of proteins
in a biological sample means uncovering the presence of
previously annotated proteins rather than identifying the entire
set of proteins in the sample. The most popular protein sequence
databases are those from UniProtKB (The UniProt Consortium,
2017, 2021). As indicated above, proteins translated from
alternative ORFs (AltORFs) are not included in these databases
and cannot be detected.

A more comprehensive approach was required to test the
hypothesis of the widespread existence of AltProts. Ribosome
profiling is the first technique that enables the discovery of ORFs
being translated (Brar and Weissman, 2015). This approach
sequences ribosome-protected mRNA fragments and thus
reveals ribosome positions on these transcripts. As such, Ribo-
seq can establish deep insight into global protein translation.
However, ribosome occupancy alone is not sufficient to annotate
ORFs as a genuine CDS (Guttman et al., 2013). In addition,
ORFs overlapping a CDS are difficult to identify with a usual
Ribo-seq approach (Bazzini et al., 2014; Smith et al., 2014). To
overcome these shortcomings, strategies were developed to stall
the initiating ribosomes at the start codon and sequence the
protected RNA fragment at the initiation site (Ingolia et al.,
2011; Gao et al., 2015). Overall, Ribo-seq led to the detection
of thousands of translated AltORF and protein isoforms, in
addition to annotated CDSs (Ji et al., 2015; Chen et al., 2020).
Isoforms are shorter or longer versions of any RefProt following
initiation at an in-frame downstream or upstream initiation
codon. AltProts on the other hand, have distinct amino acid
sequences that do not share significant similarities with the
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FIGURE 1

Diversity in the location of protein-coding sequences (CDSs). (A) In a typical messenger RNA (mRNA), the canonical protein CDS, or CDS (dark
blue) encodes the reference protein (RefProt) and is flanked by the 5′- and 3′- untranslated regions (UTRs). (B) Protein isoforms from the
RefProt (light blue) may result from translation initiation at upstream or downstream initiation sites, or from the translation of alternatively
spliced transcripts. (C) In addition to the conventional CDS, an mRNA may carry other CDSs or alternative open reading frames (ORFs) (purple),
alternative ORFs (AltORFs) are present in regions of the transcriptome previously annotated as non-coding: 5′- and 3′-UTR, overlapping the
CDS out-of-frame, and transcripts annotated as non-coding RNA (ncRNA).

RefProt translated from the same transcript. The stoichiometry
between proteins translated from the same mRNA is largely
unknown, but some AltProts were determined to be the main
gene product (Delcourt et al., 2018). Translation of these novel
proteins can initiate at near-cognate (non-AUG) codons, further
expanding the repertoire of prospective protein-coding-ORFs
(Figure 2; Chen et al., 2020). The capacity of ORFs starting with
near-cognate start codons to produce functional proteins has
been demonstrated earlier (e.g., MYC) (Hann et al., 1988).

Of note, the majority of AltProts are shorter than 100 amino
acids. In general, small proteins, or peptides, are assumed to
not be able to fold into stable structures. As such, they are
generally considered non-functional and are therefore excluded
from proteome annotations. Yet, small proteins can fulfill key
physiological functions (Couso and Patraquim, 2017). Multiple
functional endogenous peptides have been detected in the
human body (Pauli et al., 2014; Huang et al., 2017; Lin et al.,
2019). Of particular note, functional peptides are enriched in
the brain. The 38–42 amino acid long Amyloid-beta peptides
are involved in the pathogenesis of Alzheimer’s disease, but also
display physiological functions, including repairing leaks in the
blood-brain barrier (Brothers et al., 2018). The 33 amino acid
long peptide Orexin-A is a functional peptide involved in sleep
and wakefulness and has recently been linked to dysfunction
of hippocampal neurogenesis (Lin et al., 1999; Forte et al.,
2021). In fact, neuropeptides are that enriched in the brain
that they are appreciated as a specific class (Burbach, 2010).
These peptides are generated by proteolytically processing
of preproproteins and should therefore not be confounded
with AltProts, which are translated directly from mRNA. The

contribution of neuropeptides to the functional neuroproteome
is a substantial precedent for further exploring small proteins
and their function in the brain.

