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Abstract: The efficient one-pot halofluorination of a β-enaminophosphonate/β-iminophosphonate
tautomeric mixture resulting in α,α-halofluorinated β-iminophosphonates is reported. Subsequent
imine reduction gave the corresponding β-aminophosphonates as a racemic mixture or with high di-
astereoselectivity. The proposed protocol is the first example of a synthesis of N-inactivated aziridines
substituted by a fluorine and phosphonate moiety on the same carbon atom. Based on spectro-
scopic and theoretical studies, we determined the cis/trans geometry of the resulting fluorinated
aziridine-2-phosphonate. Our procedure, involving the reduction of cis/trans-fluoroaziridine mixture
24, allows us to isolate chiral trans-aziridines 24 as well as cis-aziridines 27 that do not contain a
fluorine atom. We also investigated the influence of the fluorine atom on the reactivity of aziridine
through an acid-catalyzed regioselective ring-opening reaction. The results of DFT calculations, at
the PCM/ωB97x-D/def2-TZVPD level of theory, are in good agreement with the experiments. The
transition states of the SN2 intramolecular cyclization of vicinal haloamines have been modeled.

Keywords: imines; phosphonates; aminophosphonates; halofluorination; aziridine; DFT calculations

1. Introduction

The aziridine motif frequently appears in biologically active compounds [1–7]. There-
fore, this heterocyclic three-membered ring motif also serves as an attractive building block
for organic transformations owing to the strained ring system and its ability to undergo
highly regio- and stereospecific ring-opening reactions [8–18].

Among the commonly encountered substituents in aziridine systems, heteroatoms or
heteroatom-based groups, such as fluorine or phosphonates are of special interest [8,14,19–25].
Incorporating electronegative fluorine atoms in organic molecules often dramatically influ-
ences the physical and biological properties of the parent compounds [26–33]. Furthermore,
the presence of fluorine has been reported to have profound effects on the reactivity of
aziridines and the regioselectivity of ring-opening reactions. For instance, the reaction of N-
substituted 2,2-difluorinated aziridines with aqueous HCl or MeONa in methanol led to α-
chloroacetamides [34,35] or α-methoxyacetamide [34], respectively. The nucleophilic attack
occurs preferentially from the less-hindered side. It is important to note that exposure of
2,2-difluorinated aziridines to moist air results in the formation of α-fluoroacetamides [35].
In contrast, when 2-monofluoro aziridines are subjected to gaseous HCl or sodium methox-
ide, they provides access to 2-chloro-2-fluoroamines or 2,2-dimethoxyethylamine [34]. This
reaction occurs from the ring opening at the more hindered position of aziridine ring. As a
comparison, Konev et al. reported the transformation of 2-fluoro aziridine to fluorinated
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propargyl amines through α-formation of a fluoro imine intermediate [36]. These findings
suggest that fluorinated aziridines, owing to the ring strain and the presence of fluorine
atom, can be regarded as valuable reagents for the synthesis of nitrogen-containing com-
pounds. On the other hand, the presence of a phosphonate function on aziridine also
induces interesting behaviors. 2-Phosphonoaziridine derivatives have been recognized for
their biological properties (Figure 1). The cyanoaziridinylphosphonate A has exhibited
antiproliferative activity (in vitro) against human cancer cell lines derived from human lung
adenocarcinoma (A549 strain, IC50 = 1.5 ± 0.84 µM) [37]. Additionally, N-functionalized
2-phosphonoaziridines B and C displayed moderate activity against the bacteria E. coli, and
Kocuria spp. (Fs24) [38], as well as moderate antifungal activity against C. albicans ATCC
10,231 (MIC 12.5 µg/mL), respectively [39]. In comparison, the aziridynyl 2-phosphonic
acid monoester D is less active than the diester counterparts, and exhibited moderate or low
antibacterial activity against E. coli, K. pneumoniae, A. baumanii, and P. aeruginosa [40]. More-
over, racemic series of 1-alkoxycarbonyl-2-phosphonoaziridine E have also been found to
possess antibacterial activity [41].
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Figure 1. Biologically active aziridinyl phosphonates.

Furthermore, the presence of a phosphonate group attached to the aziridine ring
offers a promising pathway for the synthesis of aminophosphonic acids and their
derivatives [22–24,42–45]. Aminophosphonates structurally and functionally mimic the
amino acids. The tetrahedral phosphonic acid is an effective surrogate of the planar
carboxylic group, making them attractive targets for the development of biologically
active compounds [32,33,46–52].

In a recent study, we successfully achieved the diastereoselective synthesis of fluori-
nated piperidine phosphonates from N-substituted hydroxyphosphonates derived from
proline [53]. The fluorination occurred through an aziridinium intermediate F, and sub-
sequent ring opening, resulting in ring expansion G (Figure 2). The diastereoselectivity
of the deoxyfluorination process appeared to depend on the combination of neighbor-
ing group and bulky phosphonate influences, among other factors. Motivated by these
findings, we decided to apply our protocol [54] to the synthesis of a series of N-substituted α-
halofluorinated aminophosphonates 16–21. Both achiral and optically active aziridinylphos-
phonates 24–26 could be potentially obtained. Additionally, we will form optically enriched
aminophosphonates H through the selective aziridine ring opening (Figure 2).
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2. Results and Discussion
2.1. Synthesis of α,α-Halofluoro-β-aminophosphonates via Reduction of α,α-Halofluoro-
β-iminophosphonates

We initiated the sequence by the condensation of diethyl ß-ketophosphonate 1 with
a series of primary amines, respectively, (S)- and (R)-α-methylbenzylamine (MBn-NH2),
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p-methoxybenzylamine (PMB-NH2), and p-methoxyphenylamine (PMP-NH2). These reac-
tions resulted in a tautomeric mixture of major β-enaminophosphonates (2–5) and minor
β-iminophosphonates (6–9) [54,55]. When p-methoxyphenylamine was used, the ratio of
enamine (Z)/imine (E:Z) 5a/9a,b was 1/0.53 (1:0.1), as determined by 31P NMR. The Z
geometry of β-enamines was confirmed by the chemical shifts and coupling constants JCP
values of C(β) and C(α) signals (δ: 161.6, 2JCP 6 Hz and δ: 82.2, 1JCP 188 Hz, respectively) in
13C NMR spectra. The signals of C=N and an ipso carbon atom (attached to the double bond)
appeared at δ: 160.1, 2JCP equals to 8 Hz and δ: 144.0, 3JCP 2 Hz, respectively, matching
the main E isomer of the imine 9a (Table 1). In a second step, a mild and efficient one-pot
gem-bromo- or gem-chlorofluorination of 2–9 led to the formation of imines (10–11,14a,b
and rac-12–13,15) possessing chiral (S)- or (R)-MBn or non-optically active PMB or PMP
protecting groups (PG).

Table 1. Synthesis of gem-halofluorinated ß-iminophosphonates (10–11,14a,b and rac-12–13,15).
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Entry PG Enamine/Imine Yield [%] Imine X Yield [%]

1 (S)-MBn 2a,b/6a,b 93 a 10a,b Br 92 c

2 (R)-MBn 3a,b/7a,b 91 a 11a,b Br 95 c

3 PMB 4a,b/8a,b 85 a rac-12 Br 94
4 PMP 5a/9a,b 93 b rac-13 Br 87
5 (S)-MBn 2a,b/6a,b 93 a 14a,b Cl 94 c

6 PMB 4a,b/8a,b 85 a rac-15 Cl 91
Reaction conditions: i. 1 (0.5 mmol), PG-NH2 (0.5 mmol), MgSO4, toluene, reflux, 24 h, Dean-Stark; ii. NBS
(0.5 mmol), Selectfluor (0.9 mmol), CH3CN, rt, 15 min or iii. NCS (0.5 mmol), Selectfluor (0.67 mmol), CH3CN, rt,
15 min. a see Ref. [54], b enamine (Z)/imine (E:Z) 1/0.53 (1:0.1) c dr 1:1.

The one-pot gem-bromofluorination or gem-chlorofluorination of crude E/Z enam-
ine/imine (2–5/6–9) mixture was accomplished using Selectfluor and N-bromosuccinimide
(NBS) or N-chlorosuccinimide (NCS) yielding α,α-bromofluoro or α,α-chlorofluoro-β-
iminophosphonates (10–11,14a,b and rac-12–13,15). The reactions, monitored by 31P NMR,
proceeded in yields ranging from 87% for rac-13 to 95% for 11a,b (dr 1:1). The formation of
β-iminophosphonates was established based on NMR experiments and IR spectra. Analysis
of the 19F NMR spectra of 10a and 10b (dr 1:1) presented two doublets corresponding to
the diastereomers at δ: −129.1 and −128.7 (2JFP 82 Hz). The 31P NMR spectra also showed
two doublets at δ: 7.4 and 7.9 with the same coupling constants. Similar signals for the
chlorofluorinated derivative (14a,b dr 1:1) were observed at δ: −125.6 and −125.4 (d, 2JFP
86/87 Hz) in the 19F NMR and at δ: 8.0 and 7.5 in the 31P NMR, respectively. This trend is in
good agreement with differences in chemical shifts observed in brominated or chlorinated
fluoro-organic compounds. [56] Moreover, the C=N bond gave a distinctive doublet of
doublets in the 13C NMR spectra of 10a,b at δ: 164.4/164.6 as a (2JCF 27/28 Hz, 2JCP 6 Hz).
The stretching band at 1648 cm−1 in the IR spectra also confirmed the presence of the C=N
bond. [57] The halogenated β-iminophosphonates (10–11,14a,b and rac-12–13,15) were
formed as a single isomer. Due to steric hindrance between the protecting group (PG),
phosphonate moiety, and bromine/chlorine atom, the resulting geometry of the imine
bond was attributed to the E-isomer and was confirmed by HSQC, HMBC, and 2D NOESY
experiments. For instance, the 2D 1H-1H NOESY experiment of 14a indicated significant
correlations between the proton -CH(CH3)Ph from the (S)-MBn group and the ortho proton
from the phenyl ring located at imine carbon -NC(Ph)CFP (see the Supporting Informa-
tion for details). On the other hand, for α,α-difluorinated β-iminophosphonate analogs,
the through-space interactions of PG (benzylic) protons and one of the fluorine atoms
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indicated the major formation of the Z-stereoisomer [54]. Long-range F-H intramolecular
nonbonding interactions have also been observed in the case of (Z)-N-tetrafluoropropenyl-
uracil/thymine derivatives and α-fluorinated imines [35,58]. Moreover, it is worth noting
that less than 10% of difluoro, dibromo, or dichloro derivatives were also formed during
the reaction. They can be removed by column chromatography. Only in the case of 5a/9a,b
tautomers was it necessary to purify the crude reaction mixture due to the formation of
impurities in the subsequent step.

The obtained α,α-halofluorinated ß-iminophosphonates 10–15 were subsequently used
as precursors for the synthesis of ß-aminophosphonates 16–21 (Scheme 1). Thus, the imine
bond reduction using NaBH3CN in glacial acetic acid resulted in the formation of amines
(16–17, 20a–d and rac-18–19, 21a,b) as a mixture of diastereomers in yields ranging from
91 to 97%. Furthermore, the reduction of 10a,b using LiAlH4 (LAH) led to the formation
of a monofluorinated tautomeric mixture of enamine 22a,b/imine 23a,b [59] in 83% yield
(E-22a/Z-22b ratio 1:0.3; 22a,b/23a,b ratio 1:0.05). This was attributed to the substitution
of the bromine atom in the imine 10a,b by the hydrogen and subsequent tautomerization
to form the enamine 22a,b/imine 23a,b tautomers (Scheme 1). In contrast, De Kimpe et al.
reported that the application of LAH in the reduction of halogenated imines led to reductive
cyclization and the formation of an aziridine ring [60,61].
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addition to the imine C=N bond [54,63–65]. In comparison, the reduction of rac-12–13,15 
which have achiral protecting groups (PMB or PMP) leads to aminophosphonates rac-18–
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a dr ratio ranging from 1:0.7 for rac-18,21a,b to 1:0.88 for rac-19a,b. For the major 
diastereomer, the hydride addition to C=N occurs from the most unhindered side with 
the most electronegative group (F) perpendicular to the imine bond and the system 

Scheme 1. Reduction of α,α-halofluorinated ß-iminophosphonates (10,11,14a,b, rac-12–13,15). Reac-
tion conditions: i. imine (0.5 mmol), NaBH3CN (3 mmol), glacial CH3COOH (3 mmol), MeOH, rt,
40 min. ii. 10a,b (0.3 mmol), LiAlH4 (0.45 mmol), THF, 0 ◦C Õ rt, 60 min.

We observed that the reduction of 10–11,14a,b substituted by the chiral (S) or (R)-
α-methylbenzyl groups resulted in asymmetric induction, yielding aminophosphonates
16–17,20a–d with high diastereoselectivity. The configuration of the new stereogenic C-2-
carbon center strongly depends on a chiral protecting group (C-1′). The favorable hydride
anion attack occurs from the least hindered face of the imine rigidified by an intramolec-
ular hydrogen bond, which according to the Houk model (Figure 3A), yields 16a–d as a
diastereomeric mixture (dr 1:1:0.1:0.07) predominantly containing two major (presumably
1′S, 1R, 2R and 1′S, 1S, 2R) and two minor (1′S, 1S, 2S, and 1′S, 1R, 2S) isomers. The
diastereoselection only depends on steric factors between C-H moiety, which eclipses the
double bond of imine, and the methyl group and phenyl ring derived from the (S)-MBn
protecting group [62]. Transformations of imines containing this particular protecting
group frequently led to asymmetric induction in different types of nucleophilic addition to
the imine C=N bond [54,63–65]. In comparison, the reduction of rac-12–13,15 which have
achiral protecting groups (PMB or PMP) leads to aminophosphonates rac-18–19,21a,b as the
mixture of two diastereomers, with a slight preference for one isomer and a dr ratio ranging
from 1:0.7 for rac-18,21a,b to 1:0.88 for rac-19a,b. For the major diastereomer, the hydride
addition to C=N occurs from the most unhindered side with the most electronegative
group (F) perpendicular to the imine bond and the system stiffened by an intramolecular
H-bond (Figure 3B) [66,67]. Analogous diastereoselectivity has also been observed during
the synthesis of fluorinated epoxy alkylphosphonate from α-fluoro-β-keto alkylphospho-
nates [53]. Based on these data, we temporarily established the stereochemistry of major
18–19,21a as rac 1R, 2R and the minor isomers 18–19,21b as rac 1R,2S (e.g., 1R,2S/1S,2R).
The stereochemical hydride addition to the imine C=N bond, based on the proposed Houk
model (Figure 3A) for 10a,b and the Felkin-Anh model (Figure 3B) for rac-12,13 leading to
major diastereomers is presented on Figure 3.
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To optimize the reduction of imines 10–11,14a,b and rac-12–13,15, various activations
were tested, including organic acid (glacial acetic acid), Lewis acid (anhydrous CeCl3), and
chiral organic acid [(1S)-(+)-camphorsulfonic acid (CSA)]. The yields and diastereomer
ratios of amines 16–17,20a–d, rac-18–19,21a,b, based on 19F and 31P NMR analysis of the
crude reaction mixture are summarized in Table 2. Among the tested conditions, the
combination of sodium cyanoborohydride and acetic acid (entry 1, Table 2) for the imines
10a,b reduction gave the highest yield (97%) of 16a-d, (dr 1:1:0.1:0.07). On the contrary, the
use of BH3

.THF furnished the highest diastereoselectivity with a dr of 1:0.25:ca.0:ca.0 and a
high yield of 91% (entry 4, Table 2). However, changing borane to BH3 × S(CH3)2 resulted
in a drastic decrease in yields to 47% with a dr of 1:0.20:ca.0:ca.0 (entry 5, Table 2). When
rac-12 was reacted with NaBH3CN/HOAc, rac-18a,b was obtained with a predominance
of one diastereomer (dr 1:0.7) and a yield of 97% (entry 8, Table 2). Chiral organic acid
(1S)-(+)-CSA activation gave the amine 83% yield and a dr of 1:0.74 (entry 10, Table 2).
Furthermore, the reaction with Lewis acid CeCl3 and NaBH3CN (entry 9, Table 2) led to
higher diastereoselectivity, yielding rac-18a,b with a dr of 1:0.5 (85% yield). As previously
mentioned, the diastereoselectivity of the E-imine reduction strongly depended on the
nature of the nitrogen-substituent. The hydride addition to rac-13 (PG = 4-methoxyphenyl)
gave a poor selectivity of rac-19a,b with a dr of 1:0.88 (entry 11, Table 2), while higher
diastereoselectivity was observed with the 4-methoxybenzyl (PMB) group, leading to rac-
18a,b with a dr of 1:0.70) (entry 8, Table 2). Moreover, replacing the bromine atom by a
chlorine atom (14a,b, rac-15) did not significantly affect the yields nor diastereomeric ratios
(entry 12–13, Table 2).

