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Multi-scale dynamic imaging reveals that
cooperative motility behaviors promote
efficient predation in bacteria

Sara Rombouts1, Anna Mas 1, Antoine Le Gall1 , Jean-Bernard Fiche1,
Tâm Mignot2 & Marcelo Nollmann 1

Many species, such as fish schools or bird flocks, rely on collective motion to
forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and
moves collectively to prey and feed on other bacterial species. These activities
require two distinct motility machines enabling adventurous (A) and social (S)
gliding, however when and how these mechanisms are used has remained
elusive. Here, we address this long-standing question by applying multiscale
semantic cell trackingduringpredation.We show that: (1) foragers and swarms
can comprise A- and S-motile cells, with single cells exchanging frequently
between these groups; (2) A-motility is critical to ensure the directional
movement of both foragers and swarms; (3) the combined action of A- and
S-motile cells within swarms leads to increased predation efficiencies. These
results challenge the notion that A- and S-motilities are exclusive to foragers
and swarms, and show that these machines act synergistically to enhance
predation efficiency.

Collective movement is employed by many organisms, including fish,
birds, and ants, for the rapid exploration, killing, and predation of local
resources1. Remarkably, multicellular systems also display collective
cell movement to achieve similar goals. For instance, neutrophils
swarming to kill invading microorganisms2–4, amoeba feeding on
bacteria5, andbacterial killing andpredationwithin the gutmicrobiota6

or within natural ecosystems7.
Myxococcus xanthus is a social bacterium that assembles multi-

cellular biofilms to collectively hunt and attack other microorganisms,
including bacteria, fungi, and yeast7–10. To achieve this,M. xanthus cells
glide over solid surfaces by two genetically independent motility
mechanisms8,11. Social (S-)motility pulls cells forwardby extending and
retracting Type IV pili12,13, whereas Adventurous (A-) gliding assembles
a multicomponent focal adhesion engine powered by proton-motive
force to propel the cell14,15. Notably, A- and S-motility mediate distinct
and complementary tasks: A-motility indriving themovementof single
cells at the colony edges (8,11;7–10), and S-motility in promoting the
coordinated movement of cells as large multicellular groups
(swarms)9,10,16. However, beyond these observations, it was not clear

how each system exactly contributes to theMyxococcus lifestyle; what
are the specific roles and added values of these motility systems.
Recently, A-motility and contact-dependent killing were shown to be
necessary for prey colony penetration, suggesting that multiple
motility systems are required for efficient predation. However, the
exact function of S-motility was not determined17.

Here, we investigate the roles of each of these motility mechan-
isms during M. xanthus predation by applying a high-throughput
method to track single prey and predator cells in dense biofilms over
extended periods, with high temporal and spatial resolutions.

Results
Monitoring dynamics of predation at single-cell resolution
To study the dynamics of bacterial predation with single-cell resolu-
tion, we implemented a time-resolved version of bactoHubble, an
imaging-based method that enables visualization of whole bacterial
communities with single-cell resolution18. For this, we built a robotized
microscope able to acquire 3D, multiple-color images of large areas at
diffraction-limited resolutions for long time periods (~hours; Fig. 1a)19.
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Three-dimensional acquisitions enabled correction of axial drift and
compensation of axial deformations in the substrate by adaptive
reprojection, to produce in-focus 2D images (see “Methods” section).
To cope with the high acquisition throughput ーover 10,000 images
per experimentー we implemented a deep learning automatic
semantic segmentation approach coupled to an algorithm that links
cell masks at different times to enable the reconstruction of single-cell
trajectories in 2D over long time periods (~7 h; Fig. 1b; see “Methods”
section). To capture the dynamics of M. xanthus predation at single-
cell resolution, we adapted the classical predation assay of E. coli byM.
xanthus18,20 where these species interact over a 1 cm2 agar surface
directly on a microscope slide (see Predation assay in “Methods” sec-
tion). In these conditions, the invasion process occurs over a single

prey cell layer, allowing identification of single predator and prey cells
at any given stage.

Next, we used a two-pronged approach to retrieve spatial orga-
nization information from the semantic, single-cell segmentation of
prey and predator (Fig. 1c). First, we produced a Voronoi tessellation
based on themiddle points of the backbones of eachM. xanthusmask
(Fig. 1d, see Voronoi tessellation in “Methods” section). Thus, the area
of the polygon associated with each cell mask provided a proxy for
local cell density:M. xanthus cells associated with large Voronoi areas
were relatively isolated from other M. xanthus cells, whereas cells
associated with small Voronoi areas were located in high cell density
regions (Fig. 1d, arrows). Second, we partitioned groups ofM. xanthus
cells into clusters by linking together cells located in close spatial
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proximity (Fig. 1e, see long-range clustering in “Methods” section), and
calculate the number of cells in each cluster and its size. These cluster
statistics were associated with Voronoi local density measurements to
quantify the local environment of each single M. xanthus cell at each
specific time during predation.

