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Abstract: The emergence and spread of multidrug resistant Enterobacterales (MDR-E) are a global
public health issue. This problem also concerns urinary tract infections (UTI), which are the second
most frequent infections after respiratory infections. The objective of this study was to determine
MDR-E frequency and to characterize MDR-E isolates from patients with community-acquired UTIs
in Djibouti, Republic of Djibouti. From 800 clinical urinary samples collected at the Mer Rouge
Laboratory, Djibouti, from January to July 2019, 142 were identified as Enterobacterales (age range
of the 142 patients mean age is 42 years.) Mass spectrometry analysis of these isolates identified
117 Escherichia coli, 14 Klebsiella pneumoniae, 2 Proteus mirabilis, 4 Enterobacter spp., 4 Providencia
stuartii and 1 Franconibacter helveticus. Antibiotic susceptibility testing (disk diffusion method) of
these 142 isolates detected 68 MDR-E (68/142 = 48%): 65 extended-spectrum bêta lactamase- (ESBL),
2 carbapenemase- (one also ESBL), and 1 cephalosporinase-producer. Multiplex PCR and sequencing
showed that the 65 ESBL-producing isolates carried genes encoding CTX-M enzymes (CTX-M-15
in 97% and CTX-M-9 in 3% of isolates). Two isolates harboured a gene encoding the OXA-48-like
carbapenemase, and one the gene encoding the AmpC CMY-2 cephalosporinase. Genes implicated in
resistance to quinolones (qnrB, aac (6′)-Ib-cr, qnrD, oqxA and B) also were detected. Among the E.
coli phylogroups, B2 was the most common phylogenetic group (21% of MDR-E isolates and 26% of
non-MDR-E isolates), followed by A (14% and 12%), B1 (9% and 7%), D (3% and 3%), F (3% and 3%)
and E (2% and 2%). This study highlights the high frequency of ESBL producers and the emergence
of carbapenemase-producers among Enterobacterales causing community-acquired UTIs in Djibouti.

Keywords: urinary tract infections; Enterobacterales; extended-spectrum beta-lactamase carbapenemases;
community; Djibouti

1. Introduction

Community-acquired urinary tract infections (UTI) are a public health problem world-
wide and the second most frequent infections after respiratory infections [1].

Importantly, UTI epidemiology has changed due to the emergence of extended spec-
trum beta-lactamase (ESBL)-producing Enterobacterales (ESBL-E) [2,3]. Until the late 1990s,
the majority of identified ESBLs were TEM-1/2 or SHV-1 mutants. The producing strains
were often associated with nosocomial epidemics, and the prevalence of ESBL producers
was higher in Klebsiella pneumoniae than in Escherichia coli isolates [4,5].

However, in the late 1980s–early 1990s, new ESBL types were reported in Europe
(MEN-1, CTX-M-1, PER-1), Japan (SFO-1, Toho-1), Argentina (CTX-M-2, PER-2) and Mexico
(TLA-1) [4,6,7]. Since the 2000s, CTX-M-producing E. coli strains are the main ESBL-E de-
tected in adult and paediatric UTIs, including in community settings. This phenomenon has
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accelerated in recent years, and CTX-M is now the main ESBL worldwide. The significant
increase in ESBL-E prevalence has led to a parallel increase in carbapenem prescriptions
in hospital and community settings [3,8,9]. Consequently, recently, Enterobacterales pro-
ducing beta-lactamases that hydrolyse class A, B and D carbapenems have been identified
worldwide [10]. OXA-48-type (class D) carbapenemases were first detected in K. pneumoniae
in Turkey in 2001 [11]. Since then, Enterobacterales producing these enzymes have been
found worldwide [12,13]. This is a public health issue because these bacteria are often
ESBL-producers, and may also exhibit resistance to other antibiotic classes, particularly
fluoroquinolones and aminoglycosides [14]. Therefore, the objective of this study was
to determine the rate of multidrug-resistant Enterobacterales that produce ESBL, AmpC
beta-lactamases, carbapenemases and beta-lactamases, as well as their antibiotic resistance
profiles in patients with UTI in Djibouti, Republic of Djibouti.