Table 2. Reduction of imines (10,11,14a,b and rac-12–13,15).

Entry X PG Imine Reductor Yield [%] Amine dr

1 Br (S)-MBn 10a,b a NaBH3CN/HOAc 97 16a–d 1:1:0.1:0.07
2 Br (S)-MBn 10a,b a NaBH3CN/CeCl3 89 16a–d 1:0.98:0.1:0.06
3 Br (S)-MBn 10a,b a NaBH3CN/(1S)-(+)CSA 86 16a–d 1:1.06:0.1:0.06
4 Br (S)-MBn 10a,b a BH3

.THF 91 16a–d 1:0.25:0:0
5 Br (S)-MBn 10a,b a BH3

.S(CH3)2 47 16a–d 1:0.20:0:0
6 Br (S)-MBn 10a,b a NaBH3CN 0 16a–d -
7 Br (R)-MBn 11a,b a NaBH3CN/HOAc 95 17a–d 1:1:0.1:0.07
8 Br PMB 12 NaBH3CN/HOAc 97 rac–18a,b 1:0.70
9 Br PMB 12 NaBH3CN/CeCl3 85 rac–18a,b 1:0.50

10 Br PMB 12 NaBH3CN/(1S)-(+)CSA 83 rac–18a,b 1:0.74
11 Br PMP 13 NaBH3CN/HOAc 91 rac–19a,b 1:0.88
12 Cl (S)-MBn 14a,b a NaBH3CN/HOAc 95 20a–d 1:1:0.1:0.07
13 Cl PMB 15 NaBH3CN/HOAc 96 rac–21a,b 1:0.70

a dr 1:1.

The diastereoselectivity of reduction was assessed by spectral analysis of products.
The diastereomers of amines 16–17,20a–d, and not chiral (±)-like and (±)-unlike stereoiso-
mers rac-18–19,21a,b were distinguished based on their respective vicinal 3JFH coupling
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constants, which depend on the Karplus equation [56,68]. The β-aminophosphonates
and their acids can exist in CDCl3 in major “frozen” chair-like conformation, due to an
intramolecular hydrogen bonding between the amino group and the phosphoryl group
(Figure 4) [69]. The (±)-unlike isomer (Figure 4A) presented two conformations where the
more stable one presented an anti-periplanar H-F arrangement (3JFH ~20 Hz, Figure 4B),
while the minor one is a gauche-conformation (3JFH ~10 Hz, Figure 4C) [54,56]. By contrast,
the two conformations of the (±)-like isomer (Figure 4D) only presented gauche-orientations
(Figure 4E,F). Furthermore, due to the bulkiness of the phenyl and phosphonate groups
(both likely in anti-position), we attributed the configuration of 16a as 1′S, 1R, 2R and for
16b as 1′S, 1S, 2R, while the major or minor isomers of rac-18-19, 21 were assigned as rac-1R,
2R or rac-1R, 2S, respectively.
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(D) diastereomers. PG = PMB, PMP.

On the other hand, apart from the vicinal H-F coupling constant values between
fluorine and hydrogen nuclei and the [N–H. . ..O=P(OEt)2] hydrogen bond, it was necessary
to take into account the electrostatic interactions between C-F and N-H in relation to the
structure of each conformer.

2.2. Conformational Analysis of α,α-Halofluorinated ß-Aminophosphonates by DFT Calculations

To explain the differences in H-F coupling constants, and to confirm the relative
configuration of stereogenic centers for both β-aminophosphonate diastereomers 16a and
16b, a conformational analysis was conducted using the PCM/ωB97x-D/def2-TZVPD
level of theory. To simplify the calculations, the ethoxy groups were substituted with
methoxy groups, and the PG group was replaced with a methyl group (Figure 5 A–F 1–2).
The potential conformations for both diastereomers (16a’ or 16b’) were clustered into
three groups corresponding to three distinct arrangements of the C(β)H–C(α)F single
bond: A, B, and C for 16a’, or D, E, and F for 16b’. (Figure 5) All structures were drawn
in the chair-like representation to show the conformations of all relevant bonds. The
most thermodynamically stable conformations within each group were labeled with the
number 1 (A1–F1), while geometries labeled with the number 2 (A2–F2) were selected for
comparative purposes. All energies presented were calculated in reference to the most
stable conformer B1, which possessed the lowest energy.
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The B1 geometry with the H-F atoms of the C(β)H–C(α)F bond in the gauche position
was determined to be the most favorable conformation for 16a’. Moreover, the most stable
conformation for 16b’ was the E1 conformation (+ 0.6 kcal/mol), where the vicinal H-F
atoms were anti. These results are in good agreement with the experimental NMR cou-
pling constants: 3JHF ~10 Hz and 3JH-F ~22 Hz for 16a’ and 16b’, respectively. Analyzing
the relative energies of the conformers depicted in Figure 5, it becomes evident that the
electrostatic interaction between N-H and C-Br or C-F (present in the A1, A2, B1, C2, D1,
D2, E1, F2) likely plays a more significant role than the stabilization via the P=O. . .H-N
hydrogen bonding (present in the B2, C1, E2, F1). However, in the case of C and F confor-
mations, the preference is reversed: the geometries with the P=O. . .H-N hydrogen bond
(C1 and F1) are more stable. This phenomenon is likely due to the phosphonate−aromatic
(P=O. . .π) repulsive interaction [70], which destabilizes conformers C2 and F2. The same
interaction explains why the most stable geometries of conformers A (A1 and A2) are the
anti-arrangement of P=O/C-F, while the most stable geometries for conformers D (D1 and
D2) have the anti-arrangement of P=O/C-Br (Figure 5). As shown in Figure 6, the anti-
arrangement of P=O/C-Br (conformer A1′) leads to a phosphonate−aromatic (P=O. . .π)
repulsive interaction, resulting in an energy increase up to +3.3 kcal/mol. A similar effect
can be observed for D conformations, which have the anti-arrangement of P=O/C-F (D1′).
Conformations A1′′ and D1′′, both having the anti-arrangement of P=O/C-C, are not
preferred due to the unfavorable dipole-dipole interactions between P=O and C-F/C-Br
occupying the gauche position (Figure 6).

Furthermore, comparing the energy of A1 and A2 (or D1 and D2) reveals an equiv-
alence in the electrostatic interaction between N-H and C-F vs. N-H and C-Br. This
conclusion is also supported by comparison of geometries that differ only in the position of
the -F and -Br substituents. These pairs of geometries include A1 and D1; A1′ and D1′; A1′′

and D1′′; A2 and D2; B1 and E1; B2 and E2; C1 and F1; and C2 and F2 (Figures 5 and 6).
The small differences in stability between these structures (maximum of 0.6 kcal/mol)
indicate similar effects caused by C-Br and C-F bonds on the overall energy of the molecule.

In summary, the conformational analysis described above allows us to conclude that
the stability of P=O--H-N hydrogen bonding can be outweighed by the electrostatic inter-
action between C-F (C-Br) and N-H, unless it leads to phosphonate−aromatic (P=O. . .π)
repulsive interactions.
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2.3. Aziridine Synthesis by Ring Closure Reaction

Our approach to aziridine synthesis involved the intramolecular SN2 nucleophilic sub-
stitution of a halogen atom by a vicinal amine leading to the formation 2-fluoro-aziridinyl-
2-phosphonates 24–26. We observed that bromofluorinated aminophosphonates 16a–d,
rac-18–19a,b, when left at room temperature, undergo spontaneous transformation into
aziridines, with 50% of conversion over the course of one month. This process depends
on the nature of the diastereomers. For amine 16a–d, only a pair of isomers 16b,d cy-
clized to form the aziridines trans-24b,d. To expedite this reaction, treatment of the ß-
aminophosphonates 16a–d, rac-18–19a,b with TEA in DMF for 4 h gave a mixture of
diastereomers of fluoro-aziridinylphosphonates 24a–d, rac-25–26a,b in yields ranging from
48% to 82% (Scheme 2).
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fluoroaziridinyl-2-phosphonate (24a–d, rac-25–26a,b). PG = (S) or (R)-MBn, PMB, PMP. Reaction
conditions: amine 16a–d, rac-18–19a,b (0.5 mmol), TEA (0.6 mmol), DMF, 70 ◦C, 4 h, Schlenk flask, in-
ert gas. Note: for simplicity, in the case of 24a–d, only the stereochemistry of the major diastereomers
(24a,b) was shown.

To enhance the rate of the cyclization reaction, an optimization was performed by
testing various solvents, adjusting the base addition, and changing reaction conditions such
as time and temperature (from room temperature to 70 ◦C). The outcomes of this screening
are summarized in Table 3.

The optimization results showed that cyclization initiated by triethylamine (TEA) in
N,N-dimethylformamide (entry 1, Table 3), as well in acetonitrile (entry 2, Table 3), were
the most favorable for obtaining 24a–d in yields of 82% and 70%, respectively. Toluene,
dichloromethane, and tetrahydrofuran (entry 3–5, Table 3) were considered as the least
favorable solvents. A better pale, but still poor yield was observed, while the reaction
was conducted in dimethyl carbonate (DMC) (entry 6, Table 3). When we monitored the
same reaction for chlorofluorinated derivatives (20a–d) (entry 9, Table 3), only signals
of substrates were detected (19F, 31P NMR). Moreover, it should be pointed out that no
racemization occurred during the aziridine formation.
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Table 3. Optimization of the intramolecular cyclization–solvent effect.

Entry Substrate Solvent Time [h] Aziridine Yield [%] a cis/trans a

1 16a–d b DMF 4 24a–d 82 0.78 f: 1 g

2 16a–d b CH3CN 12 24a–d 70 0.68 f: 1 g

3 16a–d b PhCH3 24 24a–d Traces -
4 16a–d b CH2Cl2 24 24a–d Traces -
5 16a–d b THF 24 24a–d 15 ca. 0: 1
6 16a–d b DMC 8 24a–d 32 ca. 0: 1
7 rac-18a,b c DMF 4 rac-25a,b 79 0.68: 1
8 rac-19a,b d DMF 4 rac-26a,b 48 0.09: 1
9 20a–d e DMF 18 24a,b Traces -

Reaction conditions: amine (0.2 mmol), TEA (0.3 mmol), solvent, 70 ◦C, 4–24 h, Schlenk flask, inert gas.
a determined by 19F and/or 31P NMR spectra from crude mixture; b dr 1:1:0.1:0.07; c dr 1:0.72; d dr 1:0.88;
e dr 1:1:0.1:0.07; f dr 1:0.13; g dr 1:0.08.

Additionally, we observed that while two out of four amine diastereomers 16b,d
and rac-18–19b (unlike-diastereomers) were readily transformed into trans-aziridine 24b,d
and rac-25–26b, the conversion was not complete and the like-ones did not cyclize into
cis-aziridines 24a,c and rac-25–26a. According to our observations, they underwent degra-
dation leading to several unidentified products, which could explain the different diastere-
omeric ratios after reaction, with the trans-isomer being dominant. A shorter reaction
time resulted in incomplete substrate conversion, while a longer reaction time influenced
the formation of by-products. In addition, we noticed a particularly low stability of the
cis-isomer for rac-26a (entry 8, Table 3), which can be explained by steric factors.

Moreover, we also studied the influence of a base on aziridine ratio and reaction yield
(Table 4). The reaction of 16a–d (dr 1:1:0.1:0.07), with TEA as a base in DMF at 70 ◦C, gave
24a–d with a cis/trans ratio of 0.78:1 (entry 1, Table 4). Without a base at 70 ◦C in DMF
(entry 7, Table 4), the result was a low 38% yield of 24a–d, due to partial decomposition of
starting material. Under the same conditions using sodium hydride, only traces of 24a–d
were detected by 19F NMR in the crude mixture (<10% yield) (entry 6, Table 4). Using
quinine (entry 2, Table 4) gave the best yield of 84% for 24a–d. By contrast, DBU mainly led
to the formation of monofluorinated enamine (E-22a/Z-22b ratio 1:0.3) and imine (23a,b)
(22a,b/23a,b ratio 1:0.05) in 21% yield (entry 4, Table 4), while DIPEA furnished 24a–d in
70% yield and a cis/trans ratio of 0.67:1 (entry 5, Table 4). Surprisingly, the cyclization of
16a–d performed with L-proline resulted in a 77% yield of 24a–d with a cis/trans ratio of
0.69:1 (entry 3, Table 4). Selected bases (TEA, quinine, and proline) were also tested for
the amine rac-18a,b (entries 8–10, Table 4), and no significant differences were observed
compared to 16a–d.

Table 4. Optimization of the intramolecular cyclization–base effect.

Entry Substrate Base Yield [%] a Aziridine cis/trans a

1 16a–d b TEA 82 24a–d 0.78 e: 1 f

2 16a–d b Quinine 84 24a–d 0.86 e: 1 f

3 16a–d b L-Proline 77 24a–d 0.69 e: 1 f

4 16a–d b DBU 21 d 24a–d 0.18 e: 1 f

5 16a–d b DIPEA 70 24a–d 0.67 e: 1 f

6 16a–d b NaH <10 24a–d -
7 16a–d b w/o base 38 24a–d 0.38 g: 1 h

8 rac-18a,b c TEA 79 rac-25a,b 0.68: 1
9 rac-18a,b c Quinine 87 rac-25a,b 0.92: 1

10 rac-18a,b c L-Proline 69 rac-25a,b 0.61: 1
Reaction conditions: amine (0.2 mmol), base (0.3 mmol), DMF, 70 ◦C, 4 h, Schlenk flask, inert gas a determined
by 19F and/or 31P NMR spectra from crude mixture; b dr 1:1:0.1:0.07; c dr 1:0.72; d 22–23a,b were mainly formed
(E-22a/Z-22b ratio 1:0.3; 22a,b/23a,b ratio 1:0.05); e dr 1:0.13; f dr 1:0.08;g dr 1:0.06; h dr 1:0.03.
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We have noticed that the aziridines 24a–d and rac-25–26a,b are air-stable and can be
stored for several months without any sign of degradation, as confirmed by 31P NMR
analysis. Unlike the difluoroaziridines reported by De Kimpe et al., no spontaneous
fluorine migration was observed [34,35]. During the purification of the crude using silica
gel column chromatography, we found that prior deactivation with 1% of triethylamine
was necessary. This allowed yields to increase from ~20–30% to ~50–60%, respectively.
Similar observations have been reported in the literature for fluorinated aziridines [35].