By representing each M. xanthus cell by its local density and the
size of the associated cell cluster, we observed that single cells tend to
scatter along an L-shaped, continuous distribution (Fig. 1f and S1a, see
2D histograms in “Methods” section). From this distribution, we
defined three cell classes (Fig. 1f, see classes in “Methods” section). To
verify the validity of this classification, we turned to UniformManifold
Approximation and Projection for Dimension Reduction (UMAP) (see
UMAP Projection in “Methods” section). First, we tested whether local
density or cluster size were sufficient to label cells that were segre-
gated in the UMAP space (Fig. 1g, left and center panel). In fact, neither
of these single parameters was enough as both displayed a continuous
change within the UMAP space. Next, we color-coded each single cell
as either scout, loner or swarm according to our classification that
made use of both local density and cluster size information. In this
case, weobserved that single scout cells clearly segregated from loners
and swarms in the UMAP (Fig. 1g, right panel). The spatial segregation
between loner and swarm cells was incomplete, but loner cells still
occupied a distinct region of the map. The partial overlap between
these two classes is not surprising, as small groups of swarm cells
splitting from a swarm would have similar properties (local density,
cluster size) as loners. The three classes are: (1) scouts which represent
small groups of cells (1-20) isolated from the main colony, typically
localizing ahead of the forefront of the invading wave; (2) swarm cells
which lie within cell clusters and are always closely packed with other
cells; and (3) loners cells which lie close to other cells within the colony
front (see snapshots and trajectories in Fig. 1h, i). We note that while
scouts segregated into a well-defined cluster in the UMAP repre-
sentation (Fig. 1g), loners and swarms displayed a partial overlap.
Nonetheless, changes in the analysis and classification thresholds had
moderate effects on the classification results (Fig. S1b–d). The full
significance of this classification emerges when the behaviors of A- or
S- mutants during E. coli predation are explored.

Loss of S-motility (A+S-) led to colonies with reduced swarm sizes
at the invasion front (Fig. 1j, blue arrow and Fig. S1e), consistent with
the classical result of Hodgkin8. As expected, scouts and loners were

still present in this community (Fig. 1j, red and cyanboxes). In contrast,
loss of A-motility (A-S+) produced communities with large swarms, but
also with scouts and loners (Figs. 1k and S1a,e). This result seems in
contrast to the classical view of A-motility being required to produce
isolated single cells in non-predating conditions9. To understand this
apparent discrepancy,we compared scout trajectories inwild-type and
A-S+ communities. We observed that scouts in A-S+ colonies traveled
considerably shorter distances thanwild-type (Figs. 1l andS1f), which is
expected since Type IV pili allowmovement of cells only if attachment
prey cells are within range21,22. Only comparing populations of motile
cells yielded classes consistent with the view that A-motility is asso-
ciated with exploratory behaviors of single cells (Fig. S1e). Next, we
analyzed the distributions of instantaneous speeds and overall direc-
tionality of movement for scouts in these three conditions (see cal-
culation of speeds and mean squared displacement calculation in
“Methods” section). Notably, A-S+ scouts displayed a marked reduc-
tion in speed (Figs. 1m and S1g), and a reduction in directed motion
counterbalanced by a gain in Brownian and confined movements
(Figs. 1n and S1h). This result is in line with the finding that during
colony expansion single, isolated M. xanthus cells (i.e. scouts/loners)
move only if they carry a complete A-motility system8. We also note
that wild-type scouts reach higher speeds than either A-S+ or A+S-
scouts (Fig. 1m, red arrow). Differences in speed and directionality
between wild type and A-S+ conditions were found statistically sig-
nificant (Fig. S1i, j) and distributions were found robust to the classi-
fication parameters (Fig. S1k–n). All in all, these findings suggest that
A-motility is required to observe motile scouts, however presence of
both motility systems synergistically enhances the speed of wild-type
scouts.

Cells frequently transit from individual to collective states
Next, we explored whether motile cells were able to dynamically
transition between cell classes during predation. For this, we calcu-
lated the Voronoi area and number of cells in a cell cluster to assign
classes following the criteria established above (Fig. 1f). Then we
embedded single-cell trajectories in a space where each cell class was
assigned to a corner of a triangle, thus transitions appeared as the
edges of the triangle (Fig. 2a, see transition analysis in “Methods”
section). Transitions between cell classes occurred very frequently as
many cells changed classes at least once during the time course of the

Fig. 1 |Multiscaledynamic imaging reveals fourdistinct cell classes. aSchematic
of large-scale imaging and semantic segmentation of the predation zone. Scale-
bars = 10 µm. b Example of a single-cell trajectory (yellow line) reconstructed by
connecting segmented cell masks of the same cell (green mask) over time. Scale-
bar = 5 µm. c Example of a semantically segmented large ROI at the predation front
containing the masks for M. xanthus (yellow) and E. coli (blue) (left) Scalebar =
100 µm. The zoomof the boxed area shows single segmented cells in high and low
cell density areas (right). Scalebar = 20 µm. d Voronoi tessellation of a large ROI at
the predation forefront calculated from the middle points of theM. xanthusmask
backbones (left) Scalebar = 100 µm. The zoom of the boxed area shows small
polygon areas forM. xanthus cells in highM. xanthus cell density regions and large
polygon areas for cells in low M. xanthus cell density regions (right). Black arrows
point to examples of isolated and densely packed cells. Scalebar = 20 µm. e Long-
range clustering ofM. xanthus cells in close spatial proximity in a large ROI at the
predation forefront (left). Scalebar = 100 µm. The zoom of the boxed area shows
several cell clusters of various sizes (right) Scalebar = 20 µm. f 2D Voronoi area-
cluster size histogram for wild-type data accumulated from six experimental
replicates (see Fig. S1a for single replicated examples). Red, cyan, and blue boxed
areas correspond to scout, loner, and swarm cell classes, respectively.
g Dimensionality reduction analysis of cluster size and Voronoi area parameters
with UMAP. Left, middle, and right panels represent aggregated single cells data
points color-coded with cluster size, Voronoi area values or classes as defined by
our criteria, respectively. h Examples of single cells masks color-coded with cell
classes in wild-type conditions. Escherichia coli cell masks are grey, M. xanthus
scouts, loners, and swarms are colored in red, cyan, andblue, respectively. Scalebar