The convoluted network of
transcription and translation in
neurobiology

The human brain is an extraordinarily intricate organ
with neurons that are connected into vast networks by
synapses. At the genomic level, the brain is characterized by
an unusually high level of alternative splicing compared to
other tissues in the body. Alternative splicing is the process in
which pre-mRNA derived from a multi-exonic gene, produces
variably spliced transcripts. The expression of these isoforms
is restricted to certain tissues and cell types (Shalek et al.,
2013). The transcriptome of the human brain exhibits a high
number of splicing variants, which significantly increases the
transcriptomic and proteomic diversity encoded by the same
gene (Yeo et al., 2004; Melé et al., 2015). In approximately half
of the alternative splicing events the reading frame is shifted,
but these transcripts are often subjected to nonsense-mediated
decay due to the presence of a premature termination codon
(Lewis et al., 2003; Zhang et al., 2007). As such, the majority of
translated isoforms mainly exhibit partial common amino acid
sequences. Yet, they can have vastly different interaction profiles
and/or an altered subcellular localization (Yang et al., 2016; Yang
and Carstens, 2017).
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FIGURE 2

The generation of protein diversity at the translational level. In contrast to the monocistronic transcript paradigm, protein diversity arises from
the multi-coding properties of messenger RNA (mRNA) that expand the functional proteome. (A) The Reference protein (RefProt) is translated
from the coding sequence (CDS) that is initiated by an AUG codon and is enclosed by the 3′- and 5′-UTR. Alternative proteins (AltProts) are
translated from unannotated open reading frame (ORFs) that can initiate at AUG, CUG, GUG, or UUG codons. (B) These ORFs can overlap the
CDS which will generate distinct protein sequences when the ORFs are out-of-frame. (C) In addition, translation from ORFs located within the
3′- or 5′-UTR, or from an out-of-frame ORF nested within the CDS will generate distinct protein sequences. (D) Finally, AltProts can be
translated from transcripts that were previously considered non-coding. This perception can significantly expand protein diversity within cells.

Another specific feature in the brain is found at the
translational level: there is no correlation between mRNA
levels and the concentration of the corresponding proteins,
with the exception of protein classes involved in protein
modification, regulation of metabolic and synaptic activity, and
proteins associated with a cellular membrane (Liu et al., 2016;
Bauernfeind and Babbitt, 2017). The fact that factors beyond
mRNA determine protein concentration suggests a prominent
role for the regulation of protein translation in the brain.
A recent study established that the natural anti-sense transcript,
MAPT Antisense RNA 1 (MAPT-AS1), regulates and represses

tau production within brain cells (Simone et al., 2021). Silencing
MAPT-AS1 led to increased tau levels in neurons and was
found to correlate with tau pathologies. The mammalian-wide
interspersed repeat, embedded in the anti-sense transcript,
competes for ribosomal pairing with the internal ribosomal
entry site of MAPT, and thus blocks the translation of tau.
The same study reports the involvement of other natural anti-
sense transcripts in the regulation of Amyloid-beta precursor
protein (APP), which is associated with Alzheimer’s disease, and
α-synuclein which is associated with Parkinson’s disease and
Lewy body dementia (Spillantini et al., 1997; Jellinger, 2018;
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FIGURE 3

Translation initiation modes. (A) Canonical cap-dependent translation; the 43S ribosomal subunit is recruited by the 5′ end of an messenger
RNA (mRNA), and subsequently binds to the mRNA and scans for the AUG start codon. The ribosome is dissociated after the translation of the
protein. (B) Translation re-initiation follows the same steps as a cap-dependent translation but after translation of the protein, the 40S ribosomal
subunit stays associated with the mRNA. While moving in the 3′ direction, the 40S ribosomal subunit can bind initiation factors recovering its
initiation potential. As such, translation initiation can take place at a downstream start codon. (C) Leaky scanning; 43S ribosomal subunits can
skip potential start codons when they are located in a weak Kozak sequence. (C1) When the start codons are in the same reading frame and
there is no stop codon in between, this can result in the translation of two isoforms from the same transcript. Alternatively, when there is a stop
codon in between this will result in the translation of two distinct proteins from the same transcript. (C2) When the start codons are
out-of-frame two distinct proteins will be translated from the same transcript.