2.4. Spectroscopic Studies Concerning Cis- and Trans-Aziridines

The structure determination of cis- and trans-aziridines was based on the NMR experi-
ments performed on rac-25a,b. In the 19F NMR spectrum, the major trans-isomer rac-25b
showed a signal at δ −171, appearing as a doublet of quartets with a 2JFP equal to 112 Hz.
The aziridine proton (3JFH 4 Hz, -CH(Ph)CF), and long-range coupling with two benzyl
protons (4JFH 5 Hz). The analysis of 31P{1H} NMR spectra showed a signal a doublet
at δ: 10.9, while the signal derived from the cis-isomer was observed at δ: 9.97 (d, 2JPF
117 Hz). A distinct signal difference was also observed in the 19F NMR spectrum of rac-25a,
where the signal was located at δ: −180 (dd, 2JFP 117 Hz, 3JFH 8 Hz). Additionally, there
was no coupling between the fluorine and the benzyl proton for the cis-isomer. The 1H
NMR spectrum indicated the non-equivalence of benzyl protons [71], which resulted in the
splitting of the signal into two separate doublets or a doublet of doublets (rac-25a: br d at
δ: 4.0 and 4.1, 2JHH 14 Hz; rac-25b: dd at δ: 4.1, 2JHH 14, 4JHF 5 Hz, and 4.5, 2JHH 14, 4JHF
3 Hz). In the 1H NMR spectrum, the key signal from the aziridine proton was observed at
δ: 3.45 (t, 3JHF and 3JHP 4 Hz) for the trans-isomer (rac-25b), and at δ: 3.26 (d, 3JHF 8 Hz)
for the cis-isomer rac-25a. Performing 1H{/19F} NMR simplified both signals to a broad
doublet at δ: 3.45 (3JHP 3.6 Hz) and a broad singlet at δ: 3.25, respectively. However, the
decoupling of the 1H{/31P} NMR spectrum simplified only the signal from rac-25b (d, 3JHF
4 Hz). These data clearly indicated the aziridine protons from both isomers interacted with
fluorine, while only the proton from trans-aziridine rac-25b was coupled with the phospho-
rus atom. These NMR results, along with the literature data, enabled the determination of
the presumed geometry of aziridines. Furthermore, the electron-withdrawing substituents
(P and F) decreased the values of vicinal couplings constants between hydrogen nuclei and
heteroatoms [72]. In practice, the range of coupling constants for the substituted fluorinated
aziridines can be estimated depending on the vicinal H-F relationship H-Ftrans: 2–5 Hz,
H-Fcis: 7–9 Hz [56,73,74]. Accordingly, we assigned a higher value of 3JHF 8.4 Hz for H-F in
the cis-relationship of rac-25a, and a lower 3JHF 4.3 Hz, for the trans H-F in rac-25b, which
is in good agreement with the literature. In the case of the trans orientation of the H-P bond,
the assumed dihedral angle CHCP is approximately 180◦, resulting in a vicinal coupling
constant of 3JHP around 0–1 Hz. This observation was also noticed in our case for rac-25a
with a 3JHP value of 0 Hz. Similar observations were reported for trifluoromethylcyclo-
propylphosphonates (3JHP ca. 1 Hz) [75]. The above-described data were further confirmed
by characteristic signals in the 13C NMR spectra, with a typical couplings constant for
α-substituted aziridinylphosphonates, localized C-2 at δ 83.9 (dd, 2JCF/P 260, 232 Hz) or
86.7 (dd, 2JCF/P 274, 272 Hz), for the trans- and cis-aziridine, respectively. These significant
results for rac-25a,b, along with analogous relationships, were also observed in the case of
24a–d and rac-26a,b (see the Supporting Information for details). The summarized NMR
data for rac-25a,b can be found in Table 5.
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Table 5. Characteristic NMR values for rac-25a,b.

rac-cis-25a rac-trans-25b

19F NMR −180.27 (dd, 2JFP 116.7,
3JFH 8.4 Hz)

−170.98 (dq, 2JFP 111.7,
3JFH 4.3 Hz)

31P{/1H} NMR 9.97 (d, 2JPF 116.9 Hz) 10.95 (d, 2JPF 111.6 Hz)
NCHCFP 3.26 (d, 3JHF 8.5 Hz) 3.45 (t, 3JHF/P 4.1 Hz)

CFP 86.67 (dd, 1JCF/P 274.0, 272.5 Hz) 83.95 (dd, 1JCF/P 259.6, 231.6 Hz)
CH(Ph)CFP 49.08 (dd, 2JCF/P 19.2, 1.3 Hz) 48.43 (dd, 2JCF/P 12.9, 6.0 Hz)

Cipso 133.86 (s) 133.58 (br d, 3JCF 5.2 Hz)

To support the stereochemical assessments, 1D 1H-1H nuclear Overhauser effect
(NOE) experiments as well as 1D 19F-1H heteronuclear NOE (HOE) NMR experiments
were performed for both isomers of rac-25a,b. In the 1D NOE spectrum, we observed
correlations between the aziridine proton NCHCFP and diastereotopic benzyl protons for
both isomers. Furthermore, we observed weak correlations between the aziridine proton
NCHCFP (t, δ: 3.45 ppm) and the protons of the phosphonate group -P(O)(OCH2CH3)2,
specifically in the trans-isomer (rac-25b), indicating that these substituents are on the same
side of the ring. In addition, the HOE spectrum for the trans-isomer rac-25b revealed
strong correlations between the fluorine atom and the closely located protons of the phenyl
ring NCH(Ph)CFP. A similar correlation was observed for rac-25a, albeit with a noticeably
weaker HOE effect. Based on these observations, there is a cis-relationship between the
fluorine atom and the phenyl ring for rac-25b. In contrast, the most intensive enhancement
in the HOE experiment was detected for correlation between the fluorine atom and the
aziridine proton in rac-25a (Figure 7).
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2.5. Study on Aziridine Ring Closure by DFT Calculations

To decipher the differences in the cyclization tendencies, DFT calculations were used
to determine the potential energy barriers associated to the reaction pathways for all
stereoisomers. Substrates 16a’ and 16b’ were utilized, resulting in products 24a’ and 24b’
(Figure 8). The calculated energies revealed that the transition states TSC1 and TSC2
leading to the formation of cis-aziridine 24a’ exhibited higher energy barriers (3 kcal/mol)
compared to the transition states leading to the trans-aziridine (TST1, TST2), which is
attributed to the difference of steric interactions between the phenyl and phosphonate
groups (Figure 8). The optimized structures of the transition states leading to the formation
of both cis- and trans-aziridines are presented in Figure 9. These results are in good
agreement with the experimental findings where 16b was found to undergo cyclization at
a faster rate (approximately 50% over a month). Furthermore, the most stable conformer of
16b’ is E1, which exhibits an anti-arrangement of C-N and C-Br groups which promote the
cyclization. Therefore, the cis-aziridine is kinetically favored.
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2.6. Isolation of Chiral Trans-Aziridine 24b,d and Non-Fluorinated Cis-Aziridine 27

Trans-aziridine trans-24b,d can be obtained with high diastereoselectivity by the se-
quence involving an imine reduction and a subsequent ring closure reaction. When the
reaction was carried out from 10a,b with sodium cyanoborohydride in glacial acetic acid
at 70 ◦C for 3 h (Scheme 3), we observed a diastereoselective reduction. Two of the four
amine diastereomers (16b,d) underwent a direct conversion into trans-aziridines trans-
24b,d with a dr of 1:0.05. In parallel, small amounts of non-fluorinated aziridine cis-27 were
also isolated. Extended reaction time favored the conversion of 16a,c to cis-27 (after 7h:
16a,c/trans-24b,d/cis-27 0.3:1:0.7), while prolonged reaction time led to the formation of
some non-identified side-products. Based on these results, we hypothesized that diastere-
omers 16a,c slowly cyclized to form cis-aziridines 24a,c (Scheme 3). Then, the formation
of an azirine intermediate resulting from the departure of the fluorine atom takes place,
followed by the stereoselective addition of a hydride nucleophile at the opposite side of the
aryl substituent, resulting in the stereospecific formation of aziridine cis-27. The stereochem-
istry of cis-27 was deduced based on the observed vicinal coupling constants 3JHH 7 Hz,



Molecules 2023, 28, 5579 13 of 31

which are in good agreement with the literature [76–80]. Similar conclusions were drawn
by De Kimpe et al. in their study on the N-substituted cis-2-aryl-3-alkylaziridines [77].
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NaBH3CN (4 mmol), CH3COOH (1.5 mmol), MeOH, 70 ◦C, 3–7 h. Note: For simplicity, only the
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The aziridine cis-27 is more polar than the fluorinated analogues and was isolated in
32% yield. To isolate the trans-aziridine 24b,d, we treated a mixture of 16a,c/trans-24b,d
with sodium borohydride and a catalytic amount of Pd/C (10 mol%). Unfortunately,
after 20 min at room temperature, we only observed the conversion of 16a,c to amine
products 28a–d (Scheme 4). Interestingly, the presence of palladium catalyst promoted the
diastereomerization of 16a,c, resulting in the formation of the mixture of four diastereomers
of the amine (28a–d) (dr 1:0.8:0.19:0.13) from 16a,c (dr 1:0.1) as easily observed by 19F NMR.
Finally, we were able to isolate of the trans-aziridine (24b,d) in 65% yield and very high
diastereoselectivity (dr 1:0.06).
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Reaction conditions: i. 16a,c/trans-24b,d (0.3 mmol)*, NaBH4 (0.6 mmol), Pd/C (10 mol%), MeOH,
20 min, rt. * calculated for 16a,c.

2.7. Aziridine Ring Transformations

Finally, as previously mentioned, treatment of aziridine 24a-d cis/trans 0.64(dr 1:0.07)/
1(dr 1:0.09) with sodium borohydride afforded aziridine cis-27 in 39% yield via the formation
of the azirine intermediate (Scheme 5).

As expected, the reaction selectively led to the conversion of one pair of diastere-
omers (cis-aziridine), while the other one (trans-aziridine) remained unchanged in the
reaction mixture. By this sequence, both fluorinated and non-fluorinated aziridines can
be isolated.
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The reactivity of fluorinoaziridinyl-2-phosphonates was evaluated in a regioselective
ring opening of 24a–d (cis/trans 1(dr 1:0.45)/0.65(dr 1:0.04)). In such reactions, N-activation
is required as the (S)-MBn is a poor leaving group [81]. Activation by Yb(OTf)3 and
CeCl3 Lewis acids turned out to be ineffective. A similar observation was reported by
Beksultanova et al. in their study related to the ring opening of aziridine-2-phosphonate
catalyzed by BF3 × OEt2 [82]. This lack of reactivity may be due to the presence of a
fluorine atom, which decrease the basicity of the nitrogen atom [83].

For comparison, we tested the reaction on aziridines 24a–d with methanol as a nu-
cleophilic agent and sulfuric acid as an activating reagent. This reaction resulted in the
formation of β-methoxy-α-hemiaminal phosphonates 29a,b in 86% yield (dr 1:0.5) according
to the mechanism depicted in Scheme 6.
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First, MeOH attacked the acid-activated aziridine at the less hindered carbon atom,
resulting in the formation of α-fluoro-α-aminophosphonate with inversion of configuration
at the C-2-carbon atom. Then, an elimination led to the iminium C, which readily reacted
with methanol to form 29a,b with a dr of 1:0.5. Based on the Houk model discussed at the
Figure 3, the relative stereochemistry of 29a,b was assumed to be 1’S, 1R, 2S and 1’S, 1S,
2S, respectively. We also examined the reaction of 24a–d in glacial acetic acid according to
Wróblewski’s protocol [80] and we did not observe substrate conversion.

In the 31P NMR spectra of 29a,b, two singlets were observed at δ: 18.2 and 17.3,
corresponding to the mixture diastereomers (dr 1:0.5). Additionally, in the 13C NMR
spectrum, the doublet of C-αwas located at δ 104.5 and 103.9 with large coupling constants
of 1JCP 196 Hz, which is characteristic of α-substituted α-aminophosphonates [84]. In
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comparison, the C-β signal was observed at δ: 63.4 (d, 2JCP 15 Hz) and 63.1 (d, 2JC-P 7 Hz)
(see the Supporting Information for details).

3. Experimental Section
3.1. General Methods

All NMR experiments were performed with a Varian Mercury 300 MHz, Varian
VNMR-S 400 MHz, Bruker Ascend™ 400 MHz NANOBA and Bruker Avance 600 MHz
spectrometers. Full assignment of all NMR signals and determination of the stereochem-
istry were possible with the use of various NMR techniques, including 1H, 1H{/19F},
1H{/31P}, 1H-1H COSY, 1H-1H NOE, 1H-19F HOE, 1H-13C HSQC, 1H-13C HMBC, 13C, 19F,
and 31P{/1H} experiments. The NMR shifts were determined in relation to the residual sol-
vent proton signal (for CDCl3: 7.26 ppm–1H NMR, 77.16 ppm–13C NMR) and are expressed
in parts per million (ppm) in CDCl3. Coupling constants (J) were reported in hertz (Hz).
The following abbreviations were used to express the multiplicities: s–singlet, d–doublet, t–
triplet, q–quartet, quint–quintet, dd–doublet of doublets, dt–doublet of triplets, dq–doublet
of quartets, td–triplet of doublets, ddd–doublet of doublet of doublets, m–multiplet, br
d–broad doublet, br s–broad singlet. 19F NMR spectra were measured with trichlorofluo-
romethane (CFCl3) as the internal standard, while for 31P NMR spectroscopy, 85% H3PO4
was used as the external standard. High-resolution mass spectra (HRMS) for the final
compounds were performed on an Agilent 6210 ESI using electrospray ionization. Electron
ionization mass spectroscopy (EI-MS; low-resolution, direct injection) was performed on a
Bruker 320MS/420GC spectrometer.

The obtained compounds were purified by column chromatography using silica gel
Merck Kieselgel 60 (230–400 mesh) as the stationary phase, and ethyl acetate/hexane
or ethyl acetate/petroleum ether as developing systems. Thin Layer Chromatography
(TLC) was performed on commercially available Merck Kieselgel 60-F254 with ethyl ac-
etate/hexane as the mobile phase. Visualization of the TLC plates was done using UV light
and/or permanganate solution.

Solvents were dried by commonly used methods: toluene was freshly distilled over
sodium hydride (NaH2) and acetonitrile was distilled over calcium hydride (CaH2) prior to
use. Anhydrous MeOH and DMF were stored over 4Å molecular sieves. All of the reagents
were purchased from Fluorochem®, Acros®, Alfa Aesar® or Sigma-Aldrich®, and used
as received.