is 10 µm. i Spatial occupation of scout, loner and swarm trajectories for wild type at
the predation forefront. The yellow line delimitates the predation front, the green
arrow indicates the direction in whichM. xanthus predator cells move through the
prey colony (predation direction). Scalebars = 100 µm. Magnified image on the
bottom right shows long scouts trajectories (Scalebar = 15 µm). j 2D Voronoi area-
cluster size histogram for A-motile cells (A+S-) data accumulated from four
experimental replicates (see Fig. S1a for single replicate examples). Blue arrow
highlights the absence of density for large swarms. k 2D Voronoi area-cluster size
histogram for S-motile cells (A-S+) data accumulated from four experimental
replicates (see Fig. S1a for single replicate examples). l Histogram of gyration radii
of scouts cells trajectories in wild type, A-motile (A+S-) and S-motile (A-S+) com-
munities. Shaded areas highlight the standard deviations from themean (solid line)
of six experimental replicates for the wild-type and four replicates for eachmutant
strains.mHistogramof instantaneous speedof scouts cells inwild type, A-motile (A
+S-) and S-motile (A-S+) communities. Shaded areas highlight the standard devia-
tions from themean (solid line) of six experimental replicates for the wild-type and
four replicates for each mutant strains (see Fig. S1g for single replicate examples).
Red arrowpoints to speed values only reached by wild-type cells with bothmotility
systems. n Histogram of movement directionality of scouts cells in wild type,
A-motile (A+S-) and S-motile (A-S+) communities with directionality lower than 1
being confined motion, equal to 1 being Brownian motion and larger than 1 being
directed motion. Shaded areas highlight the standard deviations from the mean
(solid line) of six experimental replicates for the wild-type and four replicates for
each mutant strains (see Fig. S1h for single replicate examples).
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experiment (Fig. 2b). These state transitions could be readily detected
in single-cell trajectories (Fig. 2c, left panels). To determine which
transitions were most common, we overlapped thousands of single-
cell trajectories within the same diagram (Fig. 2c, middle panel).
Notably, transitions between classes were very common, and themost
common route to becoming scouts typically involved cells in swarms
transitioning through a lone state (Fig. 2c, middle panel).

To quantify the relative transition frequencies and to determine
whether transitions were symmetric, we calculated the state transition
probabilities (Fig. 2c, right panel). Remarkably, forward and reverse
transitions between states were equally probable, ensuring constant
steady-state populations over our acquisition time. Importantly, state
transitions were also frequent and symmetric in communities lacking
A- or S-motility (Figs. 2d, e and S2a–c), thus the ability of cells to
transition back and forth between states did not seem to depend on
eithermotility system. The kinetic rates to and from scout cells in A-S+
communities were lower than for wild-type, indicating that these
transitions are enhanced by A-motile cells. This is consistent withmore
frequent transitions to and from scouts in A+S- cells. Overall, these
results show that transitions between cell classes are frequent and bi-
directional, enabling cells to dynamically change their role within the
community and ensuring that cell groups remainpopulated during the
advancement of the predation wave. These findings prompted us to
investigate whether A- and S-motile cells strictly segregate according
to specific cell classes (i.e. scouts and swarms), given that A- and
S-motilities have been previously associated with the movement of
scouts and swarms, respectively.

A-motile cells are present in all cell classes and are required to
drive collective cell movement
To first address this issue, we imaged AglZ, an integral component of
the Agl-Glt machinery that assembles as polar clusters in A-motile
cells14,15 in wild-type M. xanthus. As expected, small groups of cells
often displayed polar AglZ clusters (Fig. 3a, green circles, see AglZ foci
detection in “Methods” section), consistent with our result that scout
movement requires A-motility (Fig. 1l, m). Surprisingly, however, large
groups of cells also frequently displayed polar AglZ clusters (Fig. 3b,
green circles). Thus, these results suggest that both A- and S-motile
cells may be present within scouts and swarm groups.

To further test this hypothesis, we simultaneously imaged A- and
S-motile cells within scout and swarm groups during predation. For
this, wemixed cultures ofmCherry-labeled A+S- cells with GFP-labeled
A-S+ cells, spotted them together, and imaged them using two-color
microscopy (see Predation assays in “Methods” section). Both motility
mutantsmoved together away from the spotting site to reach the prey,
indicating that both A+S- and A-S+ cells travel together over long dis-
tances (Fig. 3c). Notably, A+S- and A-S+ cells thoroughly intermingled
both in small (i.e. loners, scouts) and large cell groups (i.e. swarms;
Fig. 3c). Thus, these observations indicate that S-motile cells can often
intermingle with A-motile cells in scout groups, and that A-motility
may not only be used by isolated cells away from the forefront, but
may also play a role in collective cell movements.

We tested these hypotheses by a multi-pronged approach. First,
we monitored whether A-motility and S-motility mutants induced
changes in motile cell populations by subtracting the density/cluster-
size histograms of pure cultures of A-S+ and A+S- communities by that
of wild-type communities (Fig. 3d, e, see Two-dimensional histograms
in “Methods” section). Interestingly, the removal of A-motility led to an
overall reduction in the accessible Voronoi area for both scouts and
swarms (Fig. 3d), thus collective cell groups tend to remain closer to
one another in absence of A-motility. Conversely, upon removal of S-
motility, both individual and collective cell groupsdispersed tooccupy
larger accessible Voronoi areas away from the community forefront,
while cohesive populations decreased in density (Fig. 3e). These
results, therefore, support a model where A-motility is associated with
exploratory behaviors in scouts and swarms while S-motility is asso-
ciated with the cohesion of cell groups.

