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Abstract: Cancer is primarily a disease in which late diagnosis is linked to poor prognosis, and
unfortunately, detection and management are still challenging. Circulating tumor cells (CTCs) are
a potential resource to address this disease. Cell fusion, an event discovered recently in CTCs
expressing carcinoma and leukocyte markers, occurs when ≥2 cells become a single entity (hybrid
cell) after the merging of their plasma membranes. Cell fusion is still poorly understood despite
continuous evaluations in in vitro/in vivo studies. Blood samples from 14 patients with high-grade
serous ovarian cancer (A.C. Camargo Cancer Center, São Paulo, Brazil) were collected with the aim
to analyze the CTCs/hybrid cells and their correlation to clinical outcome. The EDTA collected blood
(6 mL) from patients was used to isolate/identify CTCs/hybrid cells by ISET. We used markers with
possible correlation with the phenomenon of cell fusion, such as MC1-R, EpCAM and CD45, as well
as CEN8 expression by CISH analysis. Samples were collected at three timepoints: baseline, after one
month (first follow-up) and after three months (second follow-up) of treatment with olaparib (total
sample = 38). Fourteen patients were included and in baseline and first follow-up all patients showed
at least one CTC. We found expression of MC1-R, EpCAM and CD45 in cells (hybrid) in at least
one of the collection moments. Membrane staining with CD45 was found in CTCs from the other
cohort, from the other center, evaluated by the CellSearch® system. The presence of circulating tumor
microemboli (CTM) in the first follow-up was associated with a poor recurrence-free survival (RFS)
(5.2 vs. 12.2 months; p = 0.005). The MC1-R expression in CTM in the first and second follow-ups
was associated with a shorter RFS (p = 0.005). CEN8 expression in CTCs was also related to shorter
RFS (p = 0.035). Our study identified a high prevalence of CTCs in ovarian cancer patients, as well as
hybrid cells. Both cell subtypes demonstrate utility in prognosis and in the assessment of response to
treatment. In addition, the expression of MC1-R and EpCAM in hybrid cells brings new perspectives
as a possible marker for this phenomenon in ovarian cancer.

Keywords: circulating tumor cells; cell fusion; hybrid cells; CD45; ovarian cancer; in situ hybridization

1. Introduction

Globally, cancer is the leading cause of death [1]. In 112 of 183 countries, it is the
number-one cause of death before age 70, and in at least 23 countries, it ranks third or
fourth, according to World Health Organization (WHO) estimates [2]. Ovarian cancer is
one of the deadliest gynecological cancers: in 2020, WHO estimated that it was responsible
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for 313,959 new cases and 207,252 deaths [2]. In Brazil in 2020, ovarian cancer accounted
for 6650 new cases and 3921 deaths [3].

Precision medicine based on the evaluation of primary tumor characteristics is compli-
cated, as it must account for intra-tumor heterogeneity and tumor changes over time [4].
Circulating tumor cells (CTCs), one of the circulating biomarkers of the “liquid biopsy” [5],
have been studied since 2004. The U.S. Food and Drug Administration (FDA) has approved
the CellSearch® system for analysis of CTCs in metastatic breast, colorectal and prostate can-
cers. This system involves isolation by enrichment with epithelial cell-specific antibodies
(EpCAM), and CD45 for leukocyte depletion [6–8]. However, the studies conducted since
then have proven CTCs to be highly heterogeneous and difficult to isolate solely by EpCAM
and CD45. Many studies have shown that CTCs that undergo epithelial–mesenchymal
transition can express epithelial, mesenchymal and stem cell markers [9,10]. Therefore,
methods based on physical and morphological properties of CTCs may be more reliable.
In addition, by using an epithelial marker-independent enrichment technique, it may be
possible to identify CTC clusters or circulating tumor microemboli (CTM) composed of only
CTCs or CTCs escorted by immune cells. CTM is more likely to survive in the bloodstream,
to overcome cytotoxic treatment and to form metastases than CTCs [11]. Thus, epithelial
marker-independent enrichment methods for CTCs and CTM can offer new opportunities
to study their heterogeneity. Techniques based on their physical characteristics, such as
size, density, deformability and electrical properties, will offer additional insight [12,13].

Cell fusion in CTCs is defined as the expression of both carcinoma and leukocyte
markers [14]. It is a feature that can be evaluated by marker-independent enrichment
methods. In 1911, Professor Otto Aichel was the first to propose that cancer cells can
fuse themselves with white blood cells, spread through the peripheral circulation and
initiate the metastatic process [15]. Conceptually, cell fusion occurs when two or more cells
become a single entity after the merging of their plasma membranes [16,17]. The process is
responsible for the formation of new organisms via fertilization or mating, as well as for the
formation of fused cells such as hybridomas (myeloma cells fused with lymphocytes) [17].
It is also employed in the production of monoclonal antibodies.

Despite the continuous evaluation of cell fusions by many in vitro and in vivo stud-
ies [18,19], this multistep process involving cell–cell recognition, cell adhesion and mem-
brane fusion [20] is still poorly understood. Cell fusion is an important and highly con-
trolled process, key to embryonic development and maintaining homeostasis. It has also
gained attention for its proposed role in cancer progression, as a cooperative mechanism
underlying metastasis and drug resistance [21]. The process allows cancer cells to fuse with
diverse non-tumor cells, including stromal and epithelial cells and macrophages [22,23].