3.2. Theoretical Calculations

Gaussian 16 [85] was used to fully optimize and calculate the frequencies for all the
structures at theωB97x-D/def2-TZVPD level of theory [86–88]. The vibrational frequencies
were calculated at the same level of theory, and then their positivity was applied to confirm
that each of the calculated structures corresponds to a minimum on the potential energy
surface. The polarizable continuum model (PCM) [89] was used to simulate solvents: DMF
(reaction pathways modelling) and chloroform (conformational analysis of NMR solution).
Transition structures were located using the Berny algorithm with the NoEigenTest re-
quest. Various combinations of conformations for both invertomers (nitrogen atom) were
examined to determine minimum energy pathways for all cyclization reactions.

3.3. General Procedure for Synthesis of β-Enaminophosphonates (2–5a,b)/β-Iminophosphonates
(6–9a,b)

Compounds 2–5 and 6–9 were synthesized according to a previously reported method-
ology from diethyl 2-oxo-2-phenylethylphosphonate 1 (151 µL, 0.5 mmol) and primary
amine (0.5 mmol) [54]. The reaction mixture was refluxed using a Dean–Stark apparatus.
The obtained NMR data based on 1H and 31P{/1H} NMR for 2–4a,b and 6–8a,b are identical
with those reported in the literature [54].
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3.4. The Synthesis of β-Enaminophosphonates/β-Iminophosphonates (5a/9a,b)

Compounds 5a/9a,b are prepared as described in the general procedure.
The ratio of enamine 5a and imines 9a,b was determined with the use of 1H and

31P{/1H} NMR from the crude mixture, and was 1:0.53; the ratio of enamine (Z) 5a equaled
1, and imines (E/Z) 9a,b equaled 1:0.1, respectively. For tautomeric mixture 5a/9a,b after
column chromatography (silica gel, AcOEt/hexane: 5%→ 60%), only the NMR spectra of
the main products was given (Z-5a/E-9a 1:0.53). Yellow oil, 157 mg, yield 87%.

(Z)-Diethyl (2-((4-methoxyphenyl)amino)-2-phenylvinyl)phosphonate (Z-5a).
1H NMR (401 MHz): δ = 9.12 (br s, 1H, NH), 7.34–7.30 (m, 2H, Har), 7.29–7.23 (m, 3H,

Har), 6.88–6.87 (m, 2H, Har), 6.57–6.56 (m, 2H, Har), 4.23 (d, J = 12.4 Hz, 1H, CHP), 4.13–4.05
(m, 4H, 2x OCH2CH3), 3.64 (s, 3H, Ph(4-OCH3)), 1.32 (td, J = 7.1, 0.5 Hz, 6H, OCH2CH3).
13C NMR (101 MHz): δ = 161.63 (d, J = 6.0 Hz, C=CHP), 155.36 (s, Car(OCH3)), 137.48
(d, J = 19.7 Hz, Cipso), 134.68 (s, Cipso), 130.63, 129.30, 128.30, 123.69 (4x s, CHar), 113.92
(s, CHarCar(OCH3)), 82.17 (d, J = 188.1 CHP), 61.45 (d, J = 6.0 Hz, OCH2CH3), 55.39 (s,
Ph(4-OCH3)), 16.20 (d, J = 6.7 Hz, OCH2CH3). 31P{/1H} NMR (122 MHz): δ = 24.73 (s, 1P).
MS (EI) m/z = 361.2 [M]+.

(E)-Diethyl (2-((4-methoxyphenyl)imino)-2-phenylethyl)phosphonate (E-9a).
1H NMR (401 MHz): δ = 7.43–7.39 (m, 3H, Har), 7.25–7.19 (m, 2H, Har), 6.88–6.87

(m, 2H, Har), 6.57–6.56 (m, 2H, Har), 4.05–4.00 (m, 2H, OCH2CH3), 3.92–3.84 (m, 2H,
OCH2CH3), 3.78 (s, 3H, Ph(4-OCH3)), 3.39 (d, J = 23.3 Hz, 2H, CH2P), 1.10 (td, J = 7.1,
0.5 Hz, 6H, OCH2CH3). 13C NMR (101 MHz): δ = 160.07 (d, J = 7.8 Hz, C=N), 156.39 (s,
Car(OCH3)), 143.97 (d, J = 2.3 Hz, Cipso), 138.76 (s, Cipso), 128.32, 128.29, 128.06, 120.83 (4x s,
CHar), 114.40 (s, CHarCar(OCH3)), 62.22 (d, J = 6.6 Hz, OCH2CH3), 55.55 (s, Ph(4-OCH3)),
29.51 (d, J = 134.3 Hz, CH2P), 16.46 (d, J = 6.3 Hz, OCH2CH3). 31P{/1H} NMR (122 MHz):
δ = 22.12 (s, 1P).

(Z)-Diethyl (2-((4-methoxyphenyl)imino)-2-phenylethyl)phosphonate (Z-9b).
Diagnostic signals: 31P{/1H} NMR (122 MHz): δ = 24.00 (s).

3.5. General Procedure for Synthesis of α,α-Bromofluorinated ß-Iminophosphonates (10–11a,b,
rac-12–13)

The solution of Selectfluor (319 mg, 0.9 mmol) in dry, freshly distilled acetonitrile
(10 mL) was gently heated to 50 ◦C and vigorously stirred until the compound was com-
pletely dissolved. After, the solution was cooled to ambient temperature and added together
with NBS (89 mg, 0.5 mmol) to the mixture of the appropriate β-enaminophosphonate/β-
iminophosphonate 2–5/6–9 (0.5 mmol). After 15 min of stirring at room temperature, the
solvent was removed under reduced pressure. Next, the residue was dissolved in CHCl3
(2 mL), water (10 mL) was added, and it was extracted (3 × 10 mL CHCl3). The organic lay-
ers were combined, dried over Na2SO4, and evaporated to give products as a pale-yellow
oil. The crude products were purified by column chromatography (AcOEt/petroleum
ether: 5%→ 50%).

(E)-Diethyl ((1R)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)imino)ethyl)
phosphonate (10a) and (E)-diethyl ((1S)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenyl-
ethyl)imino)ethyl) phosphonate (10b).

Pale-yellow oil, 210 mg, yield 92%. Isolated as a mixture of diastereomers 10a,b
(dr 1:0.54) (153 mg) and single diastereomer 10b (57mg).

10a: 1H NMR (400 MHz): δ = 7.44–7.40 (m, 1H, Har), 7.39–7.36 (m, 2H, Har), 7.33–7.30
(m, 2H, Har), 7.29–7.26 (m, 3H, Har), 7.25–7.20 (m, 2H, Har), 4.47–4.35 (m, 3H, OCH2CH3,
CHCH3), 4.34–4.23 (m, 2H, OCH2CH3), 1.38 (d, J = 6.6 Hz, 3H, CHCH3), 1.35 (td, J = 7.0,
0.8 Hz, 3H, OCH2CH3), 1.32 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3). 13C NMR (101 MHz):
δ = 164.44 (dd, J = 27.0, 6.0 Hz, C=N), 144.57 (s, Cipso), 131.52 (d, J = 5.0 Hz, Cipso), 128.60,
128.58, 127.87, 126.97, 126.62, 126.47 (6x s, CHar), 100.05 (dd, J = 269.8, 187.5 Hz, CBrF),
65.52 (d, J = 6.2 Hz, OCH2CH3), 65.20 (d, J = 6.7 Hz, OCH2CH3), 61.19 (s, CHCH3), 24.54
(s, CHCH3), 16.64 (d, J = 6.1 Hz, OCH2CH3), 16.61 (d, J = 6.1 Hz, OCH2CH3). 19F NMR
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(283 MHz): δ = −129.08 (d, J = 82.2 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 7.37 (d,
J = 82.1 Hz, 1P). IR (neat): 1648, 1261, 1012, 972, 649 [cm−1]. MS (EI) m/z = 457.3 [M+H]+.

10b: 1H NMR (400 MHz): δ = 7.42–7.37 (m, 3H, Har), 7.31–7.28 (m, 2H, Har), 7.30–7.24
(m, 4H, Har), 7.20–7.16 (m, 1H, Har), 4.42 (q, J = 6.5 Hz, 1H, CHCH3), 4.39–4.26 (m, 2H,
OCH2CH3), 4.25–4.05 (m, 2H, OCH2CH3), 1.40 (d, J = 6.5 Hz, 3H, CHCH3), 1.30 (td, J = 7.1,
0.9 Hz, 3H, OCH2CH3), 1.22 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz):
δ = 164.64 (dd, J = 28.3, 5.9 Hz, C=N), 144.15 (s, Cipso), 131.70 (d, J = 5.1 Hz, Cipso), 128.50,
128.43, 128.41, 128.33, 126.99, 126.72 (6x s, CHar), 99.78 (dd, J = 269.3, 187.2 Hz, CBrF),
65.51 (d, J = 6.3 Hz, OCH2CH3), 65.05 (d, J = 6.6 Hz, OCH2CH3), 61.40 (s, CHCH3),
23.97 (s, CHCH3), 16.56 (d, J = 6.1 Hz, OCH2CH3), 16.44 (d, J = 6.1 Hz, OCH2CH3). 19F
NMR (283 MHz): δ = −128.65 (d, J = 82.3 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 7.93 (d,
J = 82.3 Hz, 1P).

(E)-Diethyl ((1S)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)imino)ethyl)
phosphonate (11a) and (E)-Diethyl ((1R)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phen-
ylethyl)imino)ethyl)phosphonate (11b).

Pale-yellow oil, 217 mg, yield 95%. Isolated as a mixture of diastereomers 11a,b
(dr 1:0.93), which could not be separated by the chromatography techniques employed in
this study.

11a: 1H NMR (400 MHz): δ = 7.43–7.37 (m, 5H, Har), 7.26–7.21 (m, 5H, Har), 4.42–4.35
(m, 3H, OCH2CH3, CHCH3), 4.34–4.25 (m, 2H, OCH2CH3), 1.39 (d, J = 6.5 Hz, 3H, CHCH3),
1.36 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.33 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3). 13C NMR
(101 MHz): δ = 164.45 (dd, J = 27.1, 6.1 Hz, C=N), 144.53 (s, Cipso), 131.52 (d, J = 5.1 Hz, Cipso),
129.52, 128.60, 128.45, 126.96, 126.69, 126.43 (6x s, CHar), 100.99 (dd, J = 269.7, 187.4 Hz,
CBrF), 65.45 (d, J = 6.1 Hz, OCH2CH3), 65.14 (d, J = 6.7 Hz, OCH2CH3), 61.17 (s, CHCH3),
24.49 (s, CHCH3), 16.56 (d, J = 6.0 Hz, OCH2CH3), 16.45 (d, J = 6.1 Hz, OCH2CH3). 19F
NMR (283 MHz): δ = −128.52 (d, J = 82.1 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 7.38 (d,
J = 82.1 Hz, 1P). IR (neat): 1644, 1262, 1017, 970, 647 [cm−1]. MS (EI) m/z = 457.3 [M+H]+.

11b: 1H NMR (400 MHz): δ = 7.32–7.27 (m, 5H, Har), 7.23–7.16 (m, 5H, Har), 4.43 (q,
J = 6.5 Hz, 1H, CHCH3), 4.27–4.17 (m, 2H, OCH2CH3), 4.16–4.08 (m, 2H, OCH2CH3), 1.41
(d, J = 6.5 Hz, 3H, CHCH3), 1.31 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.23 (td, J = 7.1 0.8 Hz,
3H, OCH2CH3). 13C NMR (101 MHz): δ = 164.63 (dd, J = 28.4, 5.9 Hz, C=N), 144.12 (s,
Cipso), 131.69 (d, J = 5.1 Hz, Cipso), 128.55, 128.41, 128.36, 128.29, 127.01, 126.93 (6x s, CHar),
99.14 (dd, J = 269.1, 187.0 Hz, CBrF), 65.42 (d, J = 6.2 Hz, OCH2CH3), 65.00 (d, J = 6.6 Hz,
OCH2CH3), 61.37 (s, CHCH3), 23.92 (s, CHCH3), 16.53 (d, J = 6.1 Hz, OCH2CH3), 16.41
(d, J = 6.0 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −128.13 (d, J = 82.3 Hz, 1F). 31P{/1H}
NMR (122 MHz): δ = 7.42 (d, J = 82.4 Hz, 1P).

rac-(E)-Diethyl ((1R/1S)-1-bromo-1-fluoro-2-((4-methoxybenzyl)imino)-2-phenyle-
thyl)phosphonate (rac-12).

Pale-yellow oil, 222 mg, yield 94%.
1H NMR (400 MHz): δ = 7.45–7.42 (m, 3H, Har), 7.34–7.30 (m, 2H, Har), 7.22–7.15 (m, 2H,

Har), 6.85–6.80 (m, 2H, Har), 4.46 (br s, CH2N, 2H), 4.33–4.24 (m, 2H, OCH2CH3), 4.23–4.10
(m, 2H, OCH2CH3), 3.76 (s, 3H, Ph(4-OCH3)), 1.26 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3),
1.25 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 166.67 (dd, J = 27.7,
6.1 Hz, C=N), 158.67 (s, Car(OCH3)), 131.44 (d, J = 5.2 Hz, Cipso), 130.90 (s, Cipso), 129.70,
128.93 (2x s, CHar), 128.60 (d, J = 1.5 Hz, CHar), 128.50 (s, CHar), 113.93 (s, CHarCar(OCH3)),
99.97 (dd, J = 269.7, 187.6 Hz, CBrF), 65.54 (d, J = 6.3 Hz, OCH2CH3), 65.15 (d, J = 6.7 Hz,
OCH2CH3), 56.42 (br s, CH2N), 55.39 (s, Ph(4-OCH3)), 16.49 (d, J = 6.1 Hz, OCH2CH3),
16.48 (d, J = 6.0 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −129.07 (d, J = 81.2 Hz, 1F).
31P{/1H} NMR (122 MHz): δ = 7.98 (d, J = 81.4 Hz, 1P). IR (neat): 1645, 1261, 1247, 1013,
970, 647 [cm−1]. MS (EI) m/z = 392.2 [M-Br]+.

rac-(E)-Diethyl ((1R/1S)-1-bromo-1-fluoro-2-((4-methoxyphenyl)imino)-2-phenyle-
thyl)phosphonate (rac-13).

Brown oil, 200 mg, yield 87%.
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1H NMR (400 MHz): δ = 7.31–7.26 (m, 5H, Har), 6.68–6.64 (m, 4H, Har), 4.41–4.30 (m,
4H, 2x OCH2CH3), 3.68 (s, 3H, Ph(4-OCH3)), 1.36 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3), 1.35
(td, J = 7.1, 0.9 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 164.12 (dd, J = 28.4, 5.9 Hz,
C=N), 157.44 (s, Car(OCH3)), 140.26 (s, Cipso), 131.94 (d, J = 5.0 Hz Cipso), 129.56, 129.43,
123.19, 118.90 (4x s, CHar), 113.90 (s, CHarCar(OCH3)), 100.17 (dd, J = 270.1, 187.2 Hz, CBrF),
65.58 (d, J = 6.4 Hz, OCH2CH3), 65.29 (d, J = 6.6 Hz, OCH2CH3), 55.35 (s, Ph(4-OCH3)),
16.56 (d, J = 5.9 Hz, OCH2CH3), 16.55 (d, J = 6.0 Hz, OCH2CH3). 19F NMR (283 MHz):
δ = −128.49 (d, J = 81.7 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 7.30 (d, J = 81.5 Hz, 1P). IR
(neat): 1645, 1262, 1246, 1012, 972, 645 [cm−1]. MS (EI) m/z = 459.3 [M+H]+.