Secondly, we investigated the functional role of A-motility in the
movement of swarms by quantifying their instantaneous speed dis-
tributions in wild-type and mutant communities. Remarkably, the
removal of A-motility led to a large decrease in instantaneous swarm
speeds (Figs. 3f and S3a). Interestingly, removal of S-motility only had
an effect on the high instantaneous speeds of cells within swarms,
suggesting that A-motility is sufficient to drive the movement of col-
lective groups but may be synergistically enhanced when combined
with S-motility. Differences in speed between wild type and A-S+
conditions were found statistically significant (Fig. S3b) and swarm
speed distributions were found robust to the classification parameters

Fig. 2 | Cells frequently transit from individual to collective states. a Schematic
line plot of cell class transitions observed in a single-cell trajectory. bHistogram of
number of motile cells transitions per trajectory for wild-type data accumulated
from six experimental replicates. c Single-cell transitions of motile cells for wild-
type data accumulated from six experimental replicates. Left: examples of state

transitions occurring in single-cell trajectories of wild-type cells. Track IDs are
indicated in each example. Middle: overlay of state transitions from all trajectories.
Right: state transition probabilities between classes. “n” represents the total num-
ber of tracks. d, e Same representations as in c but for S-motile (A-S+) cells (d) and
A-motile (A+S-) cells (e).
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(Fig. S3c, d). All in all, these results suggest that A-motile cells inter-
mingle with S-motile cells and play a functional role in the collective
movement of all cell populations.

A-motile cells drive the ability of multicellular groups to follow
trails deposited by scouts
To study the role of A-motility in the directional movement of collec-
tive cell groups, we analyzed whether swarms followed the movement

of scouts during colony invasion. Strikingly, the path taken by scouts
was followed by other cells, and increased in width as larger groups of
cells passed over it (Fig. 4a). To quantify this behavior, we segmented
the trails left by scouts (Figs. 4b and S4a, left) and those left by swarms
(Figs. 4b and S4a, middle) ahead of the predation front, and calculated
their similarity index (SI) map (see similarity index map in “Methods”
section). The SI map is close to zero where scouts and swarms follow
different paths and close to unity where their paths overlap spatially.
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Notably, we observed that swarms tended to follow the trails left by
scouts over the whole predation front (Figs. 4b and S4a).

Next, we tested the role of A-motility in this process by exploring
the ability of swarms to follow scouts in an A-S+ community within the
active exploration region. Notably, the number and length of over-
lapping trailsweredramatically reduced in these communities (Figs. 4c
and S4b). In contrast, A+S- cells displayed similar trails to wild-type
(Figs. 4d and S4c). These results can be quantified by calculating the
histogram of similarity track sizes for these three communities
(Figs. 4e and S4d). This analysis clearly showed a drastic decrease in
the number of common trails for all trail lengths for the A-S+ com-
munity. All in all, these results show that A-motility is required for the
ability of swarms to follow the trails of scouts, consistent with previous
reports23–26.

To investigate whether swarms were able to follow trails within
the active predation region behind the predation front, we built a map
where single-cell trajectories of all cell groups were overlapped and
color-coded by time (Fig. 4f and S4e, see trail maps in “Methods”
section). In these maps, trails are represented by regions displaying
overlapping tracks of different colors. As in our previous analysis, trails
are observed not only within the exploration zone but also within the
predation region, occupied primarily by swarms. From these analyses,
we conclude that trails left by scouts are widely followed by swarms
during prey invasion and predation.

To determine whether formation of trails within the predation
region requires A- or S-motilities, we constructed time-colored trail
maps for A-S+ and A+S- communities (Figs. 4g, h and S4f, g). Notably,
tracks did not overlap within the predation zone in A-S+ communities,
consistent with the formation and use of trails within the predation
zone requiring A-motility. In contrast, we observed overlapping tracks
in A+S- communities that appeared narrower than in wild-type condi-
tions, likely due to the reduction of swarm group sizes. We quantified
these observations by calculating the distribution of swarm direc-
tionalities for wild-type, A-S+ and A+S- communities (Figs. 4i and S4h),
and observed that loss of A-motility led to less directed and more
confined/Brownianmotion. Differences in directionality betweenwild-
type and A-S+ conditions were found statistically significant (Fig. S4i)
and directionality contributions were robust to the classification
parameters (Fig. S4j, k). Overall, these results indicate that A-motility is
required to lay trails and to promote the directional movement of
multicellular groups at the community front, while S-motility plays a
role in strengthening their cohesion. However, it is unclear whether
and how the presence of both motility mechanisms contributes to
efficient predation, which could explain why these two systems are
concurrently maintained during evolution.

Efficient predation requires the action of A- and S-motile cells
To address this issue, we monitored prey lysis during the predation
process by exploiting the ability of our method to perform semantic
segmentation over large areas and extended time periods. From the
semantic segmentation, we defined the ‘invaded zone’ as the region
occupied partially or totally byM. xanthus during our acquisition time,
and the ‘safe zone’ as the region not yet reached by M. xanthus cells
(Fig. 5a, right panel). Inspection of the raw fluorescence images of E.

coli further revealed that effective prey lysis does not occur homo-
geneously over the invaded zone, but is more pronounced behind the
invasion front (hereafter ‘predation zone’, see Fig. 5b, right panel). To
quantify this observation, we computed the ratiomap between the last
and the first images, using both the E. coli and M. xanthus raw fluor-
escence images (Fig. 5c, d). The E. colimap exhibits a large decrease in
E. coli fluorescence signal within the invaded zone (Fig. 5c), while the
M. xanthus map clearly shows the progression of the scouts and
swarms fronts over the course of the acquisition (Fig. 5d). Notably,
prey lysis is low within the scouting front, but is instead severe within
the region occupied by swarms (Fig. 5d right panel). These observa-
tions suggest that swarms may play a key role in prey lysis.

To obtain a more accurate estimation of prey lysis, we quantified
the integrated fluorescence signal of the prey within the predation and
safe zones over time (Fig. 5e, see prey consumption in “Methods”
section). The integrated normalized prey fluorescence decreased
slightly and monotonically over time within the safe zone due to
photobleaching. Notably, the reduction in total normalized fluores-
cence was dramatically faster within the predation zone where most
preywas lysed (Fig. 5e).We note that whilewild-type communities lyse
the overwhelmingmajority of prey (Fig. 5b), the relative degree of lysis
candependon the densities and spatial distributions ofM. xanthus and
E. coli.