Melanocortin receptor 1 (MC1-R) is a five-transmembrane G-protein-coupled receptor
that allows for the influx of extracellular calcium and subsequent activation of inosi-
tol triphosphate. MC1-R has myriad ligand affinities and downstream effects and can
be found in many cell types, including melanoma, epithelial and endothelial and im-
mune cells [24,25] Some authors have reported fusion events between macrophages and
melanoma cells [26,27].

Polyploidy is another signal of cell fusion. Polyploid cells contain two or more sets of
homologous chromosomes. Polyploidy is a spontaneous event that contributes to normal
organogenesis, tissue repair and tissue differentiation [28,29]. It can contribute to the
formation of centrosomal aberrations, which leads to aneuploid genomes [30]. As a result,
fusion hybrids can provide a survival advantage, making it easier for tumor cells to be
cloaked with innate epitopes and evade the immune system, facilitating survival in the
bloodstream and parenchymal infiltration [23].

In the present study, we observed fused cells using two different CTC identification
systems. The first was ISET®, which isolates CTCs by size through filtration and cytopatho-
logical analysis. The second was the CellSearch system®, which identifies CTCs of epithelial
origin using magnetic beads.
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Here we report a series of 14 patients with high-grade serous ovarian cancer. The
primary outcome was to determine the presence of cell fusion (hybrid cells) in CTCs.
This was performed using immunocytochemical analysis to detect the expression of CD45
alone or with MC1-R [24,25,31] or EpCAM, a marker commonly used to isolate CTCs
from epithelial tumors [32]. The secondary outcomes were to test the association of fusion
markers in CTCs with recurrence-free survival (RFS) and overall survival (OS). We also
evaluated the presence of centromere polyploidy of chromosome 8 at baseline to confirm
the presence of hybrid cells and tested its association with RFS and OS. Finally, we reported
three cases of ovarian cancer from another medical center that were evaluated by the
CellSearch system® to confirm our findings of hybrid cells using another method.

2. Results
2.1. Clinical-Pathological Data

Fourteen patients were included, all of whom had high-grade serous ovarian cancer
and were undergoing platinum-based chemotherapy with maintenance PARP inhibitor
treatment (olaparib). The median age was 45 years (range 29–55). All patients were treated
with carboplatin and paclitaxel, 64.3% of patients with six cycles and 14.3% with eight cy-
cles. All patients included in the study had already relapsed once before being included in
the study and the most frequent locations for relapse were pelvic (28.6%), pelvic and medi-
astinum (14.3%), mediastinum (7.1%), pelvic/retroperitoneum (7.1%) and retroperitoneum
(7.1%). Before baseline CTC collection, eight patients (57.1%) had optimal cytoreduction
and three (21.4%) had suboptimal cytoreduction. There were no cytoreduction data for the
remaining patients. Eight patients (57.1%) had a BRCA1 or BRCA2 mutation, three (21.4%)
were BRCA1 and BRCA2 wild type, and three had not been tested. The CA125 tumor
marker commonly used to indicate the presence of ovarian tumor had a median of 268 and
a mean of 1141.57 (78-6056; SD = 2184; laboratory reference value = 35U/mL). Six of four-
teen patients had disease relapse before the first follow-up. Four patients had disease
relapse in between the first and second follow-up. After the second follow-up, only one
patient relapsed (Table 1).

Table 1. Clinic-pathological variables in patients with high grade ovarian cancer.

Variables No. (%)
Median age at baseline, years 45 years (29–55)

FIGO stage
IIIc 8 57.1
IV 3 21.4

No information 3 21.4
Treatment for platinum-sensitive recurrence

Carboplatin and Paclitaxel 14 100
Treatment cycles

6 cycles 9 64.3
8 cycles 2 14.3

No information 3 21.4
Recurrence site before the 1st collection

Pelvic 4 28.6
Pelvic and mediastinum 2 14.3

Mediastinum 1 7.1
Pelvic/retroperitoneum 1 7.1

Retroperitoneum 1 7.1
No information 5 35.7

Surgery
Optimal surgery 8 57.1

Suboptimal surgery 3 21.4
No information 3 21.4

Mutation
BRCA1/BRCA2 8 57.1
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Table 1. Cont.

Variables No. (%)
No mutation 3 21.4

No information 3 21.4
CA125 pre olaparib treatment median 268 (7–2183.72)

Relapse post-olaparib treatment 6 42.9
CEN 8 9/11 81.8

CTC/mL median (baseline) 0.58 CTCs/mL (0.33–9.91)
CTC/mL median (1◦ follow-up) 0.60 CTCs/mL (0.20–7.20)
CTC/mL median (2◦ follow-up) 1 CTCs/mL (1.00–8.58)

2.2. Analysis of Protein Expression

The median number of CTCs detected by ISET at baseline was 0.58 CTCs/mL (range
0.33–9.91). At the first follow-up, the median was 0.60 CTCs/mL (range 0.20–7.20), and
at the second follow-up, the median was 1 CTCs/mL (range 1.00–8.58). Only 10 patients
had blood collected at the second follow-up: 1 dropped out of the study due to disease
recurrence in the first collection period and the other 3 were lost to follow-up.