3.6. General Procedure for Synthesis of α,α-Chlorofluorinated ß-Iminophosphonates (14a,b, rac-15)

Compounds 14a,b and rac-15 were obtained according to the above-described pro-
cedure for bromofluorinated iminophosphonates (10–11a,b, rac-12–13). Selectfluor and
N-chlorosuccinimide (NCS) were used as halogenation reagents with appropriate molar
equivalents equaled 1.35 and 1.0, respectively.

(E)-Diethyl ((1R)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)imino)ethyl)
phosphonate (14a) and (E)-diethyl ((1S)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenyl-
ethyl)imino)ethyl)phosphonate (14b)

Pale-yellow oil, 128 mg, yield 62%. Isolated as a mixture of diastereomers 14a,b
(dr 0.2:1). The rest of diastereomer 14a (65 mg) was contaminated with difluoro- and
dichloroiminophosphonate derivatives.

14a: 1H NMR (400 MHz): δ = 7.45–7.41 (m, 3H, Har), 7.32–7.27 (m, 4H, Har), 7.25–7.21
(m, 3H, Har), 4.49 (q, J = 6.5 Hz, 1H, CHCH3), 4.38–4.32 (m, 2H, OCH2CH3), 4.29–4.25 (m,
2H, OCH2CH3), 1.42 (d, J = 6.5 Hz, 3H, CHCH3), 1.34 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3),
1.32 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 163.55 (dd, J = 28.1,
6.5 Hz, C=N), 144.46 (s, Cipso), 131.51 (d, J = 4.7 Hz, Cipso), 128.58, 128.55, 128.43, 128.02,
127.08, 126.58 (6x s, CHar), 105.89 (dd, J = 260.7, 189.9 Hz, CClF), 65.11 (d, J = 6.5 Hz,
OCH2CH3), 64.78 (d, J = 6.5 Hz, OCH2CH3), 61.33 (s, CHCH3), 24.51 (s, CHCH3), 16.52 (d,
J = 6.1 Hz, OCH2CH3), 16.48 (d, J = 6.0 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −125.59
(d, J = 86.2 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 8.02 (d, J = 86.0 Hz, 1P). IR (neat): 1657,
1262, 1011, 969, 666 [cm−1]. MS (EI) m/z = 376.2 [M-Cl]+.

14b: 1H NMR (400 MHz): δ = 7.43–7.37 (m, 3H, Har), 7.31–7.26 (m, 4H, Har), 7.25–7.22
(m, 3H, Har), 4.46 (q, J = 6.5 Hz, 1H, CHCH3), 4.39–4.23 (m, 3H, OCH2CH3, OCHHCH3),
4.22–4.12 (m, 1H, OCHHCH3), 1.44 (d, J = 6.5 Hz, 3H, CHCH3), 1.31 (td, J = 7.1, 0.9 Hz, 3H,
OCH2CH3), 1.24 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 163.75 (dd,
J = 28.6, 6.8 Hz, C=N), 144.16 (s, Cipso), 131.64 (d, J = 4.8 Hz, Cipso), 129.56, 129.53, 128.50,
128.39, 126.99, 126.68 (6x s, CHar), 105.77 (dd, J = 259.9, 193.0 Hz, CClF), 65.35 (d, J = 6.5 Hz,
OCH2CH3), 64.96 (d, J = 6.5 Hz, OCH2CH3), 61.45 (br s, CHCH3), 24.16 (s, CHCH3), 16.53 (d,
J = 6.0 Hz, OCH2CH3), 16.42 (d, J = 5.9 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −125.39
(d, J = 87.0 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 7.54 (d, J = 87.0 Hz, 1P).

rac- (E)-Diethyl (1R/1S)-1-chloro-1-fluoro-2-((4-methoxybenzyl)imino)-2-phenyle-
thyl)phosphonate (rac-15).

Pale-yellow oil, 195 mg, yield 91%.
1H NMR (400 MHz): δ = 7.43–7.39 (m, 3H, Har), 7.33–7.27 (m, 2H, Har), 7.19–7.14 (m, 2H,

Har), 6.84–6.78 (m, 2H, Har), 4.46 (br s, 2H, CH2N), 4.32–4.23 (m, 2H, OCH2CH3), 4.21–4.15
(m, 2H, OCH2CH3), 3.75 (s, 3H, Ph(4-OCH3)), 1.26 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3),
1.24 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 165.78 (dd, J = 27.9,
6.7 Hz, C=N), 158.68 (s, Car(OCH3)), 131.35 (d, J = 4.9 Hz Cipso), 129.18, 129.15, 128.93,
128.51 (4x s, CHar), 128.43 (d, J = 1.3 Hz, CHar), 128.25 (s, CHar), 113.91 (s, CHarCar(OCH3)),
105.94 (dd, J = 260.5, 193.5 Hz, CClF), 65.55 (d, J = 6.9 Hz, OCH2CH3), 65.10 (d, J = 6.6 Hz,
OCH2CH3), 56.46 (br s, CH2N), 55.36 (s, Ph(4-OCH3)), 16.48 (d, J = 6.0 Hz, OCH2CH3),
16.45 (d, J = 5.8 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −125.57 (d, J = 85.6 Hz, 1F).
31P{/1H} NMR (122 MHz): δ = 8.09 (d, J = 86.0 Hz, 1P). IR (neat): 1648, 1260, 1014, 970,
668 [cm−1]. MS (EI) m/z = 428.8 [M+H]+.
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3.7. General Procedure for Synthesis of α,α-Halofluorinated ß-Aminophosphonates (16–17,20a–d,
rac-18–19,21a,b)

To the stirred solution of β-iminophosphonate (10–11,14a,b, rac-12–13,15) (0.5 mmol)
in MeOH (3 mL), NaBH3CN (188 mg, 3 mmol) and glacial CH3COOH (171 µL, 180 mg,
3 mmol) at room temperature were added. Stirring was continued for 40 min and then
the solvent was evaporated. Next, the residue was dissolved in CHCl3 (2 mL), water
(10 mL) was added, and the inorganic layer was extracted (3 × 10 mL CHCl3). The organic
layers were combined, dried over Na2SO4, and evaporated to give the product as a pale-
yellow oil. The crude products were purified by column chromatography (AcOEt/hexane:
5%→ 60%).

Diethyl ((1S/R, 2S/R)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)eth-
yl)phosphonate (16a-d).

Isolated as a mixture of two major diastereomers 16a,b (dr 1:0.96). Diagnostic signals
for traces of diastereomers 16c,d were determined from the crude reaction mixture. Pale-
yellow oil, 222 mg, yield 97%.

Diethyl ((1R, 2R)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)-
phosphonate (16a).

1H NMR (400 MHz): δ = 7.36–7.33 (m, 5H, Har), 7.28–7.25 (m, 2H, Har), 7.21–7.19
(m, 3H, Har), 4.58 (dd, J = 10.2, 4.7 Hz, 1H, CH(Ph)CF), 4.40–4.29 (m, 2H, OCH2CH3),
4.27–4.23 (m, 2H, OCH2CH3), 3.75 (q, J = 6.4 Hz, 1H, CHCH3), 1.34 (d, J = 6.4 Hz, 3H,
CHCH3), 1.28 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.27 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3).
13C NMR (101 MHz): δ = 145.46 (s, Cipso), 135.70 (d, J = 8.6 Hz, Cipso), 128.54, 128.50,
128.41, 128.06, 127.24, 126.91 (6x s, CHar), 107.44 (dd, J = 270.1, 184.3 Hz, CBrF), 65.58
(d, J = 7.3 Hz, OCH2CH3), 65.16 (d, J = 7.3 Hz, OCH2CH3), 64.12 (dd, J = 22.0, 7.5 Hz,
CH(Ph)CF), 54.71 (s, CHCH3), 21.89 (s, CHCH3), 16.60 (d, J = 6.1 Hz, OCH2CH3), 16.44
(d, J = 6.2 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −125.06 (dd, J = 82.3, 10.2 Hz,
1F). 31P{/1H} NMR (122 MHz): δ = 9.77 (d, J = 82.0 Hz, 1P). IR (neat): 1264, 1024, 977,
648 [cm−1]. MS (EI) m/z = 459.4 [M+H]+.

Diethyl ((1S, 2R)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)-
phosphonate (16b).

1H NMR (400 MHz): δ = 7.33–7.29 (m, 5H, Har), 7.26–7.24 (m, 1H, Har), 7.23–7.21 (m,
2H, Har), 7.18–7.16 (m, 2H, Har), 4.37 (dd, J = 22.0, 3.5 Hz, 1H, CH(Ph)CF), 4.22–4.17 (m,
2H, OCH2CH3), 4.17–4.07 (m, 2H, OCH2CH3), 3.74 (q, J = 6.5 Hz, 1H, CHCH3), 1.35 (d,
J = 6.4 Hz, 3H, CHCH3), 1.26 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.25 (td, J = 7.1, 0.8 Hz,
3H, OCH2CH3). 13C NMR (101 MHz): δ = 145.67 (s, Cipso), 137.14 (dd, J = 6.0, 2.5 Hz, Cipso),
128.44, 128.40, 128.13, 127.64, 127.15, 126.84 (6x s, CHar), 107.62 (dd, J = 274.2, 183.1 Hz,
CBrF), 66.47 (dd, J = 18.2, 7.9 Hz, CH(Ph)CF), 64.88 (d, J = 7.2 Hz, OCH2CH3), 64.74 (d,
J = 7.2 Hz, OCH2CH3), 55.67 (s, CHCH3), 22.10 (s, CHCH3), 16.52 (d, J = 6.1 Hz, OCH2CH3),
16.42 (d, J = 6.1 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −135.38 (dd, J = 84.6, 22.1 Hz,
1F). 31P{/1H} NMR (122 MHz): δ = 9.25 (d, J = 84.7 Hz, 1P).

Diethyl ((1S, 2S)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (16c).

Diagnostic signals: 19F NMR (283 MHz): δ = −128.26 (dd, J = 78.0, 10.2 Hz). 31P{/1H}
NMR (122 MHz): δ = 9.06 (d, J = 77.9 Hz).

Diethyl ((1R, 2S)-1-bromo-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (16d).

Diagnostic signals: 19F NMR (283 MHz): δ = −135.49 (dd, J = 88.4, 20.9 Hz). 31P{/1H}
NMR (122 MHz): signal masked by other diastereomers signals.

Diethyl ((1S/1R, 2S/2R)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)amino)e-
thyl)phosphonate (17a-d).

Isolated as a mixture of two major diastereomers 17a,b (dr 1:0.8). Diagnostic signals for
traces of diastereomers 17c,d were determined from the crude reaction mixture. Pale-yellow
oil, 217 mg, yield 95%.
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Diethyl ((1S, 2S)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)amino)ethyl)ph-
osphonate (17a).

1H NMR (400 MHz): δ = 7.35–7.33 (m, 5H, Har), 7.28–7.26 (m, 2H, Har), 7.22–7.19
(m, 3H, Har), 4.58 (dd, J = 10.2, 4.7 Hz, 1H, CH(Ph)CF), 4.36–4.32 (m, 2H, OCH2CH3),
4.26–4.23 (m, 2H, OCH2CH3), 3.75 (q, J = 6.4 Hz, 1H, CHCH3), 1.35 (td, J = 7.1, 0.8 Hz, 3H,
OCH2CH3), 1.32 (d, J = 6.4 Hz, 3H, CHCH3), 1.31 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C
NMR (101 MHz): δ = 145.41 (s, Cipso), 135.63 (d, J = 8.6 Hz, Cipso), 128.52, 128.49, 128.42,
128.04, 127.22, 126.81 (6x s, CHar), 107.39 (dd, J = 270.1, 184.4 Hz, CBrF), 65.56 (d, J = 7.0 Hz,
OCH2CH3), 65.15 (d, J = 7.3 Hz, OCH2CH3), 64.05 (dd, J = 21.9, 7.5 Hz, CH(Ph)CF), 54.65
(s, CHCH3), 21.85 (s, CHCH3), 16.59 (d, J = 6.0 Hz, OCH2CH3), 16.43 (d, J = 6.1 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −125.04 (dd, J = 82.1, 10.1 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 9.25 (d, J = 82.0 Hz, 1P). IR (neat): 1262, 1021, 978, 646 [cm−1]. MS (EI)
m/z = 459.4 [M-H]+.

Diethyl ((1R, 2S)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)amino)ethyl)p-
hosphonate (17b).

1H NMR (400 MHz): δ = 7.32–7.29 (m, 5H, Har), 7.26–7.24 (m, 2H, Har), 7.19–7.16 (m,
3H, Har), 4.42–4.37 (m, 2H, OCH2CH3), 4.34 (dd, J = 22.1, 3.2 Hz, 1H, CH(Ph)CF), 4.23–4.15
(m, 2H, OCH2CH3), 3.74 (q, J = 6.5 Hz, 1H, CHCH3), 1.33 (d, J = 6.4 Hz, 3H, CHCH3), 1.27
(td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.26 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101
MHz): δ = 145.62 (s, Cipso), 137.08 (dd, J = 6.2, 2.7 Hz, Cipso), 128.45, 128.40, 128.31, 128.11,
127.13, 126.88 (6x s, CHar), 107.57 (dd, J = 274.0, 182.8 Hz, CBrF), 66.42 (dd, J = 18.2, 8.0
Hz, CH(Ph)CF), 64.85 (d, J = 7.2 Hz, OCH2CH3), 64.72 (d, J = 7.1 Hz, OCH2CH3), 55.63 (s,
CHCH3), 22.06 (s, CHCH3), 16.51 (d, J = 6.1 Hz, OCH2CH3), 16.42 (d, J = 6.1 Hz, OCH2CH3).
19F NMR (283 MHz): δ = −135.36 (dd, J = 84.6, 22.0 Hz, 1F). 31P{/1H} NMR (122 MHz):
δ = 8.73 (d, J = 84.6 Hz, 1P).

Diethyl((1R, 2R)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)amino)ethyl)p-
hosphonate (17c).

Diagnostic signals 19F NMR (283 MHz): δ = −128.25 (dd, J = 77.9, 10.2 Hz). 31P{/1H}
NMR (122 MHz): δ = 8.56 (d, J = 78.0 Hz).

Diethyl((1R, 2S)-1-bromo-1-fluoro-2-phenyl-2-(((R)-1-phenylethyl)amino)ethyl)p-
hosphonate (17d).

19F NMR (283 MHz): signal masked by other diastereomers signals. Diagnostic signals
31P{/1H} NMR (122 MHz): δ = 8.40 (d, J = 86.9 Hz).

rac-Diethyl ((1R, 2R)-1-bromo-1-fluoro-2-((4-methoxybenzyl)amino)-2-phenyleth-
yl)phosphonate (rac-18a) and rac-diethyl ((1R, 2S)-1-bromo-1-fluoro-2-((4-methoxybenz-
yl)amino)-2-phenylethyl)phosphonate (rac-18b).