2. Results
2.1. Bacterial Isolates and Patient Characteristics

Among the 327 bacterial strains isolated from patients with community-acquired UTIs,
200 were Enterobacterales (61.2%), 93 were Gram-positive cocci (28.4%; Enterococcus spp.,
Streptococcus spp. and Staphylococcus spp.), and 34 were Gram-negative non-fermenting
bacilli (10.4%, Acinetobacter spp. and Pseudomonas aeruginosa). However, only 142 (71%)
of the 200 Enterobacterales isolates could be analysed. Enterobacterales were represented
by seven species: E. coli (n = 117, 82.4%), K. pneumoniae (n = 14, 9.8%), Providencia stuartii
(n = 4, 2.8%), Enterobacter cloacae (n = 3, 2.2%), Proteus mirabilis (n = 2, 1.4%), Enterobacter
kobei (n = 1, 0.7%) and Franconibacter helveticus (n = 1, 0.7%). The age of these 142 patients
ranged from 1 to 85 years, and 61 (43%) were men.

2.2. Multidrug-Resistant Enterobacterales (MDR-E) Isolates

Antimicrobial susceptivity testing indicated that among these 142 isolates, 68 (48%)
were MDR-E and 77 were non-MDR-E (53.5%). PCR analysis indicated that 65/68 (95.5%)
produced ESBL (n = 58, 41%, E. coli and n = 7, 5%, K. pneumoniae), 1 E. coli isolate (1%) pro-
duced ESBL and carbapenemase, and 1 E. coli isolate (1%) 1 cephalosporinase. Analysis of
the risk factors showed no significant difference in the MDR-E and non-MDR-E percentages
in the function of the patients’ age (Table 1). Conversely, the MDR-E rate was significantly
higher in women than men (43% vs. 57%, p < 0.005), and in patients who reported previous
antibiotic use (53% vs. 18.4%, p < 0.005).

Table 1. Characteristics of urinary Enterobacterales studied according to their production of ESBL or not.

Factors. ESBL-Producing (n = 65) non-ESBL-Producing (n = 77)

Age (years) N (%) N (%)
15–24 years 19 (13%) 30 (21%)
25–49 years 32 (23%) 24 (17%)
≥50 years 14 (10%) 23 (16%)

Sex
Male 21 (15%) 40 (28%)

Female 44 (31%) 37 (26%)
Previous use of antibiotics
(last 3 months) 35 (54%) 14 (18%)

2.3. Antibiotic Resistance Patterns

Among the 142 Enterobacterales isolates, the percentage of antibiotic-resistant isolates
was higher in the MDR-E than non-MDR-E group: to fluoroquinolone (86.3% vs. 22.9%;
p < 0.005), aminoglycosides (56% vs. 5.3%; p < 0.005), tetracycline (77.3 vs. 32.9%; p < 0.005)
and sulfamethoxazole-trimethoprim (77.3 % vs. 30.3%; p < 0.005) (Figure 1). In both
groups, few isolates were resistant to fosfomycin (15.1% and 10.5%) and chloramphenicol
(87.46% and 12.49%). All 142 isolates were sensitive to colistin (MIC < 2 mg/L). Two
carbapenemase-producing isolates were resistant to ertapenem.
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Figure 1. Antibiotic resistance profile of Enterobacterales isolates.

2.4. Molecular Characterization of Beta-Lactamases and Encoding Genes

The results of the PCR and sequencing analyses showed that CTX-M group 1 was
the most frequent ESBL type (97% of isolates; 96% of E. coli and 100% of K. pneumoniae
isolates) and was encoded exclusively by the blaCTX-M-15 gene (Table 2). Two E. coli
isolates harboured the CTX-M group 9 ESBL type and the blaCTX-M-14 gene. Genes
encoding CTX-M ESBL were detected alone in three samples (4.6%), and associated with
one or two other beta-lactamase-encoding genes (blaTEM and blaOXA) in 62 isolates
(95.4%). The blaSHV gene was not detected. Two CTX-M-15-producing E. coli isolates
co-expressed the OXA-48 enzyme, and one non-ESBL-producing E. coli isolate harboured
the gene encoding the AmpC enzyme CMY-2 (Table 2). Genes involved in resistance to
quinolones, such as qnrB (n = 2 MDR-E isolates), aac (6′)-Ib-cr (n = 15 MDR-E isolates),
qnrD (n = 3 MDR-E isolates) and oqxA and B (n = 5 MDR-E isolates) also were detected
(Table 2). The armA, rmtA and rmtB genes, implicated in resistance to aminoglycosides,
were not detected.

Table 2. Molecular characterization of Escherichia coli and Klebsiella pneumoniae isolates from outpa-
tients with urinary infection.