To investigate the roles of A- and S- motility in predation, we
performed similar analysis and quantification for A-S+ and A+S- com-
munities (Fig. S5a–d). The absence of A-motile cells led to a marked
reduction in the predation ability ofM. xanthus (Fig. 5f, h), likely linked
to the reduced ability of this community to move directionally, effi-
ciently explore aheadof the predationzone, and formand follow trails.
We note that the requirement of A-motility could bemorepronounced
depending on the density of the prey. In conditions when E. coli was
grown to confluence, A-motility was essential for prey penetration17.
Notably, we observed that A+S- communities lyse prey cells at a rate
considerably lower than either wild-type or A-S+ communities (Fig. 5g,
h). This suggests that S-motile cells within swarms contribute to the
predation efficiency of wild-type communities, presumably by the
principle of mass action. These results highlight the need for both A-
and S-motility systems for efficient predation.

Discussion
The ability ofM. xanthus to glide on solid surfaces relies on twodistinct
and genetically independent molecular machines that could be alter-
natively used to adapt to the mechanical properties of the substrate27.
Since the discovery and first microscopic characterization of M. xan-
thus movement, A- and S-motile cells were thought to segregate spa-
tially and to behave in two distinct manners: A-motile cells moving in
isolation ahead of the invasion front acting as foragers searching for
nutrients, and S-motile cells assembling large collective cell groups at
the rear by promoting social interactions9. In contrast, our data show
that S-motility mutants (A-motile cells) and A-motility mutants (S-
motile cells) intermingle together within collective cell groups. Thus,
A- and S-motile cells are not necessarily spatially segregated during
predation, challenging the current view that A-motility is solely
attributed to the movement of individual cells and S-motility to the

Fig. 3 | A-motile cells mix with S-motile cells in all population classes.
a,b Fluorescence images of A-motility complexes (WTAglZ-NeonGreen) in isolated
cells (a) or in groups of cells (b) at the predation front. Green circles highlight
automatically detected AglZ-clusters in single cells. Two experiments were repe-
ated independently with similar results. Scalebar = 10 µm. c Left panel: migration of
a 50/50mixed community of A-motile (A+S-) (outer-membrane-mCherry, red) and
S-motile (A-S+) (outer-membrane-sfGFP, green) cells at the predation front towards
E. colimicro-colonies (top left, bright field). Scalebar = 10 µm. Middle and right
panels: zoomed-in images of a 50/50 mixed community of A-motile (A+S-) and
S-motile (A-S+) showing isolated A- and S- motility cells (left) and A- and S- motility

collective groups (right). Three experiments were repeated independently with
similar results. d, e Difference of A-S+ (Fig. 3d) and A+S- (Fig. 3e) with wild-type
normalized 2D Voronoi area-cluster size histograms of motile cells. To account for
motile cells only, histograms of Fig. 1f, j, k were thresholded for normalized dis-
tance higher than 2 pixels/track length. Schemes depict the distribution of M.
xanthus cells (green) towards E. coli (gray). fHistograms of instantaneous speed of
swarm cells in wild type, A-motile (A+S-) and S-motile (A-S+) communities. Shaded
areas highlight the standard deviations from the mean (solid line) of six experi-
mental replicates for the wild-type and four replicates for each mutant strains (see
Fig. S3a for single replicate examples).
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Fig. 4 | A-motile cells drive collective cell movement along trails. a Example of
scout cells (red line) traveling away from an E. coli island (bright field) followed by
swarms (purple lines). b–d Trail maps of scout (left) and swarm (middle) cells and
similarity indexmap (right) forwild type (b), A-S+ (c), andA+S- cells (d). Yellow lines
delimitate the predation front. Scalebars = 100 µm. Scalebars of zoomed areas =
20 µm. eHistogram of the length of overlapping tracks (Similarity track length) for
wild type, A-S+ and A+S-. Shaded areas highlight the standard deviations from the
mean (solid line) of six experimental replicates for the wild-type and four replicates
for eachmutant strains (see Fig. S4d for single replicate examples). f–hOverlays of

all trajectories forwild type (f), S-motile (A-S+) cells (g), andA-motile (A+S-) cells (h)
color-coded by time. Green arrows indicate the predation direction, yellow lines
delimitate the predation front. White arrows in the zoom of the boxed areas point
to examples of trails. i Histogram of movement directionality of swarm cell classes
for wild type, A-motile (A+S-) and S-motile (A-S+) communities with directionality
lower than 1 being confined motion, equal to 1 being Brownian motion and higher
than 1 being directedmotion. Shaded areas highlight the standard deviations from
the mean (solid line) of six experimental replicates for the wild type and four
replicates for each mutant strains (see Fig. S4h for single replicate examples).
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movement of collective groups. Our data rather show that A-motility
reinforces the exploratory behavior of both individual and collective
groups while S-motility reinforces the cohesion of collective groups
whichmay prompt whether the twomotility engines are exclusively or
concurrently activated in each individual cell.