As stated in materials and methods, a cell was considered hybrid if stained positive
for CD45 with or without EpCAM or MC1-R. At baseline, 4/14 patients were positive for
CD45, 3 were also positive for MC1-R and 1 for EpCAM. At the first follow-up, CD45 was
found in 6/14 patients, none expressed EpCAM, and all CD45 positive cells were also
positive for MC1-R. In the second follow-up, CD45 was positive in 2/10 cells and both cells
were positive for MC1-R. One of these cells was positive (in another spot analyzed) for
EpCAM (Figure 1).

Interestingly, MC1-R was found in cells that did not stain for CD45. At baseline, in
14 patients evaluated, 10 expressed MC1-R, although only 3 were positive for CD45. At
first follow-up, 10/14 cells were positive and in the second, 5/10 were MC1-R positive.
Patients who presented CTCs/mL above the median more frequently expressed MC1-R
(p = 0.07 at baseline; p = 0.085 at first follow-up; p = 0.008 at second follow-up). Interestingly,
CTCs counts in the three moments were not associated with CA125 above the median.
For more information concerning clinical data and protein expression in CTCs, please see
Supplementary Material, Table S1.

2.3. CEN8

The expression of chromosome 8 (CEN 8) to assess the presence of polyploidy cell
fusion (hybrid cell) was tested in all patients only at baseline. Of the 14 patients, 9 had
CTCs that were positive for CEN8 expression (64.3%) and 2 patients had CTCs negative for
CEN8 (14.28%). We evaluated only one spot on the ISET membrane of each patient for the
CEN8 analysis. Samples from 3 patients had no cells in the evaluated spot. It may be that
if we had evaluated more spots, we would have found positivity in the 3 patients whose
spots had no cells. The positivity rate for this probe was 81.8% (9/11).

2.4. CTCs and Recurrence-Free Survival (RFS)

As described in the methodology, we considered that a CTC showed cell fusion when
it expressed CD45 alone or co-expressed with MC1-R, which is a marker used in the
literature to describe cell fusion [24,25], or CD45 co-expressed with EpCAM, which is an
epithelial cell marker [33]. However, we evaluated each protein (CD45, MC1R and EpCAM)
independently to test its impact in RFS and OS.

Median RFS time was 8.13 months (0.625 vs. 32.86 months). CTC count was not
associated with RFS. Patients with CTC/mL counts above the median (0.58 CTCs/mL;
range: 0.33–9.91 CTCs/mL) at baseline had a higher number of relapse sites (p = 0.025).
There was no correlation of any other variable with the number of sites of relapse.
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staining, visualized with hematoxilin. (C,D)The same CTC without any staining, in (C), nuclei 
defined by yellow line. (E) Hybrid cells. One positive for MC1-R (brown membrane) and one in a 
microemboli, stained with CD45 with two leukocytes (stained with CD45, visualized by permanent 
red). (F) Hybrid cell positive for MC1-R (brown membrane). (G) Hybrid cell positive for EpCAM 
(brown membrane) and a cluster of leukocytes (stained with CD45, visualized by permanent red). 
(H) Hybrid cell double positive for EpCAM (brown membrane) and MC1-R (visualized by 
permanent red). (I) Two hybrid cells. One visualized alone double stained with EpCAM and CD45 
(brown and red) and the other surrounded by three leukocytes stained with CD45 (visualized by 

Figure 1. Representative images. Green arrows indicate hybrid cells, pink arrows represent leuko-
cytes, red arrows represent CTCs, orange arrows indicate hybrids cells stained with CD45, yellow
circle indicate cell nucleus and asterisks represent membrane pore. (A,B) CTCs without any stain-
ing, visualized with hematoxilin. (C,D)The same CTC without any staining, in (C), nuclei defined
by yellow line. (E) Hybrid cells. One positive for MC1-R (brown membrane) and one in a mi-
croemboli, stained with CD45 with two leukocytes (stained with CD45, visualized by permanent
red). (F) Hybrid cell positive for MC1-R (brown membrane). (G) Hybrid cell positive for EpCAM
(brown membrane) and a cluster of leukocytes (stained with CD45, visualized by permanent red).
(H) Hybrid cell double positive for EpCAM (brown membrane) and MC1-R (visualized by permanent
red). (I) Two hybrid cells. One visualized alone double stained with EpCAM and CD45 (brown and
red) and the other surrounded by three leukocytes stained with CD45 (visualized by permanent
red). (J) Hybrid cell stained with MC1-R, visualized by DAB and two leukocytes (stained with
CD45, visualized by permanent red). (K,L) Hybrid cells positive for MC1-R/CD45 (brown and red
membrane). (M,N) Hybrids cells stained with CD45 in just one side of the cytoplasmatic membrane,
visualized by DAB. (O,P) CTCs positive for CEN8, indicating the presence of polyploidy. (Q) Mi-
croemboli visualized with hematoxylin. (R–T) Microemboli from patient positive for MC1-R (brown
membrane). Images were taken at ×400 and ×600 magnification using a light microscope (Research
System Microscope BX61—Olympus, Tokyo, Ja-pan) coupled to a digital camera (SC100—Olympus,
Tokyo, Japan).
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Patients whose CTCs presented polyploidy as evaluated by CEN8 analysis (hybrid
cell) had a worse RFS (7.0 months vs. 21.21 months, p = 0.035) in relation to those who did
not (Figure 2).
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Figure 2. Recurrence-free survival analysis of ovarian cancer patients for CEN8 expression in
CTCs (hybrid cells) at the baseline. The presence of polyploidy in the CEN8 showed a worse RFS
(7.0 months vs. 21.21 months, p = 0.035) in relation to those who did not.