Isolate Beta-Lactamases Carbapenemases Phylogroup Sequence Type Resistance to
Quinolones

E. coli13 CTX-M-15+OXA-1 B2 ST-43 qnrB
E. coli7U OXA48 A ST2450
E. coli49 CTX-M-15+OXA-1 B2 ST-43 qnrA
E. coli53 CTX-M-15+OXA-1 B2 ST-43
E. coli48 CTX-M-15+OXA-1 B2 ST-43 qnrA

E. coli56 CTX-M-15+TEM-1,
OXA-1 B2 ST-43
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Table 2. Cont.

Isolate Beta-Lactamases Carbapenemases Phylogroup Sequence Type Resistance to
Quinolones

E. coli95 CTX-M-15+OXA-1 B2 ST-43

E. coli64 CTX-M-15+TEM-1,
OXA-1 B2 ST-43 qnrD

E. coli11 CTX-M-15+TEM-1,
OXA-1 B2 ST-43 qnrC

E. coli24 CTX-M-15+OXA-1 B2 ST-43 qnrC
E. coli43 CTX-M-15+OXA-1 B2 ST53 qnrD
E. coli55 CTX-M-15+OXA-1 F ST2

E. coli41 CTX-M-15+TEM-1,
OXA-1 B2 ST53 oqxAB

E. coli49 CTX-M-14+OXA-1 D ST829 oqxAB
E. coli58 CTX-M-15+OXA-1 A ST692 qnrC

E. coli95 CTX-M-15+TEM-1,
OXA-1 A ST698 qnrA

E. coli02 CTX-M-14+OXA-1 A ST2 oqxAB

E. coli13 CTX-M-15+TEM-1,
OXA-1 B1 ST954 qnrD

E. coli75 CTX-M-15+OXA-1 A ST690 oqxAB
E. coli98 CTX-M-15+OXA-1 D ST44
E. coli91 CTX-M-15 B2 ST-43
E. coli08 CTX-M-15+TEM-1 D ST44 qnrA
E. coli39 CTX-M-15+OXA-1 B2 ST53 qnrA

E. coli08 CTX-M-15+TEM-1,
OXA-1 B2 ST53

E. coli64 CTX-M-15+OXA-1 B2 ST53

E. coli19 CTX-M-15+TEM-1,
OXA-1 B2 ST53 qnrA

E. coli14 CTX-M-15+TEM-1 F ST2
E. coli78 CTX-M-15+OXA-1 F ST2
E. coli49 CTX-M-15 B2 ST-43
E. coli28 CTX-M-15+OXA-1 B2 ST-43 qnrA
E. coli21 CTX-M-15+OXA-1 B2 ST-43 qnrA
E. coli37 CTX-M-15+OXA-1 B2 ST-43
E. coli28 CTX-M-15+OXA-1 B2 ST-43
E. coli05 CTX-M-15+OXA-1 B2 ST-43 qnrA
E. coli81 CTX-M-15+OXA-1 B2 ST-43

E. coli88 CTX-M-15+TEM-1,
OXA-1 B2 ST-43

E. coli11 CTX-M-15+OXA-1 B2 ST-43

E. coli67 CTX-M-15+TEM-1,
OXA-1 B2 ST-43 qnrA

E. coli32 CTX-M-15+OXA-1 A ST500
E. coli30 CTX-M-15 B1 ST741
E. coli31 CTX-M-15+OXA-1 B1 ST741
E. coli78 CTX-M-15+OXA-1 B1 ST960

E. coli53 CTX-M-15+TEM-1,
OXA-1 B1 ST960

E. coli95 CTX-M-15+OXA-1 B1 ST960
E. coli4U CTX-M-15+OXA-1 OXA48 C ST410
E. coli10 CTX-M-15+OXA-1 A ST692
E. coli54 CTX-M-15+TEM-1 A ST692
E. coli06 CTX-M-15+OXA-1 A ST692
E. coli90 CTX-M-15+OXA-1 A ST692
E. coli30 CTX-M-15+OXA-1 A ST692

E. coli76 CTX-M-15+TEM-1,
OXA-1 A ST692

E. coli 29 CTX-M-15+OXA-1 A ST692
E. coli75 CTX-M-15+OXA-1 A ST692
E. coli90 CTX-M-15+TEM-1 D ST829
E. coli26 CTX-M-15+TEM-1 D ST829
E. coli063 CTX-M-15+TEM-1 E ST244
E. coli63 CTX-M-15+OXA-1 E ST244
E. coli076 CTX-M-15+TEM-1 F ST2
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Table 2. Cont.