Isolated as a mixture of two diastereomers rac-18a,b (dr 1:0.75), which could not be
separated by the chromatography techniques employed in this study. Pale-yellow oil,
230 mg, yield 97%.

rac-18a: 1H NMR (400 MHz): δ = 7.46–7.44 (m, 3H, Har), 7.38–7.36 (m, 2H, Har),
7.14–7.10 (m, 2H, Har), 6.83–6.81 (m, 2H, Har), 4.37–4.26 (m, 3H, OCH2CH3, CH(Ph)CFP),
4.20–4.15 (m, 2H, OCH2CH3), 3.76 (s, 3H, Ph(4-OCH3)), 3.72 (br d, J = 12.9 Hz, 1H, CHHN),
3.48 (br d, J = 13.1 Hz, 1H, CHHN), 1.30 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3), 1.22 (td,
J = 7.0, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 158.84 (s, Car(OCH3)), 135.13 (d,
J = 8.5 Hz, Cipso), 131.52 (s, Cipso), 129.85 (d, J = 1.5 Hz, CHar), 129.71, 128.65, 128.12 (3x s,
CHar), 113.78 (s, CHarCar(OCH3)), 106.46 (dd, J = 270.2, 183.8 Hz, CBrF), 65.79 (d, J = 7.0 Hz,
OCH2CH3), 65.24 (dd, J = 21.5, 7.9 Hz, CH(Ph)CF), 65.03 (d, J = 7.1 Hz, OCH2CH3), 55.32
(s, Ph(4-OCH3)), 50.02 (s, CH2N), 16.48 (d, J = 5.9 Hz, OCH2CH3), 16.33 (d, J = 5.9 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −126.81 (dd, J = 79.5, 9.4 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 9.52 (d, J = 79.5 Hz, 1P). IR (neat): 1261, 1245, 1020, 975, 647 [cm−1]. MS (EI)
m/z = 475.3 [M-H]+.

rac-18b: 1H NMR (400 MHz): δ = 7.44–7.41 (m, 3H, Har), 7.35–7.32 (m, 2H, Har),
7.17–7.14 (m, 2H, Har), 6.80–6.78 (m, 2H, Har), 4.28–4.22 (m, 3H, OCH2CH3, CH(Ph)CFP),
4.13–4.04 (m, 2H, OCH2CH3), 3.76 (s, 3H, Ph(4-OCH3)), 3.65 (br d, J = 13.0 Hz, 1H, CHHN),
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3.47 (br d, J = 13.0 Hz, 1H, CHHN), 1.22 (td, J = 7.1, 1.0 Hz, 3H, OCH2CH3), 1.21 (td, J = 7.1,
0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 158.80 (s, Car(OCH3)), 136.37 (dd, J = 5.9,
2.5 Hz, Cipso), 131.54 (s, Cipso), 129.95 (d, J = 1.5 Hz, CHar), 129.59, 128.55, 128.14 (3x s,
CHar), 113.77 (s, CHarCar(OCH3)), 106.64 (dd, J = 272.9, 184.4 Hz, CBrF), 67.72 (dd, J = 18.4,
8.2 Hz, CH(Ph)CF), 64.99 (d, J = 7.0 Hz, OCH2CH3), 64.57 (d, J = 7.3 Hz, OCH2CH3), 55.31
(s, Ph(4-OCH3)), 50.76 (s, CH2N), 16.47 (d, J = 5.9 Hz, OCH2CH3), 16.36 (d, J = 5.9 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −135.34 (dd, J = 85.7, 20.6 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 8.93 (d, J = 85.7 Hz, 1P).

rac-Diethyl ((1R, 2R)-1-bromo-1-fluoro-2-((4-methoxyphenyl)amino)-2-phenyleth-
yl)phosphonate (rac-19a) and rac-diethyl ((1R, 2S)-1-bromo-1-fluoro-2-((4-methoxyphen-
yl)amino)-2-phenylethyl)phosphonate (rac-19b).

Isolated as a mixture of two diastereomers rac-19a,b (dr 1:0.86), which could not be
separated by the chromatography techniques employed in this study. Pale yellow oil,
209 mg, yield 91%.

rac-19a: 1H NMR (400 MHz): δ = 7.34–7.26 (m, 5H, Har), 6.66–6.64 (m, 2H, Har),
6.59–6.57 (m, 2H, Har), 4.37–4.26 (m, 3H, OCH2CH3, CH(Ph)CFP), 4.17–4.10 (m, 2H,
OCH2CH3), 3.65 (s, 3H, Ph(4-OCH3)), 1.35 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.25 (td,
J = 7.1, 0.7 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 152.95 (s, Car(OCH3)), 139.48
(s, Cipso), 135.71 (d, J = 8.8 Hz, Cipso), 129.17 (d, J = 2.1 Hz, CHar), 128.66, 128.51, 128.19
(3x s, CHar), 114.84 (s, CHarCar(OCH3)), 105.61 (dd, J = 271.6, 183.6 Hz, CBrF), 65.87
(d, J = 6.9 Hz, OCH2CH3), 65.65 (d, J = 7.4 Hz, OCH2CH3), 63.30 (dd, J = 23.4, 6.9 Hz,
CH(Ph)CF), 55.68 (s, Ph(4-OCH3)), 16.57 (d, J = 5.7 Hz, OCH2CH3), 16.43 (d, J = 5.6 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −126.36 (dd, J = 78.1, 9.7 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 9.22 (d, J = 77.9 Hz, 1P). IR (neat): 1260, 1249, 1023, 974, 646 [cm−1]. MS
(EI) m/z = 459.2 [M-H]+.

rac-19b: 1H NMR (400 MHz): δ = 7.51–7.43 (m, 5H, Har), 6.70–6.67 (m, 2H, Har),
6.57–6.53 (m, 2H, Har), 4.24–4.17 (m, 3H, OCH2CH3, CH(Ph)CFP), 4.10–4.00 (m, 2H,
OCH2CH3), 3.66 (s, 3H, Ph(4-OCH3)), 1.27 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.16 (td,
J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 152.82 (s, Car(OCH3)), 140.04
(s, Cipso), 136.51 (d, J = 4.8 Hz, Cipso), 129.36 (d, J = 1.7 Hz, CHar), 128.85, 128.61, 128.49
(3x s, CHar), 115.68 (s, CHarCar(OCH3)), 105.37 (dd, J = 274.0, 181.3 Hz, CBrF), 66.49
(dd, J = 19.7, 7.6 Hz, CH(Ph)CF), 65.06 (d, J = 6.6 Hz, OCH2CH3), 64.79 (d, J = 6.7 Hz,
OCH2CH3), 55.69 (s, Ph(4-OCH3)), 16.36 (d, J = 5.7 Hz, OCH2CH3), 16.24 (d, J = 5.9 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −135.34 (dd, J = 82.1, 18.6 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 8.17 (d, J = 82.1 Hz, 1P).

Diethyl ((1S/1R, 2S/2R)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)et-
hyl)phosphonate (20a-d).

Isolated as a mixture of four diastereomers 20a–d (dr 1:0.83:0.07:0.11). Pale-yellow oil,
196 mg, yield 95%.

Diethyl ((1R, 2R)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (20a).

1H NMR (400 MHz): δ = 7.35–7.32 (m, 5H, Har), 7.27–7.25 (m, 2H, Har), 7.21–7.19 (m,
3H, Har), 4.71 (dd, J = 8.9, 4.6 Hz, 1H, CH(Ph)CF), 4.38–4.31 (m, 2H, OCH2CH3), 4.29–4.26
(m, 2H, OCH2CH3), 3.74 (q, J = 6.4 Hz, CHCH3), 1.36 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3),
1.34 (d, J = 6.4 Hz, 3H, CHCH3), 1.33 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101
MHz): δ = 145.40 (s, Cipso), 135.16 (d, J = 8.2 Hz, Cipso), 128.49, 128.45, 128.40, 128.09, 127.21,
126.76 (6x s, CHar), 110.45 (dd, J = 260.4, 191.5 Hz, CClF), 65.32 (d, J = 6.9 Hz, OCH2CH3),
64.97 (d, J = 7.2 Hz, OCH2CH3), 63.80 (dd, J = 23.3, 8.1 Hz, CH(Ph)CF), 54.76 (s, CHCH3),
21.68 (s, CHCH3), 16.54 (d, J = 6.0 Hz, OCH2CH3), 16.42 (d, J = 6.3 Hz, OCH2CH3). 19F
NMR (283 MHz): δ = −123.06 (dd, J = 87.4, 8.8 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 9.61
(d, J = 87.4 Hz, 1P). IR (neat): 1264, 1025, 984, 673 [cm−1]. MS (EI) m/z = 413.2 [M]+.

Diethyl ((1S, 2R)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (20b).



Molecules 2023, 28, 5579 22 of 31

1H NMR (400 MHz): δ = 7.32–7.29 (m, 5H, Har), 7.25–7.24 (m, 2H, Har), 7.23–7.21 (m,
2H, Har), 7.19–7.18 (m, 1H, Har), 4.41 (dd, J = 21.3, 3.3 Hz, 1H, CH(Ph)CF), 4.24–4.19 (m,
2H, OCH2CH3), 4.18–4.04 (m, 2H, OCH2CH3), 3.73 (q, J = 6.6 Hz, 1H, CHCH3), 1.33 (d,
J = 6.3 Hz, 3H, CHCH3), 1.29 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.26 (td, J = 7.1, 0.8 Hz,
3H, OCH2CH3). 13C NMR (101 MHz): δ = 145.55 (s, Cipso), 136.48 (dd, J = 6.1, 2.7 Hz, Cipso),
128.45, 128.35, 128.30, 128.15, 127.12, 126.84 (6x s, CHar), 111.08 (dd, J = 265.2, 190.1 Hz,
CClF), 65.83 (dd, J = 18.6, 8.7 Hz, CH(Ph)CF), 64.80 (d, J = 7.2 Hz, OCH2CH3), 64.68 (d,
J = 7.4 Hz, OCH2CH3), 55.52 (s, CHCH3), 21.96 (s, CHCH3), 16.48 (d, J = 6.1 Hz, OCH2CH3),
16.43 (d, J = 6.2 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −134.74 (dd, J = 89.0, 21.5 Hz,
1F). 31P{/1H} NMR (122 MHz): δ = 9.02 (d, J = 89.2 Hz, 1P).

Diethyl ((1S, 2S)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (20c).

Diagnostic signals 19F NMR (283 MHz): δ = −125.91 (dd, J = 83.2, 9.2 Hz). 31P{/1H}
NMR (122 MHz): δ = 8.89 (d, J = 83.3 Hz).

Diethyl ((1R, 2S)-1-chloro-1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)ph-
osphonate (20d).

Diagnostic signals 19F NMR (283 MHz): δ = −134.88 (dd, J = 91.3, 21.0 Hz). 31P{/1H}
NMR (122 MHz): δ = 8.66 (d, J = 91.5 Hz).

rac-Diethyl ((1R, 2R)-1-chloro-1-fluoro-2-((4-methoxybenzyl)amino)-2-phenylethyl)
phosphonate (rac-21a) and rac-diethyl ((1R, 2S)-1-chloro-1-fluoro-2-((4-methoxybenzyl)
amino)-2-phenylethyl)phosphonate (rac-21b).

Isolated as a mixture of two diastereomers rac-21a,b (dr 1:0.92), which could not be
separated by the chromatography techniques employed in this study. Pale-yellow oil,
206 mg, yield 96%.

rac-21a: 1H NMR (400 MHz): δ = 7.45–7.42 (m, 3H, Har), 7.39–7.36 (m, 2H, Har),
7.14–7.11 (m, 2H, Har), 6.83–6.81 (m, 2H, Har), 4.45 (dd, J = 8.4, 4.4 Hz, 1H, CH(Ph)CFP),
4.36–4.25 (m, 2H, OCH2CH3), 4.16–4.08 (m, 2H, OCH2CH3), 3.75 (s, 3H, Ph(4-OCH3)), 3.70
(br d, J = 12.9 Hz, 1H, CHHN), 3.47 (d, J = 12.9 Hz, 1H, CHHN), 1.28 (td, J = 7.1, 0.8 Hz, 3H,
OCH2CH3), 1.23 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 158.86 (s,
Car(OCH3)), 134.75 (d, J = 8.3 Hz, Cipso), 131.48 (s, Cipso), 129.83 (d, J = 1.3 Hz, CHar), 129.71,
128.64, 128.18 (3x s, CHar), 113.82 (s, CHarCar(OCH3)), 109.70 (dd, J = 260.8, 191.2 Hz, CClF),
65.57 (d, J = 6.9 Hz, OCH2CH3), 65.07 (dd, J = 22.1, 8.6 Hz, CH(Ph)CF), 64.92 (d, J = 7.1 Hz,
OCH2CH3), 55.31 (s, Ph(4-OCH3)), 50.18 (s, CH2N), 16.45 (d, J = 5.9 Hz, OCH2CH3), 16.32
(d, J = 5.9 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −124.54 (dd, J = 84.8, 8.3 Hz, 1F).
31P{/1H} NMR (122 MHz): δ = 9.37 (d, J = 84.7 Hz, 1P). IR (neat): 1263, 1253, 1024, 981,
672 [cm−1]. MS (EI) m/z = 430.8 [M-H]+.

rac-21b: 1H NMR (400 MHz): δ = 7.43–7.40 (m, 3H, Har), 7.36–7.33 (m, 2H, Har),
7.18–7.14 (m, 2H, Har), 6.80–6.78 (m, 2H, Har), 4.23–4.17 (m, 3H, OCH2CH3, CH(Ph)CFP),
4.10–3.98 (m, 2H, OCH2CH3), 3.76 (s, 3H, Ph(4-OCH3)), 3.65 (br d, J = 12.9 Hz, 1H, CHHN),
3.46 (d, J = 12.9 Hz, 1H, CHHN), 1.25 (td, J = 7.1, 0.9 Hz, 3H, OCH2CH3), 1.22 (td, J = 7.0,
0.8 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 158.83 (s, Car(OCH3)), 135.85 (dd, J = 6.0,
2.4 Hz, Cipso), 131.52 (s, Cipso), 129.90 (d, J = 1.3 Hz, CHar), 129.60, 128.55, 128.21 (3x s,
CHar), 113.81 (s, CHarCar(OCH3)), 110.35 (dd, J = 264.0, 191.1 Hz, CClF), 67.24 (dd, J = 18.8,
8.9 Hz, CH(Ph)CF), 64.99 (d, J = 7.1 Hz, OCH2CH3), 64.61 (d, J = 7.2 Hz, OCH2CH3), 55.30
(s, Ph(4-OCH3)), 50.70 (s, CH2N), 16.42 (d, J = 5.9 Hz, OCH2CH3), 16.35 (d, J = 5.9 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −134.91 (dd, J = 90.6, 20.5 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 8.76 (d, J = 90.8 Hz, 1P).

3.8. Synthesis of α-Fluorinated ß-Enaminophosphonate/ß-Iminophosphonate (22a,b/23a,b)

To a solution of the β-iminophosphonate (10a,b) (137 mg, 0.3 mmol) in anhydrous
THF (2 mL), LiAlH4 (17 mg, 0.45 mmol) at 0 ◦C was added. The reaction was warmed to
room temperature, and then stirred for 40 min. After this time, solvent was evaporated
and chloroform (5 mL) was added to the residue. The crude mixture was filtered through a
syringe filter and purified using column chromatography (AcOEt/hexane: 10%→ 50%) to
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give yellow oil with 83% yield (94 mg), as a mixture of enamine (22a,b) and imine (23a,b):
(E-22a/Z-22b ratio 1:0.3; 22a,b/23a,b ratio 1:0.05)

(E)-Diethyl (1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)vinyl)phosphonate
(E-22a).