Notably, although CD45 was used as our fusion marker, as all proteins were evaluated
together with it, CD45 expression alone was not associated with survival. On the other
hand, MC1-R was associated with RFS, suggesting MC1-R as a poor prognosis protein in
ovarian cancer.

At baseline, patients who expressed MC1-R had a median RFS of 14.07 vs. 6.8 com-
pared to those who did not (p = 0.30). For EpCAM, the only patient who expressed this
protein at baseline and at second follow-up, always together with CD45, which makes the
cell doubtless hybrid, had a RFS of 5.26 months vs. 12.21 for those who did not express it,
at two timepoints (baseline and second follow-up) (p = 0.005) (Figure 3).

The presence of a microemboli in the first follow-up and second follow-ups were
associated with a shorter RFS (5.26 vs. 13.1 months; p = 0.008). Curiously, the only protein
found in microemboli was MC1-R. Expression of MC1-R in the microemboli in the first and
second follow-ups was associated with RFS. At this both moments, patients that did not
express MC1-R had a median RFS of 13.1 months, while those who expressed had median
RFS of 5.26 months (p = 0.008) (Figure 4).

2.5. CTCs and Overall Survival

Median OS was 20.4 months (0.95–35.26 months). Patients who had CTCs expressing
MCR-1 had an OS of 30.31 months compared to 13.37 months for those who did not have it
(p = 0.059). CD45 expression was not associated with OS, 20.42 months vs. 24.11 months
(p = 0.91).

Biomarkers evaluated in samples from the first follow-up were not associated with
OS. In the second follow-up, patients with MCR-1 expression presented a median OS of
20.42 months vs. 27.41 months for those who did not express it (p = 0.7).
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Figure 4. Recurrence-Free Survival analysis of ovarian cancer patients for MC1-R expression in CTM.
The presence of a microemboli with MC1-R expression at the second follow-up was also determinant
for worse RFS (5.26 vs. 13.1 months; p = 0.008).

2.6. CTCs Detected Using the CellSearch®

Samples from three patients with ovarian cancer attended at the Department of Sur-
gical Oncology, Institut du cancer de Montpellier, ICM-Val d’Aurelle, Paris, France, were
analyzed in parallel with the A.C Camargo Cancer Center, São Paulo, Brazil, cohort to
confirm what we found with the size-based technology “ISET”. We asked researchers to
look at the cells that normally are discarded by the gold standard CellSearch® system, due
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to CD45 expression. Surprisingly, some cells had both: CD45 and epithelial markers, as
well as morphological features of CTCs, confirming that fusion phenomenon is observed
independently of the method used to detect CTCs (Figure 5).

Int. J. Mol. Sci. 2022, 23, x  9 of 17 
 

 

 
Figure 5. CTCs isolated from 3 different patients with locally advanced ovarian cancer with perito-
neal carcinomatosis but no distant metastases (M0). These photos are representative of dual stained 
CTCs detected using the CellSearch® system: dual CK(+) CD45(+) nucleated cells after EpCAM-based 
enrichment step. 

3. Discussion 
In the present study we could observe fused cells using two different CTC identifi-

cation systems. The first is ISET®, which isolates the CTCs by size through filtration and 
cytopathological analysis. Circulating tumor cells were defined as cells presenting all the 
following criteria: (i) irregularity of the nuclear contour; (ii); presence of a visible cyto-
plasm; (iii) nuclear size equal or larger than two pores (equal or larger than 16 μm); and 
(iv) high nuclear-to-cytoplasmic ratio (>0.8) [9]. Leukocytes were defined following the 
criteria: (i) cytoplasm with azurophilic and specific granules; (ii) measure from 9μm to 15 
μm; positive staining for CD45 [34]. 

The second is the CellSearch system®, which identifies and enumerates CTCs of epi-
thelial origin by magnetic beads labeled with EpCAM. 

The high detection rate of CTCs in the present patient population and the correlation 
of baseline CTC counts with the number of relapse sites suggest that ISET can be used to 
identify, quantify and characterize CTCs and hybrid cells in patients with high grade se-
rous ovarian cancer. Polyploidy was also observed in the isolated cells and correlated with 
poor RFS. MC1-R, a protein used to identify fusion events in melanoma, was found in 
CTCs and CTM and shows promise as a prognostic marker in ovarian cancer. 