Isolate Beta-Lactamases Carbapenemases Phylogroup Sequence Type Resistance to
Quinolones

K.
pneumoniae20 CTX-M-15+ OXA-1 ST592

K.
pneumoniae54 CTX-M-15+ OXA-1 ST464

K.
pneumoniae03 CTX-M-15+TEM-1 ST29

K.
pneumoniae11 CTX-M-15+ OXA-1 ST889

K.
pneumoniae26 ST732 qnrA

K.
pneumoniae43 ST16

K.
pneumoniae13 CTX-M-15+ OXA-1 ST485

K.
pneumoniae710 CTX-M-15+ OXA-1 ST889

K.
pneumoniae50 CTX-M-15+ OXA-1 ST464

2.5. Molecular Epidemiology Typing

The phylogenetic group assignment of the 117 E. coli isolates (n = 59 MDR-E and
n = 58 non-MDR-E) is summarized in Table 3. B2 was the most common phylogenetic
group (21% of MDR-E isolates and 26% of non-MDR-E isolates), followed by A (14% and
12%), B1 (9% and 7%), D (3% and 3%), F (3% and 3%) and E (2% and 2%).

Table 3. Molecular characterization and Phylogenetic Group Assignment of ESBL-EC.

Phylogenetic Group MDR-E
N (%)

non-MDR-E
N (%)

Total ESBL-EC
N (%)

B2 24 (21%) 26 (22%) 50 (43%)
A 16 (14%) 14 (12%) 30 (26%)
B1 10 (9%) 8 (7%) 18 (15%)
D 4 (3%) 4 (3%) 8 (6%)
F 3 (3%) 4 (3%) 7 (6%)
E 2 (2%) 2 (2%) 4 (4%)
Total 59 (5%) 58 (50%) 117 (100%)

The sequence type (ST) for MDR-E E. coli isolates and MDR-E K. pneumoniae isolates is
shown in Table 2.

3. Discussion

Over the last decade, Gram-negative ESBL-E have emerged as serious pathogens
in hospitals and in the community worldwide [15]. As the emergence of ESBL-E varies
in different regions of the world [16], antibiotic resistance must be precisely monitored
to propose empirical treatment policies. The increase of ESBL-E is a heavy burden for
the management of community-acquired UTIs because these isolates are often MDR-E,
increasing the risk of treatment failure [16,17]. In our study, 68 (48%) Enterobacterales
isolates were MDR-E. This is lower than in other studies [18–20], where the MDR-E rate
ranged from 50% to 68.0% and 74.2%. ESBL production was detected in 65 (46%) MDR-
E isolates: 58 (41%) E. coli and 7 (5%) K. pneumoniae isolates. In previous studies, the
ESBL producer rate among isolates from patients with UTI (mainly community-acquired)
was variable: 79% in Lebanon [21], 17% in Egypt [22], 6.7% in Libya [15,23] and 0–2.4%
in Spain [19].

Among the different ESBLs, CTX-M enzymes are the most frequently detected in
different epidemiological settings. The number of reports on community-acquired CTX-
M-producing E. coli strains (disease-causing or colonizers) is on the increase [24]. In this
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study, the predominant ESBL-encoding genes were blaCTX-M (97% of isolates) and blaTEM
(3% of isolates). This is in agreement with other studies showing that the CTX-M type
has replaced the TEM and SHV types in Enterobacterales isolates in several countries,
both in nosocomial and community settings [25,26]. For instance, the CTX-M type was
predominant (71.4%) in isolates from urine in Egypt (urinary and stool samples) [22,27].
The relatively higher frequency of blaCTX-M in community-acquired isolates in our study
is consistent with CTX-M ESBLs originating from environmental bacteria, unlike TEM or
SHV ESBLs [28]. Among the blaCTX-M genes, blaCTX-M-15 was the most frequent (95.4%)
in our study, as previously reported, thus highlighting its global spread by clonally related
E. coli strains [15].

Carbapenems are considered one of the last-line treatments available to treat infections
caused by MDR Gram-negative bacteria. Therefore, the emergence of carbapenemase-
producing Enterobacterales represents a major public health problem [29]. The first reported
OXA-48-producing Enterobacterales isolate was a K. pneumoniae strain isolated in Turkey
in 2001 as the cause of hospital-acquired infections [11]. OXA-48-like enzymes have
been found worldwide in Enterobacterales isolates and have been widely reported as the
source of several hospital outbreaks. Recently, the blaOXA-48 gene has been detected in
community isolates in many countries [29,30]. Here, we identified the first two E. coli
isolates co-producing β-lactamases OXA-48 alone or with CTX-M15 in Djibouti. The first
Algerian community-acquired UTI caused by a K. pneumoniae isolate that co-produced the
β-lactamases OXA-48 and SHV-27 was described in 2017 [31]. In addition, one E. coli isolate
produced the CMY-2 enzyme, which is the most common AmpC in E. coli [32]. The low
frequency of AmpC in UTI-causing E. coli isolates has been reported also in Algeria [33].