1H NMR (401 MHz): δ = 7.38–7.35 (m, 2H, Har), 7.28–7.25 (m, 2H, Har), 7.24–7.20 (m,
2H, Har), 7.19–7.14 (m, 2H, Har), 7.05–7.02 (m, 2H, Har), 6.48 (dd, J = 10.5 Hz, 4.6 Hz, NH),
4.09–3.76 (m, 5H, 2x OCH2CH3, CHCH3), 1.41 (d, J = 6.9 Hz, 3H, CHCH3), 1.35 (td, J = 7.1,
0.7 Hz, 3H, OCH2CH3), 1.26 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 13C NMR (101 MHz):
δ = 151.41 (dd, J = 30.1 Hz, 17.3 Hz, C(Ph) = CF), 144.55 (s, Cipso), 129.52, 129.30, 128.39,
128.33, 126.49, 125.78, (6x s, CHar), 62.77 (d, J = 4.8 Hz, OCH2CH3), 62.56 (d, J = 4.6 Hz,
OCH2CH3), 54.48 (s, CHCH3), 23.41 (s, CHCH3), 16.37 (d, J = 6.7 Hz, OCH2CH3), 16.20 (d,
J = 6.8 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −175.62 (dd, J = 91.7, 4.6 Hz, 1F). 31P{/1H}
NMR (162 MHz): δ = 12.10 (d, J = 91.8 Hz, 1P). MS (EI) m/z = 377.1 [M]+.

(Z)-Diethyl(1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)vinyl)phosphonate
(Z-22b).

Diagnostic signals 19F NMR (283 MHz): δ = −163.94 (dd, J = 92.6, 6.1 Hz). 31P{/1H}
NMR (162 MHz): δ = 9.42 (d, J = 92.5 Hz).

(E/Z)-Diethyl(1-fluoro-2-phenyl-2-(((S)-1-phenylethyl)imino)ethyl)phosphonate
(23a,b).

Diagnostic signals 19F NMR (283 MHz): −205.17 (dd, J = 78.4, 46.2 Hz), −205.73 (dd,
J = 79.1, 46.2 Hz) 31P{/1H} NMR (162 MHz): signals masked by other tautomers signals.

3.9. General Procedure for Synthesis of 2-Fluorinated Aziridine-2-phosphonates (24a–d,
rac-25–26a,b)

To a solution of the β-aminophosphonate (16a–d, rac-b) (0.5 mmol) in anhydrous DMF
(3 mL), triethylamine (84 µL, 61 mg, 0.6 mmol) was added. The reaction mixture was heated
at 70 ◦C for 4 h at inert atmosphere. After completion of the reaction (monitored by 19F
NMR), the solvent was removed under reduced pressure. The mixture was purified by
column chromatography (AcOEt/petroleum ether 5%→ 50%) with previously deactivated
silica gel (short pad 1 cm, 1% triethylamine in hexane, 20 mL).

Diethyl ((2S/2R, 3R/3S)-2-fluoro-3-phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phos-
phonate (24a-d).

Crude reaction mixture: 24a–d (dr 0.78:1:0.13:0.08). Isolated as a mixture of four
diastereomers 24a–d (dr 0.70:1:0.17:0.04) (97mg) and single diastereomer 24a (32mg). Diag-
nostic signals for traces of diastereomers 24c–d were determined from the crude reaction
mixture. Pale-yellow oil, 129 mg, yield 68%.

Diethyl ((2S,3R)-2-fluoro-3-phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phosphonate
(cis-24a).

1H NMR (401 MHz): δ = 7.49–7.43 (m, 1H, Har), 7.30–7.21 (m, 8H, Har), 7.15–7.10 (m,
1H, Har), 4.08–3.96 (m, 3H, OCH2CH3, OCHHCH3), 3.92–3.84 (m, 1H, OCHHCH3), 3.81
(q, J = 6.4 Hz, 1H, CHCH3), 3.18 (d, J = 8.7 Hz, 1H, CH(Ph)CPF), 1.61 (d, J = 6.5 Hz, 3H,
CHCH3), 1.19 (t, J = 7.3 Hz, 3H, OCH2CH3), 1.17 (t, J = 7.2 Hz, 3H, OCH2CH3). 1H{/19F}
NMR (401 MHz): δ = 7.50–7.44 (m, 1H, Har), 7.31–7.21 (m, 8H, Har), 7.15–7.10 (m, 1H,
Har), 4.08–3.97 (m, 3H, OCH2CH3, OCHHCH3), 3.92–3.83 (m, 1H, OCHHCH3), 3.82 (q,
J = 6.6 Hz, 1H, CHCH3), 3.18 (br s, 1H, CH(Ph)CPF), 1.61 (d, J = 6.5 Hz, 3H, CHCH3), 1.20
(t, J = 7.3 Hz, 3H, OCH2CH3), 1.17 (t, J = 7.3 Hz, 3H, OCH2CH3). 1H{/31P} NMR (401 MHz):
δ = 7.49–7.42 (m, 1H, Har), 7.30–7.21 (m, 8H, Har), 7.14–7.10 (m, 1H, Har), 4.08–3.95 (m, 3H,
OCH2CH3, OCHHCH3), 3.91–3.84 (m, 1H, OCHHCH3), 3.81 (q, J = 6.4 Hz, 1H, CHCH3),
3.18 (d, J = 8.7 Hz, 1H, CH(Ph)CPF), 1.61 (d, J = 6.5 Hz, 3H, CHCH3), 1.20 (t, J = 7.3 Hz, 3H,
OCH2CH3), 1.17 (t, J = 7.2 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 143.12 (s, Cipso),
133.87 (s, Cipso), 128.53, 128.38, 128.09, 127.74, 127.60, 127.43 (6x s, CHar), 87.05 (dd, J = 274.2,
272.1 Hz, CFP), 63.35 (d, J = 6.2 Hz, OCH2CH3), 63.35 (d, J = 6.2 Hz OCH2CH3), 60.58 (d,
J = 13.3 Hz, CHCH3), 48.96 (dd, J = 19.1, 1.6 Hz, CH(Ph)CFP), 23.30 (s, CHCH3), 16.31 (d,
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J = 6.3 Hz, OCH2CH3), 16.22 (d, J = 6.2 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −182.45
(dd, J = 118.5, 8.7 Hz, 1F) 31P{/1H} NMR (122 MHz): δ = 9.64 (d, J = 118.8 Hz, 1P).

Diethyl ((2R,3R)-2-fluoro-3-phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phosphonate
(trans-24b).

1H NMR (401 MHz): δ = 7.38–7.34 (m, 2H, Har), 7.29–7.24 (m, 4H, Har), 7.23–7.19 (m,
3H, Har), 7.17–7.13 (m, 1H, Har), 4.35 (quint, J = 7.2 Hz, 2H, OCH2CH3), 4.31–4.24 (m, 1H,
OCHHCH3), 4.23–4.13 (m, 2H, OCHHCH3, CHCH3), 3.26 (t, J = 4.2 Hz, 1H, CH(Ph)CFP),
1.64 (d, J = 6.5 Hz, 3H, CHCH3), 1.44 (td, J = 7.1, 0.7 Hz, 3H, OCH2CH3), 1.33 (td, J = 7.1,
0.6 Hz, 3H, OCH2CH3). 1H{/19F} NMR (401 MHz): δ = 7.37–7.33 (m, 2H, Har), 7.28–7.24
(m, 4H, Har), 7.23–7.19 (m, 3H, Har), 7.18–7.13 (m, 1H, Har), 4.35 (quint, J = 7.2 Hz, 2H,
OCH2CH3), 4.32–4.24 (m, 1H, OCHHCH3), 4.23–4.12 (m, 2H, OCHHCH3, CHCH3), 3.26
(br d, J = 4.3 Hz, 1H, CH(Ph)CFP), 1.64 (d, J = 6.5 Hz, 3H, CHCH3), 1.44 (td, J = 7.0,
0.7 Hz, 3H, OCH2CH3), 1.33 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 1H{/31P} NMR (401 MHz):
δ = 7.37–7.32 (m, 2H, Har), 7.29–7.23 (m, 4H, Har), 7.22–7.18 (m, 3H, Har), 7.17–7.14 (m, 1H,
Har), 4.35 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.32–4.24 (m, 1H, OCHHCH3), 4.22–4.14 (m, 2H,
OCHHCH3, CHCH3), 3.26 (d, J = 4.5 Hz, 1H, CH(Ph)CFP), 1.64 (d, J = 6.5 Hz, 3H, CHCH3),
1.44 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.33 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz):
δ = 143.14 (s, Cipso), 133.62 (dd, J = 5.2, 1.5 Hz, Cipso), 128.39, 128.10, 127.73 (3x s, CHar),
127.61 (t, J = 0.9 Hz, CHar), 127.30, 127.02 (2x s, CHar), 84.27 (dd, J = 258.7, 233.2 Hz, CFP),
64.15 (dd, J = 7.8, 1.1 Hz, OCH2CH3), 63.54 (dd, J = 6.0, 0.5 Hz, OCH2CH3), 61.18 (dd,
J = 5.0, 3.1 Hz, CHCH3), 47.46 (dd, J = 12.7, 5.8 Hz, CH(Ph)CFP), 23.64 (s, CHCH3), 16.39 (d,
J = 6.4 Hz, OCH2CH3), 16.38 (d, J = 6.5 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −168.76
(dt, J = 113.8, 4.8 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 10.83 (d, J = 114.0 Hz, 1P). IR (neat):
1259, 1162, 1019, 957, 759 [cm−1]. HRMS (ESI): m/z calcd for C20H26FNO3P, [M + H]+:
378.1634 found: 378.1628.

Diethyl ((2R,3S)-2-fluoro-3-phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phosphonate
(cis-24c).

Diagnostic signals 19F NMR (283 MHz): δ = −178.36 (dd, J = 114.2, 8.5 Hz). 31P{/1H}
NMR (122 MHz): δ = 8.94 (d, J = 114.1 Hz).

Diethyl ((2S,3S)-2-fluoro-3-phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phosphonate
(trans-24d).

Diagnostic signals 19F NMR (283 MHz): δ = −169.11 (dt, J = 110.8, 4.7 Hz). 31P{/1H}
NMR (122 MHz): δ = 10.22 (d, J = 110.6 Hz).

rac-Diethyl ((2S,3R)-2-fluoro-1-(4-methoxybenzyl)-3-phenylaziridin-2-yl)phospho-
nate (rac-cis-25a) and rac-diethyl ((2R,3R)-2-fluoro-1-(4-methoxybenzyl)-3-phenylazirid-
in-2-yl)phosphonate (rac-trans-25b).

Crude reaction mixture: 25a,b (dr 0.68:1). Isolated as a mixture of diastereomers 25a,b
(dr 0.52:1) (94mg) and single diastereomer 25b (28mg). Pale yellow oil, 122 mg, yield 62%.

rac-cis-25a: 1H NMR (401 MHz): δ = 7.45–7.40 (m, 3H, Har), 7.36–7.29 (m, 2H, Har),
7.23–7.19 (m, 2H, Har), 6.92–6.88 (m, 2H, Har), 4.15 (br d, J = 13.6, 1H, CHHN), 3.99–3.85
(m, 4H, 2x OCH2CH3), 4.01 (br d, J = 13.6, 1H, CHHN), 3.82 (s, 3H, Ph(4-OCH3)), 3.26
(d, J = 8.5 Hz, 1H, CH(Ph)CFP), 1.11 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.09 (td, J = 7.1,
0.7 Hz, 3H, OCH2CH3). 1H{/19F} NMR (401 MHz): δ = 7.45–7.41 (m, 2H, Har), 7.36–7.30
(m, 2H, Har), 7.24–7.19 (m, 2H, Har), 6.91–6.86 (m, 2H, Har), 4.15 (br d, J = 13.5, 1H,
CHHN), 3.97–3.85 (m, 4H, 2x OCH2CH3), 4.02 (br d, J = 13.6, 1H, CHHN), 3.81 (s, 3H,
Ph(4-OCH3)), 3.25 (br s, 1H, CH(Ph)CFP), 1.11 (td, J = 7.1, 0.8 Hz, 3H, OCH2CH3), 1.10
(td, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 1H{/31P} NMR (401 MHz): δ = 7.45–7.41 (m, 2H, Har),
7.36–7.30 (m, 2H, Har), 7.24–7.19 (m, 2H, Har), 6.91–6.86 (m, 2H, Har), 4.15 (d, J = 12.8 Hz,
1H, CHHN), 3.98–3.84 (m, 4H, 2x OCH2CH3), 4.02 (d, J = 13.0 Hz, 1H, CHHN), 3.83 (s,
3H, Ph(4-OCH3)), 3.27 (d, J = 8.4 Hz, 1H, CH(Ph)CFP), 1.11 (t, J = 7.0 Hz, 3H, OCH2CH3),
1.09 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 159.00 (s, Car(OCH3)),
133.44–133.38 (m, Cipso), 131.86 (s, Cipso), 129.21, 128.17, 127.86, 127.56 (4x s, CHar), 113.80
(s, CHarCar(OCH3)), 86.67 (dd, J = 274.0, 272.5 Hz, CFP), 63.15 (d, J = 6.1 Hz, OCH2CH3),
63.03 (d, J = 6.2 Hz, OCH2CH3), 55.23 (s, Ph(4-OCH3)), 53.30 (d, J = 15.1 Hz, CH2N), 49.08
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(dd, J = 19.2, 1.3 Hz, CH(Ph)CFP), 16.12 (d, J = 6.0 Hz, OCH2CH3), 16.11 (d, J = 6.1 Hz,
OCH2CH3). 19F NMR (283 MHz): δ = −180.27 (dd, J = 116.7, 8.4 Hz, 1F). 31P{/1H} NMR
(122 MHz): δ = 9.97 (d, J = 116.9 Hz, 1P).