Our study shows that the ISET method can be used to identify not only CTCs but 
also hybrid cells, and that, according to other authors [35,36], it can be better than label-
dependent methods to observe CTCs. Some studies have already demonstrated the effec-
tiveness and specificity of cytopathological analysis of CTCs made after ISET isolation. 
One study with renal tumors showed that 104 of 125 CTCs identified by cytopathological 
analysis expressed the identical VHL mutation as detected in the primary tumor [35]. An-
other study, also from the same group, showed that the detection of CTCs from a prostate 
tumor, analyzed by cytopathology without any other molecular characterization, was ca-
pable of identifying patients at higher risk of recurrence after prostatectomy. According 
to this study, the cytopathology specificity was 100%, while the sensitivity was 72% [36]. 

Searles et al. hypothesized that cell fusion might cause chromosomal instability. They 
used a Cre-loxP system to observe the molecular exchange of information between can-
cerous and non-cancerous cells and postulated that cells that express Cre may induce loxP 

Figure 5. CTCs isolated from 3 different patients with locally advanced ovarian cancer with peritoneal
carcinomatosis but no distant metastases (M0). These photos are representative of dual stained CTCs
detected using the CellSearch® system: dual CK(+) CD45(+) nucleated cells after EpCAM-based
enrichment step.

3. Discussion

In the present study we could observe fused cells using two different CTC identi-
fication systems. The first is ISET®, which isolates the CTCs by size through filtration
and cytopathological analysis. Circulating tumor cells were defined as cells presenting
all the following criteria: (i) irregularity of the nuclear contour; (ii); presence of a visible
cytoplasm; (iii) nuclear size equal or larger than two pores (equal or larger than 16µm);
and (iv) high nuclear-to-cytoplasmic ratio (>0.8) [9]. Leukocytes were defined following
the criteria: (i) cytoplasm with azurophilic and specific granules; (ii) measure from 9µm to
15 µm; positive staining for CD45 [34].

The second is the CellSearch system®, which identifies and enumerates CTCs of
epithelial origin by magnetic beads labeled with EpCAM.

The high detection rate of CTCs in the present patient population and the correlation
of baseline CTC counts with the number of relapse sites suggest that ISET can be used
to identify, quantify and characterize CTCs and hybrid cells in patients with high grade
serous ovarian cancer. Polyploidy was also observed in the isolated cells and correlated
with poor RFS. MC1-R, a protein used to identify fusion events in melanoma, was found in
CTCs and CTM and shows promise as a prognostic marker in ovarian cancer.

Our study shows that the ISET method can be used to identify not only CTCs but
also hybrid cells, and that, according to other authors [35,36], it can be better than label-
dependent methods to observe CTCs. Some studies have already demonstrated the effec-
tiveness and specificity of cytopathological analysis of CTCs made after ISET isolation. One
study with renal tumors showed that 104 of 125 CTCs identified by cytopathological analy-
sis expressed the identical VHL mutation as detected in the primary tumor [35]. Another
study, also from the same group, showed that the detection of CTCs from a prostate tumor,
analyzed by cytopathology without any other molecular characterization, was capable
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of identifying patients at higher risk of recurrence after prostatectomy. According to this
study, the cytopathology specificity was 100%, while the sensitivity was 72% [36].

Searles et al. hypothesized that cell fusion might cause chromosomal instability. They
used a Cre-loxP system to observe the molecular exchange of information between cancer-
ous and non-cancerous cells and postulated that cells that express Cre may induce loxP
recombination in normal reporter cells. Surprisingly, all marked cells exhibited hyperploidy
and resulted from a cell fusion event [37]. Thus, we decided to analyze the presence of
chromosomal instability in CTCs, since ovarian cancer is characterized by copy number
and structural variations [38]. Recent studies have shown that chromosome 8 triploid and
tetraploid CTCs are resistant to intrinsic drugs in gastric cancer, nasopharyngeal carcinoma,
and rectal cancer [39]. Chromosome 8 aneuploidy is common in several neoplastic diseases.
According to a study by Zhang et al., CTC triploids could be detected in most patients
with newly diagnosed nasopharyngeal carcinoma, but the number of polyploid cells was
significantly higher in patients with recurrence and metastasis. They also postulated that
the copy number of chromosome 8 was closely related to the effectiveness of chemotherapy
and resistance to treatment [40]. Chromosome aneuploidy is known to occur in several
tumor types, and many studies have shown that patients with aneuploid tumor cells had
poorer outcomes [41]. Li et al. demonstrated that triploid CTCs were associated with
intrinsic resistance to drugs, while tetraploid and multiploid CTCs were related to acquired
resistance to paclitaxel or cisplatin in gastric cancer. Clinical studies conducted in patients
with gastric cancer indicated that rare cells with trisomy 8 showed intrinsic resistance to
cisplatin, while multiploid cells demonstrated acquired resistance [42]. Here, we showed
that CEN8 was related to poor RFS in ovarian cancer (p = 0.035). Maybe, in this type of
tumor, CEN8 can be a marker of fusion event, as it is believed that hybrid cells are related
to poor outcomes, but further studies are necessary to prove this.