Hampel et al., 2021). This finding shows how the translation of
proteins involved in neurological disorders can potentially be
controlled through the regulation of the interaction between the
mRNA and the ribosome.

Alternative modes of translation
initiation

Reference proteins are generally translated by canonical
cap-dependent translation, but the recent discovery of AltProts
suggests alternative modes of translation. We provide a brief
overview of initiation modes that might be elemental to the
translation of AltProts (Figure 3). Non-canonical translation is
often linked to survival mechanisms as a response to cellular
stress (Bertram et al., 2008; Kwan and Thompson, 2019; Bohlen
et al., 2020). Alternative modes of translation are therefore often
linked to cancer (Sriram et al., 2018). We believe that cellular
stresses may induce AltProt translation in pathologies or disturb
the stoichiometry between AltProt and RefProt translation
from a specific transcript. Therefore, AltProts might play a
role in diseases in which oxidative stress is involved in their
pathogenesis such as several types of dementia (Butterfield and
Halliwell, 2019).

Canonical cap-dependent translation

Reference proteins are generally translated by a mechanism
that is dependent on both the 7-methylguanosine cap (m7G),

which is located at the 5′ end of an mRNA, and ribosome
scanning (Aitken and Lorsch, 2012). The process starts when
transfer-RNA (tRNA) and Guanosine-5′-triphosphate (GTP)
bind to the eukaryotic initiation factor 2 (eIF2) complex,
yielding a ternary complex that assembles with the small
ribosomal subunit (40S) (Kimball, 1999). Together with other
initiation factors the 40S forms the pre-initiation complex (43S).
The 43S complex is then recruited to the 5′ end of an mRNA
marked with the m7G cap and the eukaryotic initiation factor
4F (eIF4F) complex among other factors (Fraser, 2015). The
43S complex subsequently scans the 5′-UTR for a start codon
within the correct nucleotide sequence. Scanning stops at the
start codon and the initiation factors are released. The large
ribosomal subunit (60S) then binds to the 40S complex on
the mRNA to form the 80S ribosome to enable translation
elongation.

Leaky scanning

Leaky scanning can occur when multiple potential start
codons are present on the transcript and the first start codon
is not in a strong Kozak context (Wang and Rothnagel, 2004;
Palam et al., 2011). As such, the 43S complex may initiate at
the first start codon, or skip the first start codon, continue
scanning and initiate at a downstream start codon. If the start
codons are in the same reading frame and there is no stop codon
in-between, two protein isoforms are produced. Alternatively,
if there is a stop codon in-between the start codons, or if
the start codons are out-of-frame, this will result in distinct
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proteins. The frequency of leaky scanning therefore determines
the stoichiometry between the RefProt and the AltProt or
between isoforms that are translated from the same mRNA.

Translation re-initiation

Approximately half of all human mRNA contains at least
one small ORF upstream of the CDS, also termed an upstream
ORF (uORF) (Calvo et al., 2009). Translation re-initiation can
occur in transcripts that exhibit start codons in a strong Kozak
sequence. The initiation starts at the uORF and the protein
is translated. After translation of the uORF, the 40S complex
can remain associated with the mRNA. While moving in the
3′ direction, the 40S subunit can recover initiation capacity by
binding the initiation factors. In the absence of the initiation
factors, the 40S complex may skip subsequent start codons. As
such, translation re-initiation results in the translation from
downstream initiations sites.

Alternative proteins and the
regulation of reference protein
translation

Upstream open reading frames (uORFs) were initially
thought to exclusively act as negative regulators for the
translation of the RefProt. In this mechanism, the translation
of the RefProt is inhibited because the ribosome is dissociated
into the small and the large subunit before reaching the
CDS. Alternatively, ribosomes can be stalled at the uORF
and therefore block the translation of subsequent ORFs

FIGURE 4

Somatic mutation, more specifically synonymous
single-nucleotide variants (SNVs), as a candidate mechanism for
de novo generation of protein-coding sequences (CDS).
(A) Messenger RNA (mRNA) transcribed from the reference DNA,
(B) mRNA transcribed from DNA with an SNV on the third
nucleotide. The introduction of an adenine before uracil and
guanine, respectively, forms an AUG codon on which initiation
potentially takes place.