Remarkably, individual cells can frequently merge into, or split
from collective cell groups, highlighting the plasticity and highly
dynamic behavior of M. xanthus cells during predation. This finding
suggests that collective cell groups are not pre-assembled and that
there is likely a lowenergetic barrier for group fusionor splitting. Thus,

Fig. 5 | A- or S-motility mutations affect predation efficiency. a Predation over
time at the forefront visualizedwith semantically segmented images containing the
masks forM. xanthus (green) and E. coli (white). Two zones were defined: (i) where
no invasion occurred (orange area) and (ii) whereM. xanthus cells invaded E. coli
(Invaded zone). Scalebars = 100 µm. b Total raw fluorescence signal from E. coli
cells over time. Orange and blue boxed areas highlight the safe zone, where no
predation occurred and the predation zone, where active predation is occurring,
respectively. Scalebars = 100 µm. c Ratio of the last to the first image of the E. coli
HU-mCherry raw fluorescence. Black and gray dashed lines represent a visual guide
to the front of swarm and scout cell populations, respectively. Colorbar: blue
represents regionswhereE. colicellswerekilled.d Sameasc but forM. xanthusOM-
sfGFP. The right panel represents an overlay of the rawHU-mCherry images from E.

coli and OM-sfGFP from M. xanthus corresponding to the ROI represented by a
purple square in the left image and in panel c. Colorbar: red represents regionswith
an enrichment inM. xanthus cells in the last time point, whereas blue regions
represent depletion ofM.xanthus cells. e–gQuantification of the totalfluorescence
signal from E. coli cells over time in the safe and predation zones for wild type (e),
S-motile (A-S+) (f), and A-motile (A+S-) (g) predators. h Box plot summary of total
fluorescence decay time from E. coli cells in the safe and predation zones (orange
and blue shaded boxes, respectively) from six experimental replicates for the wild-
type and four replicates for each mutant strains. Boxes show the median and the
interquartile range, while whiskers represent theminimum andmaximum values in
the datasets. The statisticswere calculatedusing a two-sided t-test. p-valueswere as
follows: A-S+ vs A+S- = 1.10−1. A-S+ vs wild type = 3 × 10−2. A+S- vs wild type= 3 × 10−3.
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groups can bemade or unmade depending on the local environmental
conditions to provide flexibility and adaptation. Interestingly, the
transition frequencies between collective cell groups were in all cases
symmetric, ensuring the long-term equilibrium of the system. This
equilibrium may be perturbed to respond to local changes in prey
distribution, providing another avenue for adaptation. Importantly,
the removal of either motility apparatus did not change the ability of
collective groups to fuse or split, but rather the transition frequencies
and their final proportions. Thus, fine-tuning transition frequencies
would provide a means to rapidly change the relative proportions of
collective cell groups to adapt to the local ecosystem and its spatial
organization. We hypothesize that this fine-tuning may involve mod-
ulation of reversal frequencies.

In non-predating conditions, A-motile cells secrete a slime trail
that can become a preferred path for other cells23–26. Our data show
that during active predation, trajectories of scout and swarm cells
frequently overlap in space, suggesting that cues left by scouts are very
local. Interestingly, these trajectories are revisited several times over
long time periods (>hours), suggesting that these cues persist over
time or are reinforced by successive passages. Thus, A-motility seems
necessary for defining and encoding spatial memory cues on how to
best explore the foraging space on the predation front. This con-
solidation and reuse of existing trails (guided by extracellular matrix
components) could increase foraging efficiency and prey consump-
tion, a process termed stigmergy26,28. In addition, our data show that
wild-type swarms contain A-motile cells, and that swarms of A-motility
mutants display perturbed speeds and directionality. Thus, A-motile
cells within swarms potentially contribute to the directionality of
swarms to provide the ability to navigate without a centralized
system29 which is known to increase the robustness and efficiency of
reaching a target in biological30 and in autonomous driving systems29.
Future research, however, will be required to elucidate if and how
A-motile cells may guide collective groups31.

We are aware that the spatial organization of the prey community
is likely to modulate the relative roles of A- and S-motilities during
predation. For instance, A-motility may be more determinant than
S-motility in close-knit prey communities, as the ability to penetrate
the outerwall of these communities depends acutely onA-motility and
contact-dependent killing17. Our data further reveal that after the first
step of prey colony invasion by the scouts, the bulk of predation is
performed by large groups of cells. Thus, the presence of cells with
both motility systems in all collective cell groups enhances the ability
ofM. xanthus to adapt to the varying spatial organization and diversity
of prey encountered in natural ecosystems.

Earlier studies established that A- and S-motilities enable M. xan-
thus to move on a wider range of substrates, suggesting that both
machines may be needed to provide flexibility and adaptation to the
physical properties of the local environment27. This arguably minor
fitness gain may appear as insufficient to outweigh the evolutionary
burden of simultaneously maintaining both motility machines. Our
results, however, show that A- and S- motile cells work in unison to
improve the efficiency of prey exploration and invasion and to lead to
more efficient predation. We envision that the collective movement of
A- and S-motile cells may enable M. xanthus communities to adapt
their strategy to the defense and attack mechanisms of competing
communities. All in all, these fitness advantages may largely outweigh
the evolutionary costs associated with maintaining both motility
systems.

Methods
Predation assays
Bacterial predation was established in laboratory conditions by setting
up a predation assay as described in Rombouts et al.19. E. coli and M.
xanthus cells were harvested from LB and CYE media, respectively.
Next, cells were concentrated for 5min at room temperature and

resuspended in CF medium (10mM MOPS (pH 7.6), 1mM KH2PO4,
8mMMgSO4, 0.02% (NH4)2SO4, 0.2% sodiumcitrate, and0.015%bacto
casitone peptone).M. xanthus cells were concentrated to an OD600 of
5, E.coli cells to anOD600 of 0.005. 1 µl cell suspensionswere spotted at
a distance of ~1mm on CF 1.5% agar pads made with ultrapure agar
(UltraPure Agarose 1000, Invitrogen). Predation assays were then
placed onto a layer of CF 1.5% agar in a petri dish closed with parafilm
to avoid agar pad evaporation and drying. Samples were incubated
from 24h to 48 h at 32 °C to allowM. xanthus cells to invade the E. coli
colony. The list of strains used in this study can be found in Supple-
mentary Table 1.