This study revealed a relatively high resistance rate to most of the antibiotics tested. Re-
sistance to trimethoprim, sulfamethoxazole/amoxicillin/clavulanic acid and ampicillin was
particularly alarming. This is consistent with findings in Cameroun [34] and Uganda [35].
This may be explained by the easy access to these antibiotics and their massive and uncon-
trolled use in Djibouti. The particularly high resistance rates of our isolates to trimetho-
prim/sulfamethoxazole (cotrimoxazole) could be explained also by other factors specific
to our setting, such as the use of cotrimoxazole for prophylaxis in HIV-infected patients
and the use of the sulfadoxine/pyrimethamine combination, which shares enzymatic tar-
gets with cotrimoxazole, for routine malaria prophylaxis during pregnancy, as previously
suggested by a study carried out in Tunisia [36]. As 73.8% of our isolates were sensitive to
temocillin, this antibiotic could be a good alternative for the management of UTIs caused
by ESBL-E.

In our study, 50.34% of Enterobacterales isolates were resistant to ciprofloxacin and
55.17% to ofloxacin. According to Guessennd et al. [37], three types of genes are involved
in the resistance of Enterobacterales to quinolones: the “qnr” genes, the genes encoding N-
acetyl transferase and the genes encoding the QepA efflux pump. The association of these
genes with β-lactam and aminoglycoside resistance mechanisms can induce resistance
to fluoroquinolones (e.g., ciprofloxacin, ofloxacin). Our resistance rates to ciprofloxacin
and ofloxacin were higher than those reported in other studies (40% for ciprofloxacin
and 9.1% for ofloxacin in Cameroon [34], 26% for ciprofloxacin and 35% for ofloxacin
in Gabon [38] and 13.75% for ciprofloxacin and 17.5% for ofloxacin in Egypt [39]. This
difference could be explained by the first-line use of fluoroquinolones as probabilistic
treatment of community-acquired UTIs in Djibouti [40]. Amikacin (11.27%) was the most
active antibiotic among aminoglycosides. Aminoglycoside resistance was similar to that
reported in Iran (16.7% and 21.8%) [41] and Morocco (8% and 14%) [42]. The apparently
preserved efficacy of aminoglycosides could be explained by their frequent parenteral
administration, which limits their use. Imipenem and fosfomycin also have maintained
excellent activity and could be adopted as therapeutic alternatives. These results are in
agreement with Tunisian [36] and European data [43].

Phylogenetic analysis is important to identify new groups of emerging bacteria. Most
isolates were in the B2 group (43% of isolates), followed by the A (26%), B1 (15%), D (6%),
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F (6%) and E (4%) groups. In other studies [36,44,45] also, the B2 subgroup was the most
common group, especially among CTX-M15-producing E. coli strains. Several studies have
shown that CTX-M-15-producing E. coli are among the most prevalent ESBL-producing
Enterobacterales species [46] and that the worldwide dissemination of ESBL-producing
E. coli is associated with specific clones that harbour a plasmid carrying the blaCTM-X-15
gene. In some African countries, CTX-M-15-producing E. coli belonging to the phylogenetic
groups A and D have been detected in extra-intestinal infections [22,47–51].

4. Materials and Methods
4.1. Study Setting

All consecutive urinary samples from non-hospitalized patients with UTI sent to
the Mer Rouge Medical Biology Laboratory in Djibouti from January to July 2019, were
included in this study. The Mer Rouge Medical Biology Laboratory is the main private
medical microbiology analysis laboratory in Djibouti, the capital city, with a population of
~620,000 inhabitants. In 2019, this laboratory received more than 1560 biological samples,
including 1380 (88.5%) urine samples for microbiology analysis. This study was approved
by the Djiboutian Ministry of Public Health ethics board (No 104/IGSS/2017/MS).