(Young et al., 2016). In both translation initiation modes, leaky
scanning and re-initiation, proteins can be translated from the
5′-UTR. Recently, a large-scale study established that disruption
of upstream translation is associated with human disease (Lee
et al., 2021). Thus far, it is not clear if translated uORFs that
regulate RefProt expression in addition exhibit the capacity to
produce functional AltProts, or if they should be considered as
a separate subset of proteins.

Somatic mutation as a possible
mechanism for de novo
generation of protein-coding
sequences

Somatic mutations are variations in the DNA that are
acquired after conception (Biesecker and Spinner, 2013). These
postzygotic variants can generate genetically distinct cells within
a single organism and are known to appear and accumulate
in the brain during development and aging. This might be
due to errors in DNA replication, or defects in DNA repair
mechanisms induced by extensive oxidative stress (Wang et al.,
2014; Maynard et al., 2015). The accumulation of somatic
mutations in neurons during aging, or genosenium, has been
linked to dysregulation of tau phosphorylation and Alzheimer’s
disease (Park et al., 2019; Miller et al., 2021). The mutations
include synonymous and non-synonymous single-nucleotide
variants (SNVs). Synonymous SNVs are in general disregarded
because they do not change the amino acid sequence of
the protein. However, synonymous variations in the reading
frame of the CDS may be non-synonymous and have a great
impact on an overlapping AltORF (Brunet et al., 2021a).
Furthermore, variations of low significance within untranslated
regions (UTRs) may have a significant impact if they result in
a missense mutation within AltORFs. Finally, variations may
create translation initiation sites, resulting in a functional ORF
coding a novel AltProt (Figure 4).

Impact of alternative proteins on
proteomic- and functional
diversity

The field of functional genomics uses genomics,
transcriptomics, proteomics, and interactomics analyses to
better understand the genotype to phenotype relationship.
The discovery of unannotated ORFs adds another level of
complexity. OpenProt is a proteogenomic resource including
AltProts and novel isoforms in addition to RefProts. This
resource uses a comprehensive prediction method based on a 3-
frame in silico translation of transcripts retrieved from Ensembl
and NCBI RefSeq. The output yields an exhaustive database
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of predicted proteins coded by any ORF with a minimum size
of 30 codons in the transcriptome of 10 species. In the latest
release (OpenProt v1.6), OpenProt also includes the initiation
of AltProts at non-AUG codons (Brunet et al., 2021b). Based
on the re-analyses of mass spectrometry-based proteomics
and ribosome profiling data, OpenProt provides expression
evidence for more than 40,000 AltProts in humans, largely
expanding the proteome listed in conventional databases. As
more studies use the OpenProt annotation to discover new
proteins, it is expected that the number of AltProts will increase
accordingly. OpenProt does not annotate microproteins smaller
than 30 amino acids. As such, very small peptides like PEP7
would remain undetected using OpenProt databases (Yosten
et al., 2016). Hence, determining the contribution of very small
proteins to the proteome is still a challenge. Elucidating the
function of thousands of AltProts is not an easy endeavor.
Investigations on small proteins comes also with significant
technological challenges. Despite these challenges, we predict
that including AltProts in proteomics studies will likely help
discover biomarkers for precision medicine.