MC1-R is thought to play a role in melanoma progression through the activation
of MET, a proto-oncogene and key regulator of metastasis in many cancers. Clawson
et al., working with cultured, enriched CTCs from melanoma patients, observed large
CTCs (generally 20–30 µm) in early-stage patients. The isolated CTCs showed aberrant
expression of melanocytic differentiation markers, as well as pan-cytokeratin. Two sub-
populations were observed based on immunofluorescence staining: one subpopulation
of cells stained for pan-cytokeratin and CD45 (50%) (hybrid cells) and the other stained
only for pan-cytokeratin (50%) [43]. Likewise, Itakura et al. described two subgroups of
melanoma-related cells in sentinel lymph nodes, analogous to the two subpopulations
described by Clawson: one composed of cells consistent with immature melanocytes and
the other composed of cells consistent with immature melanocytes that also expressed
leukocyte/macrophage markers (fusion event) [44].

Here, we describe for the first time the expression of MC1-R in CTCs from ovarian
cancer patients and its correlation to poor RFS when expressed in CTM at the first and
second follow-ups. Because MC1-R was observed in CTCs with CD45 expression, it may
be useful as a marker of hybrid cells in ovarian cancer as it is in melanoma [45]. As was
demonstrated in other tumor types [46–48], CTC clusters were also related to poor outcome
in ovarian cancer.

The fusion phenomenon is not a novel discovery, but its finding in CTCs of patients
with ovarian cancer is unique. To the best of our knowledge, this is the first study describing
the cell fusion phenomenon observed under light microscopy, allowing the visualization of
intact cells and their cytopathological characteristics. As stated in materials and methods,
we consider a cell as hybrid when it has all CTC features together with CD45 expression.
In addition, we also observed, in many cases, CD45 co-expressed with other epithelial
(EpCAM) or fusion marker (MC1-R). Recently, Gast et al. used murine models to inves-
tigate cell fusion and demonstrated that leukocyte–cancer cell fusion produces hybrid
cells that express the genetic and phenotypic characteristics of both maternal cells [49,50].
Other studies describe similar findings for macrophage markers, such as CD68, commonly
expressed by tumor cells in histopathological sections [51–54]. Pawelek et al. proposed that
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the epithelial–mesenchymal transition in cancer could be the result of fusion between tumor
and myeloid cells. Because macrophages are of mesenchymal origin, tumor-myeloid fusion
could contribute to the aneuploidy and heterogeneity frequently observed in tumors. An
inflammatory tumor microenvironment may also stimulate fusion between bone-marrow-
derived cells and tumor cells. Fusion cells can also result from tumor cell phagocytosis by
macrophages [21]. In the present study, it was noted that in some cells, CD45 expression
occurred only on one side of the cell membrane, suggesting a fusion between two cells
from different origins. Another hypothesis is that leukocytes send exosomes to primary
tumors and to CTCs, which could explain why pieces of CD45-expressing membrane were
observed in CTCs. Due to the important role of the immune system in the elimination of
aberrant cells, escape from immune control is crucial for cancer growth and metastasis.
Curiously, CD45 expression in CTCs was also found in cells that were automatically deleted
by the CellSearch® system, because cells expressing this marker are considered leukocytes
regardless of their cytopathological features. Perhaps the sorting methods for CTCs need
to be updated in order to include complex cells in disease analysis.

Although the present study used only a small sample size, it presents two major find-
ings: the presence of hybrid cells in high grade ovarian cancer, as assessed by two different
methods, and MC1-R as a prognostic marker for ovarian cancer. Additional studies, maybe
multicenter, are needed to more thoroughly evaluate the function of MC1-R in ovarian
cancer, as well as its role as fusion marker. Many important questions remain to be an-
swered about the role of cell fusion in cancer with regard to its frequency, timing, causation
and interaction with the immune system [18]. Therefore, cell fusion between tumor and
immune cells offers a novel mechanism by which neoplastic cells gain phenotypic diversity,
increasing opportunities for highly tuned subclones to overcome selection pressure and
lead to tumor progression.

4. Materials and Methods
4.1. Patient Population and Study Design

This was a single-center, prospective, longitudinal study performed at the A.C. Ca-
margo Cancer Center, São Paulo, Brazil, of patients with high-grade serous ovarian cancer
monitored from November 2018 to May 2022. We included patients presenting platinum-
sensitive recurrence, irrespective of BRCA1 or BRCA2 mutation. Patients were treated with
standard of care treatment: a combination of platinum-based chemotherapy followed by
PARP inhibitor maintenance (olaparib).

Three serial blood samples were collected. The first was collected at the time of patient
enrollment (baseline), before starting treatment with PARPi (collection 1, CTC1). The
second sample was taken 30 days after starting treatment with PARPi (first follow-up,
CTC2), and the third sample was taken three months after starting treatment with PARPi
(second follow-up, CTC3). Venous blood was collected from the antecubital vein in EDTA
tubes, and the samples were stored at room temperature, with constant homogenization
(in electric homogenizer) to prevent blood clotting, for a maximum of 6 h before being
processed by the ISET system (Rarecells Diagnostics, Paris, France).