4.2. Specimen Collection, Identification, and Antimicrobial Susceptibility Testing

During the study period, 800 urinary samples were sent to the laboratory for bac-
teriologic investigations. From these urinary specimens, 327 (41%) non-duplicated and
clinically significant bacterial isolates were from outpatients with UTI. Bacterial species were
identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry
(Bruker Daltonics, Bremen, Germany). Antimicrobial susceptibility was tested with the disk
diffusion method on Müller-Hinton agar. The following antibiotics were tested: amoxicillin,
amoxicillin-clavulanic acid, aztreonam, cefepime, cefotaxime, cefpirome, cefpodoxime, cefox-
itin, ceftazidime, cephalothin, moxalactam, piperacillin, piperacillin-tazobactam, ticarcillin,
ticarcillin-clavulanic acid, imipenem, nalidixic acid, ciprofloxacin, levofloxacin, ofloxacin,
amikacin, gentamicin, netilmicin, tobramycin, fosfomycin, chloramphenicol, tetracycline and
trimethoprim-sulfamethoxazole. Results were interpreted according to the European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and clinical breakpoints
(http://www.eucast.org/clinical_breakpoints/ accessed on 27 November 2022). ESBL pro-
duction was detected with the combined double-disk synergy method. In the case of elevated
cephalosporinase production, the combined double-disk synergy test was performed using
cloxacillin-supplemented medium. Ertapenem minimal inhibitory concentrations (MICs)
were determined with the Etest method (bioMérieux, Marcy-l’Etoile, France) carbapenemase-
producing E. coli. Colistin MIC was determined in liquid medium using the UMIC Colistin®

kit (Biocentric, Bandol, France).

4.3. Molecular Identification of ESBLs and Carbapenemases

DNA was extracted from one single colony of each isolate and incubated in 100 mL of
distilled water at 95 ◦C for 10 min, followed by centrifugation. The presence of the blaNDM,
blaOXA48-like, blaGIM, blaPER, blaIMP, blaVIM, blaSPM, blaKPC, blaDIM, blaSIM, blaBIC,
blaAIM, blaVEB, blaCTX-M (CTX-M group 1, 2, 8, 9 and 25), blaTEM, blaSHV and blaOXA-
1-like genes; AmpC-type-producing genes (blaADC, blaFOX, blaMOX, blaDHA, blaCMY
and blaMIR); the aminoglycoside resistance-conferring 16S rRNA methylase genes (armA,
rmtA, rmtB, rmtC and rmtD); and the plasmid-mediated quinolone resistance (PMQR)
genes (qnrA, qnrB, qnrS, qnrC, qnrD, qepA, aac(6′)-Ib-cr and oqxA and B) was assessed by
multiplex PCR using a previously published method [12,13]. DNA samples from reference
ESBL-, carbapenemase-, 16S rRNA methylase- and PMQR-positive strains [52,53] were used
as positive controls. PCR products were visualized by electrophoresis on 1.5% ethidium
bromide-containing agarose gels at 100 V for 90 min. A 100 bp DNA ladder (Promega)
was used as marker size. PCR products were purified using the ExoSAP-IT PCR Product
Clean-up Reagent (GE Healthcare, Piscataway, NJ, USA), and sequenced bidirectionally on a

http://www.eucast.org/clinical_breakpoints/
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3100 ABI Prism Genetic Analyzer (Applied Biosystems). Nucleotide sequence alignment and
analyses were performed online using the BLAST program available at the National Center
for Biotechnology Information (www.ncbi.nlm.nih.gov accessed on 27 November 2022).

4.4. Molecular Epidemiology Typing

To determine the phylogenetic group of E. coli isolates, the new PCR-based method
described by Clermont et al. [54] was used. This method uses modified primers for
chuA, yjaA and TspE4.C2 that eliminate some primer mismatches, and, importantly, allows
distinguishing strains belonging to the phylogroups C, E, F and clade I. Multilocus sequence
typing (MLST) was performed as described in the Institut Pasteur MLST database (http:
//bigsdb.pasteur.fr (accessed on 27 August 2019) for E. coli and K. pneumoniae.

4.5. Statistical Analysis

Statistical analyses were performed with the R software. Different variables were
compared with the Chi-square (χ2) test. Differences were considered statistically significant
at the 0.05 confidence level.

5. Conclusions

Our study demonstrated that ESBLs, CTX-M type and phylogenetic group B2 are
prevalent in community-acquired UTI-causing E. coli isolates in Djibouti. We identified the
first ESBL-E isolates that co-produced CTX-M, OXA-1 and TEM-1 enzymes in Djibouti. The
emergence of strains harbouring several beta-lactamases simultaneously is a major problem.
More studies are needed to monitor the spread of MDR-E in the Djiboutian population.
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