Exploring the alternative
neuroproteome

Alternative proteins elude detection in the brain because
they are not included in protein databases and the potential
dual-coding feature of mRNAs and coding potential of RNAs
annotated as non-coding are overlooked. However, there are
some substantial arguments to investigate the existence of
these novel neuroproteins. First, weak Kozak sequences are
enriched in genes involved in neurobiology, which might lead
to increased leaky scanning and downstream initiation events
(Acevedo et al., 2018). Second, approximately 40% of long
non-coding RNAs (lncRNAs) are specifically expressed in the
brain, which increases the potential translation of AltProts
from ncRNA (Derrien et al., 2012). Finally, somatic mutations
can potentially create a translation initiation site for a new
AltORF. As such, AltProts might be translated in age-related
neurodegenerative disorders. Although no proteome discovery
study specifically targeted the alternative neuroproteome,
multiple AltProts have been detected in the brain. Humanin
is translated from a short ORF from mitochondrial ribosomal
RNA (mt rRNA). It was detected serendipitously in surviving
brain cells of familial Alzheimer’s patients and was found
to protect against Amyloid-beta toxicity (Hashimoto et al.,
2001a,b; Tajima et al., 2002). In addition, it is involved
in multiple neuroprotective processes such as inhibition of
inflammatory responses, protection against neuronal cell death,
and prevention of synapse loss (Sponne et al., 2004; Zhao et al.,
2013; Zárate et al., 2019). Due to its cytoprotective properties it
is now considered a therapeutic target for degenerative diseases
(Zuccato et al., 2019).

Several studies identified AltProts in the brain encoded
in dual-coding transcripts. For instance, the alternative prion
protein (AltPrP) is translated from an out-of-frame ORF
(+3 reading frame) nested within the annotated CDS of the
prion protein (PRNP) locus (Vanderperre et al., 2011). The
RefProt, the PrP is involved in the pathogenesis of transmissible
spongiform encephalopathies (TSEs). The function of AltPrP
is unknown, but the increased expression after proteasome
inhibition and endoplasmic reticulum stress might indicate
its biomarker potential in TSEs or other neurodegenerative
diseases like Parkinson’s and Alzheimer’s (Yoshida, 2007;
Salminen et al., 2009; Vanderperre et al., 2011). The transcript
coding for the A2A Adenosine receptor (A2AR) is also dual-
coding (Lee et al., 2014). A2AR is a drug target for multiple
neurodegenerative disorders like Parkinson’s and Huntington’s
(Chiang et al., 2009; Kulisevsky and Poyurovsky, 2012). The
AltProt AltA2AR is translated from an out-of-frame ORF
(+2 reading frame) that starts in the 5′-UTR and partially
overlaps the CDS. Stimulation of A2AR increased translation
of the AltProt, and upregulation of A2AR transcripts led to
increased translation of both the RefProt and the AltProt.
AltA2AR was found to be involved in the modulation of the
expression of several genes in the mitogen-activated protein
kinase (MAPK) pathway. The AltProt AltAtaxin-1 is expressed
from the same mRNA as Ataxin-1 but is translated from an
out-of-frame (+3 reading frame) ORF that is nested within
the CDS (Bergeron et al., 2013). Ataxin-1 is involved in the
neurodegenerative disorder spinocerebellar ataxia type 1 and
is moreover associated with increased Alzheimer’s disease risk
(Orr et al., 1993; Bertram et al., 2008; Suh et al., 2019). The
AltProt is expressed in normal and in pathological conditions
but whether it has a function in spinocerebellar ataxia type 1
is unknown. More recently, a transcript from the FUS gene
was found to be bicistronic. AltFUS is translated from an out-
of-frame ORF nested within the CDS (Brunet et al., 2021a).
The RefProt FUS has been linked to the neurodegenerative
diseases amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (Deng et al., 2014; Nolan et al., 2016). AltFUS was
found to induce motor neuron toxicity. Thus, the RefProt and
AltProt contribute both to FUS-mediated toxicity (Brunet et al.,
2021a). Finally, the presence of AltProts was demonstrated in
extracellular vesicles (EVs) produced by glioma cells that can
contribute to carcinogenesis (Murgoci et al., 2020). In total,
six AltProts were identified among other proteins involved in
tumor progression. This study not only highlights the usefulness
of targeting glioma EVs for diagnosis but also indicates the
biomarker potential for AltProts.