In addition, we included samples from locally advanced ovarian cancer with peritoneal
carcinomatosis but no distant metastases, analyzed using the CellSearch system at the
Department of Surgical Oncology, Institut du Cancer de Montpellier, ICM-Val d’Aurelle,
France, and analyzed using CellSearch System (Menarini Silicon Biosystems, Huntingdon
Valley, PA, USA), in parallel with the AC Camargo cohort.

4.2. Ethics

This project was approved by the ethics and research committee of A.C. Camargo
Cancer Center, São Paulo, Brazil (approval number 2623/18). Written informed consent
was obtained from all participants before their entrance into the study. In addition, patients
that were recruited at the Institut du Cancer de Montpellier were recruited under the
bioethics approval ‘CPP Sud Méditerranée III’ (reference number 2016.09.06).
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4.3. Detection of CTCs and the Cell Fusion Phenotype
4.3.1. ISET Assay

The ISET® system (Isolation by SizE of Tumor cells, Rarecells, Paris, France) was used
to isolate and analyze CTCs. Blood was drawn into EDTA tubes (BD Vacutainer®, BD, Belo
Horizonte, MG, Brazil) with immediate gentle agitation. The sample was processed on the
ISET platform according to manufacturer instructions. Briefly, 6 mL of whole blood were
diluted up to 60 mL with a buffer containing 0.02% formaldehyde, incubated for 10 min at
room temperature, and filtered through a membrane with 8 µm pore size. The filtration
pressure was optimized to −10 kPa to preserve cell integrity. The membrane was then
washed once with phosphate-buffered saline. After processing, filters were dried, wrapped
in an aluminum sheet and stored at −20 ◦C until use.

4.3.2. Immunocytochemistry

The module filtration had a membrane of 10 spots, making it possible to process blood
samples of 10 mL. We analyzed 6 spots for each patient; all spots were analyzed for CD45
staining with another marker by dual color staining. After filtration, membranes were
washed with PBS, disassembled from the filtration module, allowed to air-dry overnight
and stored at −20 ◦C until staining. The spots membranes were submitted to dual color
immunocytochemistry (ICC) (DAB+/Permanent Red; DakoTM, Santa Clara, CA, USA) on
a 24-well plate. Antigen retrieval was then performed using Antigen Retrieval Solution
(DakoTM). Cells were hydrated with tris-buffered saline (TBS) 1X for 20 min and permeabi-
lized with TBS + Triton X-100 for 5 min, and endogenous peroxides were blocked with 3%
hydrogen peroxide in the dark for 15 min. The spots were incubated with antibodies diluted
in TBS 10% fetal calf serum. To amplify the antibody signal, the spots were incubated
with Envision G/2 Doublestain System, Rabbit/Mouse (DakoTM) followed by 10 min of
incubation with DAB+/Permanent Red (DakoTM). The spots were then washed with PBS
between the steps. Cells were stained with hematoxylin for visualization of nuclei and
cytoplasm and analyzed by light microscope (BX61-Olympus, Tokyo, Japan). To distinguish
CTCs and cell fusion from white blood cells, we used anti-CD45 antibody. Circulating
tumor cells (CTCs) were characterized based on the following cytopathological criteria:
negative staining for CD45, nucleus size ≥ 12 µm, hyperchromatic and irregular nucleus,
visible presence of cytoplasm and a high nucleus–cytoplasm ratio [9].

The classic definition of a CTC in cancer is a circulating cell that expresses a tumor
antigen (usually EPCAM or cytokeratin) and does not express the CD45 pan-leukocyte
antigen [55]. Leukocytes, including macrophages, normally express CD45. Therefore
leukocyte/macrophage–CTC fusion cells must also express CD45 [56,57]. In our study, by
using ISET, we identified the presence of CTCs based on the morphologic features observed
through cytopathology rather than the expression of epithelial markers. It corroborates with
studies developed by Patrizia Paterlini-Bréchot’s group, concerning kidney and prostate
tumors, where they analyzed CTCs by the same method, by cytopathology characteristics,
with 100% efficiency and 70% sensitivity. In addition, as far as we know, we are the first to
demonstrate, together with CTCs, the identification and characterization of hybrid cells
using the ISET method [35,36]. Thus, differently from the literature, in our study, CTC was
considered to be a hybrid cell if it had the morphologic features of an epithelial cell and
expressed CD45 alone or with MC1-R [24,25,31], or EpCAM [33]. The following antibod-
ies were used: CD45 1:300 (Abcam: ab10559—Lot. GR3389366-1); MC1-R 1:700 (Abcam,
Waltham, MA, USA): ab236734, lot GR3241231-10) and EpCAM 1:300 (Sigma, São Paulo,
Brazil): HPA026761, lot D119365). Negative and positive controls were included in each ICC
staining. For positive controls, we used cell lines A549 and MCF7 spiked in healthy blood,
which, according to The Human Protein Atlas (http://www.proteinatlas.org/ (accessed on
10 September 2022)) express MC1-R and EpCAM, respectively. For negative controls we
used cell lines SK-BR-3 and U-87-MG spiked in healthy blood, which, according to The
Human Protein Atlas (http://www.proteinatlas.org/ (accessed on 10 September 2022)) do
not express MC1-R and EpCAM, respectively. The cell lines were acquired from ATCC®

http://www.proteinatlas.org/
http://www.proteinatlas.org/
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HTB-43™. For CD45, MC1-R and EpCAM expression analysis, cells were classified accord-
ing to staining. No staining was considered negative, and any staining was classified as
positive (Supplementary Figure S1).