Microscopy/fast time-lapse imaging
Fast time-lapse and hubble imaging was performed as described in
Rombouts et al.19. In short, the predation assay sample was covered
with an imaging coverslip and placed on a homemade fully-
automated hardware-accelerated wide-field epifluorescence micro-
scope built on a RAMM modular microscope system. A region of
interest spanning an area of ~0.36mm² was imaged through a ×60,
1.2NA objective by constructing a mosaic patchwork of 3 by 3 fields
of view (FOVs) each of 2048 × 2048 pixels, overlapping by 200 pixels
(1 pixel corresponding to 106 nm at the sample plane). Following a
snake-like pattern, 3D stacks in the brightfield and fluorescence
channels were acquired for each FOV (Exposure time of 50ms) of the
mosaic. By repeating this snake-like acquisition, an hours-long time-
lapse series of the mosaic area could be captured. Generally, 700
time points were collected, each interspaced with 35–40 s. Robust
acquisition of thousands of three-dimensional multicolor micro-
scopy images was automated using Qudi-HiM, a modular software
package written in Python32.

Treatment of fast time lapse data
As described in Rombouts et al.19, the DCIMG image files were con-
verted and sorted into tiff files with software from Hamamatsu. Tiff
images of the fluorescent channel of E.coli were deconvolved with
Huygens Professional version 20.04 (Scientific Volume Imaging, the
Netherlands, https://svi.nl/). Deconvolved E. coli stacks were
z-projected by calculating the standarddeviation. 3D brightfield stacks
were converted to 2D images by dividing each stack in 16 ROIs of
512×512 pixels, selecting automatically or manually the in-focus plane
for each ROI and restitching the 16 ROIs (im_straighter.m or
im_straighter_manual.m). 2D brightfield and E. coli fluorescence ima-
ges were used as input for an in-house developedMATLAB code using
a convolutional neural network with U-Net architecture for semantic
segmentation (segment.m).

Segmented images were then used to reconstruct the mosaic
image by tiling the 9 FOVs. The precise overlap between FOVs for
tilling was calculated by image-based pixel-resolution cross-
correlation (tile_calculation.py). Drift in time was corrected by align-
ing the mosaic images based on cross-correlation calculated from
segmented images of stationary E. coli microcolonies (mosaic_-
drift_correction.py). M. xanthus segments were binarized and post-
processing of E. coli masks ensured that there was no spatial overlap
between E. coli and M. xanthus masks (builds_mosaic.m).

Single-cell tracking
Single-cell trajectories were reconstructed with an in-house devel-
oped MATLAB pipeline (tracking.m). In short, pairwise tracks
between M. xanthus cell masks in consecutive time points were
reconstructed based on several mask parameters, such as cell area,
cell length, and mask overlap area. The Analytical Hierarchy
Approach was used to perform this task in densely populated
regions where multiple masks could be linked. At last, pairwise
tracks over all time points were linked together to reconstruct the
full-length single-cell trajectories.
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Mean squared displacement calculation
To characterize directionality of bacterial movement, individual bac-
terial trajectories were analyzed with the Python trackpy package. For
each track, theMean Squared Displacement (MSD) was computed and
the five first-time points were fitted with a power law. The resulting
scaling exponent, alpha, was used to characterize the directionality of
bacterial movement (from confined with alpha<1, brownian with
alpha=1, to directed with alpha>1). Negative directionality indicates a
decreasing displacement-time relationship, which can occur due to
hindrance or confinement of cell movement. However, negative
exponents should be interpreted cautiously as they can result from
fitting limitations, artifacts, or tracking issues, and may not have sig-
nificant biological meaning. The code used to calculate the MSD
(002_Myxo_trackpy.py) can be found in the bacto_tracker repository.

Calculation of gyration radii
Gyration radiiwere calculatedby computing the center ofmassof each
trajectory and then quantifying the average distance of each point in
the trajectory from the center of mass.

Calculation of cell speeds
Instantaneous cell speeds were calculated using the straight distance
traveled in the five frames before and five frames after a given time
point, normalized by the time between 10 frames. The code used to
calculate speed (004_matfiles_to_dataframe.py) can be found in the
bacto_tracker repository.

Voronoi tessellation
Tomeasure the local density ofM. xanthus cells, a Voronoi tessellation
was performed with the Voronoi function of MATLAB. The Voronoi
tessellationwas calculatedon the centers of thebackbones of allmasks
that were included for tracking. Centers of gravity of the masks that
were filtered for tortuosity and mask fusion based on branch points
were included as well. For masks that contained a branchpoint in their
backbone, the branchpoint was deleted, essentially breaking up the
backbone. The centers of the newly generated backbones were cal-
culated and included for the tessellation. For masks filtered out for
tortuosity, the backbones’ centers were also calculated and included
for the tessellation. The inverse of the area of the polygon to which the
mask belongs was used as a measure for local density, with large
polygon areas for low cell density and small polygon areas for high cell
density. The code used to calculate the local density ofM. xanthus cells
(function_Voronoi_backbone_OverlapFlag.m) can be found in the
bacto_tracker repository.

Long-range clustering
Long-range clustering of cells was performedby dilating the binary cell
masks of Myxococcus xanthus cells using a 10 × 10 pixels kernel
(~1 × 1 µm). Then, merged cell masks were identified as clusters using
the regionprops module of the skimage package in Python. For each
identified cluster, its sizewasmeasured as the area coveredby the non-
dilated cell masks comprising each cluster and the number of cells per
cluster was determined by dividing the total area of the cluster by the
average area of a single cell. This approach was chosen to mitigate
errors in single-cell segmentation, particularly in cases involving large
groups of cells densely packed together. However, due to the het-
erogeneity in cell size, non-integer values occasionally arise for the
number of cells per cluster, resulting in the absence of partial dis-
cretization along the x-axis of the histograms of Figs. 1f, j, k and 3d, e.
The code used to perform long-range clustering (003_multi-
scale_segmentation.py) can be found in the bacto_tracker repository.