Perspective

Ribosome sequencing studies shifted the paradigm of
RNA expression in eukaryotes by identifying novel translated
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FIGURE 5

The neuroproteome vs. the alternative neuroproteome. This value proposition of the alternative neuroproteome highlights the key findings in
this exploratory review article. The alternative neuroproteome is an undiscovered area that can increase our understanding of the intricate
neuroproteome and is a novel source of potential biomarkers and therapeutic targets. However, subsequent studies have to determine which
alternative open reading frame (ORFs) are protein coding, and if the translated alternative protein (AltProt) is either functional, non-functional,
and/or involved in the regulation of reference protein (RefProt) translation.
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ORFs in regions of transcripts previously believed to be non-
coding. Some of these novel proteins are stable, bioactive,
and/or functionally independent of the RefProt translated
from the same transcript. Yet, conventional protein sequence
databases do not include AltProts because their role is not well
understood, which in turn hampers subsequent research for
determining their function.

The neurotranscriptome is characterized by a large
fraction of canonical translation initiation sites with a
weak Kozak sequence and a significant number of lncRNA.
These two features suggest that neuronal AltORFs are
numerous and their translation may be increased. Ribo-
seq on the neurotranscriptome and proteomics studies on
the neuroproteome would help determine the extent of the
translation of AltORFs. Non-canonical translation events are
linked to cellular stress responses, which might indicate their
implication in carcinogenesis and neurodegenerative diseases
like Alzheimer’s, Parkinson’s, TSEs, and ALS. There are several
examples in the literature of functional AltProts in the brain
with functions associated with normal or pathological states.
This novel group of proteins can therefore be important to
help unravel (patho)physiological functions, and potentially
represents novel biomarkers in neurodegenerative diseases and
therapeutic targets. The field of AltORFs and AltProts is recent,
and much work needs to be done to determine the role of
AltProts in the nervous system (Figure 5). As such, efforts to
advance research on non-canonical ORF will likely advance the
field (Mudge et al., 2021).

Very large databases, including those provided by OpenProt
are useful for the discovery of AltProts but they are too large
and cannot be routinely used with typical proteomic workflows.
OpenProt allows subdivision by species, genes, transcripts,
proteins, ncRNAs, mRNAs, or by the locations on mRNA (e.g.,
5′-UTR, CDS, etc.). Additionally, it is possible to exclusively
select AltProts with a minimum degree of experimental
evidence. Currently, it is not possible to further divide ncRNA
by biotype. Studies specifically targeting a specific biotype
(e.g., processed pseudogenes) could leverage this additional
filter, allowing usage of a restricted database. For example,
ncRNA can be subdivided into short ncRNA, long ncRNA, and
pseudogenes. Alternatively, a more comprehensive subdivision
by biotype could be achieved by incorporating the biotype
annotation from Ensembl/Havana or Gencode (Aken et al.,
2016; Frankish et al., 2021). However, the most comprehensive
approach for deciphering a cellular proteome would be to
generate custom databases with RNA-sequencing data. In this
approach, the protein sequence database is built from ORFs
present in transcripts identified by RNA-seq rather than built
with all predicted ORFs in the genome. In addition to providing
a smaller database, RNA-seq data enables the identification of
genetic variants.

The discrepancy between conventional annotations and
experimental translational landscapes stresses the necessity

for a better understanding of the mechanism of translation
initiation and its regulation. In particular, transcripts may
encode several proteins rather than a single protein as predicted
from conventional annotations. A strong Kozak sequence is
certainly an important feature for maximal translation of
a specific ORF, yet a significant fraction of initiation sites,
particularly in genes involved in neurobiology does not fit a
consensus Kozak sequence.

Concluding remarks

The detection of novel functional ORFs is essential to
further unravel the neuroproteome. The purpose of this
review was to create awareness that assumptions in genome
annotations have created an unintentional bias in proteomics
research. Particularly in a convoluted environment like the
human brain, it is important to consider the multi-coding
potential of transcripts to relate gene expression and function
in physiological and pathological settings. The identification
and mapping of AltORFs and functional AltProts are elemental
for widespread acceptance of the potential multi-coding
properties of eukaryotic mRNA and to contradict the “non-
coding” theorem.
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