4.3.3. Chromogenic In Situ Hybridization

To confirm if the circulating CD45+/MC1-R+ or CD45+/EpCAM+ cells were hybrid
cells, we performed qualitative detection of human chromosome 8 alpha satellites (CEN8)
by chromogenic in situ hybridization. The presence of polyploidy was only assessed
in the baseline collection from each patient. We used ZytoDot (REF: C-3016-400) stains
on frozen ISET membranes. The membranes were hydrated with TBS 1X for 5 min at
room temperature (RT) and then with 1% formaldehyde for 5 min at RT. Subsequent
washes between steps were performed with distilled water. Membranes were incubated in
hydrogen peroxide for 10 min at RT and in the dark. After washing with distilled water,
membranes were incubated with cytology pepsin (ZytoVision, Bremerhaven, Germany)
for 5 min at RT. Membranes were then washed in 70%, 90% and 100% ethanol for one
minute each. After drying, the membranes were incubated with a CEN8 (10 µL) probe in
the hybridizer at 75 ◦C (wet) for 5 min and then incubated overnight at 37 ◦C. After this
step, washes were performed with wash buffer SSC for 5 min at RT. The membrane was
incubated with wash buffer SSC at 80 ◦C for 5 min. After washing, the membranes were
incubated with Anti-DIG/DNP-Mix (AB14) for 15 min at 37 ◦C (wet) in the hybridizer. After
washing, HRP/AP-POLYMER-MIX (AB13) was applied, followed by AP-Red Solution
(1–2 drops) at RT. The membrane was counterstained with 50% hematoxylin for 2 min
at RT after washing. The slides were adhered with aqueous mounting medium and
coverslipped (DAKO). The reading was performed under a bright field microscope. For
CEN8 expression analysis, cells were classified according to the presence of expression.
No expression was considered negative and any expression was classified as positive
(Supplementary Figure S1). Notably, the spots analyzed by CISH were different from the
spots analyzed by immunocytochemistry since the polycarbonate membrane would not
resist the high temperatures used in CISH staining.

4.3.4. The CellSearch® System (Menarini Biosystems)

Blood samples were collected in CellSave tubes (Veridex, LLC, Huntingdon Valley,
PA, USA) and processed within 96 h after blood collection. A total of 7.5 mL of blood was
subjected to CTC enumeration using the CellSearch Epithelial Cell Kit. This procedure
enriches the sample for cells expressing EpCAM using magnetic beads coated with anti-
EpCAM antibodies and labels the cells with the dye fluorescent nucleic acid 4,2-diamidino-
2-phenylindole dihydrochloride. Fluorescent monoclonal antibodies specific to leukocytes
(CD45- alophycocyan) and epithelial cells (cytokeratin 8,18,19-phycoerythrin) are used to
distinguish epithelial cells from leukocytes. The identification and enumeration of CTCs
were performed using the CellSpotter Analyzer(Inc. DBA Sciotex, Newtown Square, PA,
USA), a fluorescence microscopy system that allows for the digital reconstruction of cellular
images. CTCs were defined as nucleated cells without CD45 and expressing cytokeratin. In
our current study, we also selected EpCAM+CK+DAPI+CD45+ cells.

4.4. Statistical Analysis

A descriptive analysis (absolute data and frequency) was performed for all clinical-
pathological variables. Continuous variables were categorized to evaluate the differences
between the two groups: those who expressed in CTCs the markers MC1-R, CD45, EPCAM
and CEN8 (hybrid cells) and those who did not. CTC count, cancer antigen 125 (CA125)
levels, and age were dichotomized using the median value as a cut-off. χ2 or Fisher’s
exact test was used to analyze categorical variables. Survival curves were plotted using
the Kaplan–Meier method, and the difference between them was analyzed by the log rank
test. RFS was defined as the time from baseline sample to disease recurrence or death by
any cause. OS was defined as the time from baseline sample to death by any cause. All
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statistical analyses were performed using SPSS for Windows, version 15. The p-values were
considered significant when ≤0.05.

5. Conclusions

In short, the present study indicated the association of polyploid/hybrid CTCs with
RFS, especially for cells expressing MC1-R. More research is needed to elucidate the un-
derlying mechanism, to better understand the biology of the metastatic cascade and how
CTCs can escape the immune system. The main objective of future studies should be to de-
termine the frequency of fusion cells in larger cohorts of human cancers in order to identify
reliable markers and their role in malignant transformation and treatment resistance [58,59].
Although this study comprised only a small cohort, it opens new perspectives for the use
of CTCs to monitor fusion events and treatment resistance in ovarian cancer. The study
is preliminary and innovative, highlighting a new direction in the study of cancer and its
interaction with cells of the immune system, in addition to the relationship between cell
fusions and cancer progression.
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