Classes
Bacterial populations were categorized into three groups: loners,
scouts, and swarms. Two criteria were used to determine the group to

whicha cell belongs to at each timepoint in the time-lapse: theVoronoi
cell density, V, and the number of cells per cluster, N. For loners:
log10(V) ≤ 4.5 and N ≤ 2; for scouts: log10(V) ≥ 4.5 and N ≤ 20; and for
swarms: log10(V) ≤ 4.5 and 2 <N. For histogramsofmotile cells only, an
additional criterion was used to select cells with an end-to-end track
displacement higher than 2 pixels.

Two-dimensional histograms
Two-dimensional data points histograms were computed using the
Python Datashader package, with canvas mapping data to pixels as
points. Histograms in Fig. 1 correspond to the mean of normalized
histograms for each experimental condition (single experiments his-
tograms are shown in Fig. S1). For histogram differences in Fig. 3, the
normalized mean histograms of each condition were subtracted by
taking the difference between the corresponding bins of the two his-
tograms. The code used to reproduce the histograms in Figs. 1 and 3
(Figure_1FHI_3DE.py) can be found in the bacto_tracker repository.

UMAP projection
Uniform Manifold Approximation and Projection (UMAP) was
employed for dimensionality reduction and visualization33. A normal-
ization step was performed on the input local density and cluster size
features using the StandardScaler from scikit-learn. The UMAP algo-
rithm was executed using a Number of Neighbors of 100 and a Mini-
mum Distance of 0. UMAP’s default values were used for other
parameters, such as the distancemetric (Euclidean) and the number of
dimensions in the projected space (2D visualization). The UMAP pro-
jection results were visualized using Datashader. The embedding is
provided at: https://osf.io/kc3sw/

Transition analysis
The transitions between classes were calculated as follows. For each
time point in the trajectories, the class of the cell was previously cal-
culated as scout/loner/swarm. To avoid spurious transitions, a rolling
filter over a 10-frame window was applied on each trajectory to keep
only the most frequent class in the window. For each time point of the
trajectories, the coordinates of the cell are replaced by that of the
corners of a triangle corresponding to one of the three classes, with
Gaussian noise added to reduce the overlap of the tracks. A two-
dimensional histogram of the resulting trajectories is then computed
using the Python package Datashader by summing the set of trajec-
tories for each experimental condition. The code used to compute
transitions between classes (Figure_2CDE.py) can be found in the
bacto_tracker repository.

AglZ foci detection
AglZ foci were automatically detected to highlight the position of AglZ
complexes in single cells. For this, the raw fluorescent z-stacks were
first band pass filtered to remove noise and low spatial frequencies in
single planes, and then a local normalization was applied to equalize
signal strength heterogeneities due to the Gaussian excitation profile.
Finally, the four central images of the z-stack were summed and used
to localize AglZ complexes as diffraction-limited spots using the
DAOStarFinder utility from the Astropy package (https://www.astropy.
org/).

Similarity index map
To quantify the similarity between the trajectories of the scouts and
the rest of the population, the trajectories of the two populations were
split apart to map them on separated 2D arrays. Each array map was
then binarized and used to compute a structural similarity index map
with the Python Scikit-image package (sliding window of three pixels).
Finally, the resulting similarity index map was binarized to extract the
area of eachportionof trajectory sharedby the twopopulations. These
areas of shared trajectories were used to quantify the amount of scout
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trajectories shared with the rest of the bacterial population. The code
used to calculate similarity indexmaps (Figure_4BCD.py) can be found
in the bacto_tracker repository.

Trail maps
Trail maps were computed as two-dimensional histograms using the
Python Datashader package with line canvas mapping data to pixels.
Histograms were computed by projecting all trajectories onto an
5880×5880 grid, aggregating the field of time for each trajectory
coordinate by mean. The code used to calculate trail maps (Figur-
e_1GJ_4BCDFGH.py) can be found in the bacto_tracker repository.

Prey consumption
To quantify the consumption of prey cells by M. xanthus during inva-
sion, the fluorescence of E. coli HU-mCherry was used. For each time
point in the movies, the fluorescence intensity of the central plane of
each z-stack was first normalized by the Gaussian profile of the exci-
tation laser and then projected along the perpendicular direction of
invasion. Themean intensity was then truncated into three equal parts
to quantify E. coli HU-mCherry intensity changes in the portion of the
field of view (FOV) that gets invaded by M. xanthus cells during the
acquisitions (bottom part of the stitched FOV) and in a portion that
does not get invaded during the acquisition (Top part of the stitched
FOV), the central portion not being used. For the bottom and top parts
of the FOV, the mean fluorescence intensity of E. coli HU-mCherry was
quantified for each frame of the movies to characterize the dis-
appearance of E. coli cells over time. The code used to calculate prey
consumption (Figure_5EFG_preprocess.py and Figure_5EFG.py) can be
found in the bacto_tracker repository.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study were deposited at our Open Science
Framework project bacto_tracker with https://doi.org/10.17605/OSF.
IO/UX4H9.

Code availability
The code used for pre-processing, for semantic segmentation, and for
building tracks is accessible at https://github.com/NollmannLab/bacto_
tracker. Networks, example images, and an archived version of bacto_-
tracker can be found at https://osf.io/ux4h9/ under https://doi.org/10.
17605/OSF.IO/UX4H9 (components: UNET networks, Data). The code
used for post-processing and for building the figures in this manuscript
is accessible at Rombouts_et_al (permanent link: https://doi.org/10.
17605/OSF.IO/UX4H9). Data was acquired using qudi-HiM32. The cur-
rent version of qudi-HiM is found at https://github.com/NollmannLab/
qudi-HiM, and an archived version at https://zenodo.org/record/
6379944 (https://doi.org/10.5281/zenodo.6379944). Qudi-HiM has
been added to the RRID database (record ID: SCR_022114).
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