rac-trans-25b: 1H NMR (401 MHz): δ = 7.39 (d, J = 7.7 Hz, 4H, Har), 7.36–7.30 (m,
3H, Har), 6.87 (d, J = 8.6 Hz, 2H, Har), 4.46 (dd, J = 13.6, 2.8 Hz, 1H, CHHN), 4.34–4.27
(m, 1H, OCHHCH3), 4.25–4.18 (m, 3H, OCHHCH3, OCH2CH3), 4.08 (dd, J = 13.6, 5.1 Hz,
1H, CHHN), 3.80 (s, 3H, Ph(4-OCH3)), 3.45 (t, J = 4.1 Hz, 1H, CH(Ph)CFP), 1.37 (td, J = 7.1,
0.6 Hz, 3H, OCH2CH3), 1.34 (td, J = 7.1, 0.7 Hz, 3H, OCH2CH3). 1H{/19F} NMR (401 MHz):
δ = 7.40–7.35 (m, 4H, Har), 7.37–7.32 (m, 3H, Har), 6.88 (d, J = 8.8 Hz, 2H, Har), 4.47 (d, J = 13.6,
1H, CHHN), 4.32–4.26 (m, 1H, OCHHCH3), 4.25–4.17 (m, 3H, OCHHCH3, OCH2CH3), 4.08
(d, J = 13.5, 1H, CHHN), 3.81 (s, 3H, Ph(4-OCH3)), 3.45 (d, J = 4.1 Hz, 1H, CH(Ph)CFP), 1.38
(td, J = 7.1, 0.6 Hz, 3H, OCH2CH3), 1.35 (td, J = 7.1, 0.7 Hz, 3H, OCH2CH3). 1H{/31P} NMR
(401 MHz): δ = 7.40–7.36 (m, 4H, Har), 7.37–7.32 (m, 3H, Har), 6.88 (d, J = 8.7 Hz, 2H, Har),
4.47 (dd, J = 13.6, 2.8 Hz, 1H, CHHN), 4.33–4.26 (m, 1H, OCHHCH3), 4.25–4.18 (m, 3H,
OCHHCH3, OCH2CH3), 4.08 (dd, J = 13.6, 5.1 Hz, 1H, CHHN), 3.81 (s, 3H, Ph(4-OCH3)),
3.45 (d, J = 4.3 Hz, 1H, CH(Ph)CFP), 1.38 (t, J = 7.1, 3H, OCH2CH3), 1.35 (t, J = 7.1, 3H,
OCH2CH3). 13C NMR (101 MHz): δ = 158.79 (s, Car(OCH3)), 133.58 (br d, J = 5.2 Hz,
Cipso), 131.93 (s, Cipso), 129.99, 128.15, 127.84, 127.67 (4x s, CHar), 113.71 (s, CHarCar(OCH3)),
83.95 (dd, J = 259.6, 231.6 Hz, CFP), 63.71 (d, J = 7.0 Hz, OCH2CH3), 63.50 (d, J = 6.0 Hz,
OCH2CH3), 55.53 (dd, J = 5.4, 3.5 Hz, CH2N), 55.19 (s, Ph(4-OCH3)), 48.43 (dd, J = 12.9,
6.0 Hz, CH(Ph)CFP), 16.27 (d, J = 5.9 Hz, OCH2CH3), 16.25 (d, J = 6.0 Hz, OCH2CH3).
19F NMR (283 MHz): δ = −170.98 (dq, J = 111.7, 4.3 Hz, 1F). 31P{/1H} NMR (122 MHz):
δ = 10.95 (d, J = 111.6 Hz, 1P). IR (neat): 1247, 1164, 1097, 1018, 978, 765 [cm−1]. HRMS
(ESI): m/z calcd for C20H26FNO4P, [M + H]+: 394.1583 found: 394.1587.

rac-Diethyl ((2S,3R)-2-fluoro-1-(4-methoxyphenyl)-3-phenylaziridin-2-yl)phosph-
onate (rac-cis-26a) and rac diethyl ((2R,3R)-2-fluoro-1-(4-methoxyphenyl)-3-phenylazir-
idin-2-yl)phosphonate (rac-trans-26b).

Crude reaction mixture: 26a,b (dr 0.09:1). Isolated as single diastereomer 26b. Diag-
nostic signals for traces of diastereomers 26a were determined from the crude reaction
mixture. Pale-yellow oil, 85 mg, yield 45%.

rac-cis-26a: Diagnostic signals 19F NMR (283 MHz): δ = −171.22 (dd, J = 117.5, 7.9 Hz).
31P{/1H} NMR (122 MHz): δ = 8.63 (d, J = 117.4 Hz).

rac-trans-26b: 1H NMR (401 MHz): δ = 7.51–7.48 (m, 2H, Har), 7.40–7.34 (m, 3H,
Har), 7.13–7.06 (m, 2H, Har), 6.86–6.82 (m, 2H, Har), 4.19–3.98 (m, 4H, 2x OCH2CH3),
3.84 (t, J = 4.1 Hz, 1H, CH(Ph)CFP), 3.77 (s, 3H, Ph(4-OCH3)), 1.31 (td, J = 7.1, 0.6 Hz,
3H, OCH2CH3), 1.17 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 1H{/19F} NMR (401 MHz):
δ = 7.52–7.47 (m, 2H, Har), 7.42–7.35 (m, 3H, Har), 7.11–7.06 (m, 2H, Har), 6.85–6.80 (m,
2H, Har), 4.19–3.96 (m, 4H, 2x OCH2CH3), 3.84 („d”, J = 4.2 Hz, 1H, CH(Ph)CFP), 3.76 (s,
3H, Ph(4-OCH3)), 1.31 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3), 1.17 (td, J = 7.1, 0.6 Hz, 3H,
OCH2CH3). 1H{/31P} NMR (401 MHz): δ = 7.50–7.46 (m, 2H, Har), 7.41–7.34 (m, 3H, Har),
7.11–7.05 (m, 2H, Har), 6.85–6.82 (m, 2H, Har), 4.20–3.99 (m, 4H, 2x OCH2CH3), 3.83 (d,
J = 4.5 Hz, 1H, CH(Ph)CFP), 3.77 (s, 3H, Ph(4-OCH3)), 1.30 (t, J = 7.1 Hz, 3H, OCH2CH3),
1.16 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 156.13 (s, Car(OCH3)),
132.83 (dd, J = 5.3, 1.2 Hz, Cipso), 134.22 (s, Cipso), 129.30 (d, J = 3.2 Hz, CHar), 128.57,
128.38, 127.79 (3x s, CHar), 114.24 (s, CHarCar(OCH3)), 83.91 (dd, J = 260.8, 238.3 Hz, CFP),
63.63 (d, J = 6.9 Hz, OCH2CH3), 63.21 (d, J = 6.0 Hz, OCH2CH3), 55.49 (s, Ph(4-OCH3)),
46.12 (dd, J = 13.1 Hz, 5.4 Hz, CH(Ph)CFP), 16.29 (d, J = 6.1 Hz, OCH2CH3), 16.17 (d,
J = 5.6 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −169.58 (dd, J = 121.4, 4.3 Hz, 1F).
31P{/1H} NMR (122 MHz): δ = 8.82 (d, J = 121.5 Hz, 1P). HRMS (ESI): m/z calcd for
C19H24FNO4P, [M + H]+: 380.1427 found: 380.1421.
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3.10. Separation Method for Chiral Aziridines and Synthesis of Non-Fluorinated Aziridine-2-
phosphonate: Diethyl ((2S,3R)-3-Phenyl-1-((S)-1-phenylethyl)aziridin-2-yl)phosphonate (cis-27)

Method A. Imine 10a-d (dr 1:1, 228 mg, 0.5 mmol) was dissolved in anhydrous methanol
(5 mL) and NaBH3CN (250 mg, 4 mmol), and glacial CH3COOH (88 µL, 92 mg, 1.5 mmol)
was added. The reaction mixture was refluxed for 7h and next the solvent was evaporated.
Then, the residue was dissolved in CH2Cl2 (3 mL) and extracted with a saturated solution of
NaHCO3 and brine. The organic layers were combined, dried over Na2SO4, and evaporated
to give a mixture of products 16a,c, trans-24b,d, and cis-27. The product cis-27 was purified
by column chromatography (AcOEt/hexane: 5%→ 60%) as a pale-yellow oil (58 mg, yield
32%). Amine 16a,c (dr 1:0.1) and aziridine trans-24b,d (dr 1:0.05) were isolated as a mixture
(0.3:1, 84 mg).

Method B. To the mixture of cis- and trans-aziridines (24a-d; 0.64(dr 1:0.07)/1(dr 1:0.09),
113 mg, 0.3 mmol) dissolved in methanol (3 mL), Pd/C (10 mol%, 2 mg) and NaBH4 (23 mg,
0.6 mmol) were added. The reaction was stirred at 70 ◦C for 3h. Then, the solvent was
evaporated, the residue was dissolved in CHCl3 (3 mL), water (10 mL) was added, and it
was extracted (3 × 10 mL CHCl3). The organic layers were dried over anhydrous Na2SO4
and evaporated to give crude products trans-24b,d/cis-27 (1:0.49) separated using column
chromatography with previously deactivated silica gel (short pad 1 cm, 1% triethylamine
in hexane, 20 mL). Cis-27 was isolated as a single diastereomer (42 mg, yield 39%) and
trans-24b,d was isolated as a mixture of diastereomers (dr 1:0.07, 49 mg).

cis-27: 1H NMR (401 MHz): δ = 7.44–7.40 (m, 2H, Har), 7.31–7.26 (m, 4H, Har), 7.23–7.18
(m, 2H, Har), 7.17–7.10 (m, 2H, Har), 3.99– 3.90 (m, 2H, OCH2CH3), 3.85–3.78 (m, 1H,
OCHHCH3), 3.64–3.54 (m, 1H, OCHHCH3), 2.95 (t, J = 6.7 Hz, 1H, CH(Ph)CHP), 2.74 (q,
J = 6.5 Hz, 1H, CHCH3), 1.99 (dd, J = 17.8, 6.8 Hz, 1H, CHP), 1.56 (d, J = 6.5 Hz, 3H, CHCH3),
1.17 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3), 1.07 (td, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 1H{/31P}
NMR (401 MHz): δ = 7.46–7.40 (m, 2H, Har), 7.32–7.25 (m, 4H, Har), 7.24–7.18 (m, 2H,
Har), 7.17–7.11 (m, 2H, Har), 4.00–3.92 (m, 2H, OCH2CH3), 3.86–3.78 (m, 1H, OCHHCH3),
3.65–3.56 (m, 1H, OCHHCH3), 2.96 (d, J = 6.7 Hz, 1H, CH(Ph)CHP), 2.75 (q, J = 6.5 Hz, 1H,
CHCH3), 2.00 (d, J = 6.8 Hz, 1H, CHP), 1.57 (d, J = 6.6 Hz, 3H, CHCH3), 1.18 (t, J = 7.1 Hz, 3H,
OCH2CH3), 1.08 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 143.56 (s, Cipso),
135.94 (d, J = 2.0 Hz, Cipso), 128.54, 128.06, 127.69, 127.51, 127.18, 127.09, (6 x s, CHar), 71.85
(d, J = 6.1 Hz, CHCH3), 62.10 (d, J = 6.4 Hz, OCH2CH3), 61.81 (d, J = 6.4 Hz, OCH2CH3),
46.27 (d, J = 5.7 Hz, CH(Ph)CHP), 39.86 (s, CHP), 23.12 (s, CHCH3), 16.39 (d, J = 6.5 Hz,
OCH2CH3), 16.36 (d, J = 6.0 Hz, OCH2CH3). 31P{/1H} NMR (162 MHz): δ = 21.44 (s, 1P).
HRMS (ESI): m/z calcd for C20H27NO3P, [M + H]+: 360.1729 found: 360.1723.

3.11. Isolation of Trans-Aziridine 24. Synthesis of α-Fluorinated ß-Aminophosphonate: Diethyl
((1S/R, 2S/R)-1-Fluoro-2-phenyl-2-(((S)-1-phenylethyl)amino)ethyl)phosphonate (28a–d)

To the mixture of amine (16a,c) and aziridine (24b,d) (0.8 (dr 1:0.1): 1(dr 1:0.05), 186 mg)
dissolved in methanol (2 mL), NaBH4 (15 mg, 0.6 mmol) and Pd/C (10 mol%, 2 mg) were
added. The reaction was stirred at room temperature for 20 min. Then, the crude mixture
was filtrated through Celite with MeOH as a mobile phase and concentrated under vacuum.
The residue was dissolved in CH2Cl2 (2 mL) and extracted with brine. The organic layers
were dried over anhydrous Na2SO4 and evaporated to give a mixture of monofluorinated
amine 28a–d and aziridine 24b,d (0.8:1, respectively). The crude products 24b,d/28a–d
(28a–d: dr 1:0.8:0.19:0.13) were separated using column chromatography with previously
deactivated silica gel (1% triethylamine in hexane, 20 mL). Amine was isolated as a mixture
of diastereomers 28a–d (dr 1:0.75:0.09:0.05, 70 mg, pale-yellow oil) and aziridine was
separated as a mixture of diastereomers 24b,d (dr 1:0.05, 75 mg).

28a: 1H NMR (401 MHz): δ = 7.43–7.34 (m, 5H, Har), 7.33–7.26 (m, 5H, Har), 4.85 (ddd,
J = 45.2, 5.1, 3.9 Hz, 1H, CHFP), 4.38 (ddd, J = 23.5, 6.2, 5.1 Hz, 1H, CHCFP), 4.02–3.76 (m,
4H, 2x OCH2CH3), 3.67 (q, J = 6.4 Hz, 1H, CHCH3), 1.36 (d, J = 6.5 Hz, 3H, CHCH3), 1.27 (td,
J = 7.1, 0.6 Hz, 3H, OCH2CH3), 1.26 (td, J = 7.1, 0.5 Hz, 3H, OCH2CH3). 13C NMR (101 MHz):
δ = 145.61 (s, Cipso) 138.58 (d, J = 6.6, 1.3 Hz, Cipso), 128.37, 128.34, 128.25, 127.85, 126.91,
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126.58 (6x s, CHar), 92.58 (dd, J = 188.3, 167.2 Hz, CFP), 63.01 (d, J = 6.9 Hz, OCH2CH3),
62.10 (d, J = 6.9 Hz, OCH2CH3), 59.76 (dd, J = 17.9, 3.5 Hz, CHCFP), 54.55 (s, CHCH3),
22.08 (s, CHCH3), 16.33 (d, J = 5.9 Hz, OCH2CH3), 16.15 (d, J = 6.0 Hz, OCH2CH3). 19F
NMR (283 MHz): δ = −213.48 (ddd, J = 72.0, 45.6, 21.2 Hz, 1F). 31P{/1H} NMR (122 MHz):
δ = 16.01 (d, J = 72.2 Hz, 1P). IR (neat): 1253, 1019, 969 [cm−1]. MS (EI) m/z = 379.4 [M]+.

28b: 1H NMR (401 MHz): δ = 7.50–7.43 (m, 5H, Har), 7.35–7.32 (m, 5H, Har), 4.99 (ddd,
J = 45.8, 5.8, 3.7 Hz, 1H, CHFP), 4.28–4.06 (m, 5H, 2x OCH2CH3, CHCFP), 3.71 (q, J = 6.4 Hz,
1H, CHCH3), 1.34 (d, J = 6.5 Hz, 3H, CHCH3), 1.18 (dd, J = 7.1, 0.5 Hz, 3H, OCH2CH3), 1.15
(dd, J = 7.1, 0.6 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 145.45 (s, Cipso) 138.43 (dd,
J = 8.6, 3.6 Hz, Cipso), 128.32, 128.29, 128.20, 127.76, 126.82, 126.57 (6x s, CHar), 90.89 (dd,
J = 187.8, 165.4 Hz, CFP), 63.38 (d, J = 6.4 Hz, OCH2CH3), 62.55 (d, J = 6.7 Hz, OCH2CH3),
59.66 (dd, J = 19.9, 4.6 Hz, CHCFP), 54.45 (s, CHCH3), 21.50 (s, CHCH3), 16.24 (d, J = 5.9 Hz,
OCH2CH3), 16.21 (d, J = 6.0 Hz, OCH2CH3). 19F NMR (283 MHz): δ = −215.99 (ddd,
J = 76.4, 45.3, 23.5 Hz, 1F). 31P{/1H} NMR (122 MHz): δ = 16.16 (d, J = 76.4 Hz, 1P). MS (EI)
m/z = 379.4 [M]+.

28c: Diagnostic signals 19F NMR (283 MHz): δ = −212.07 (ddd, J = 70.3, 45.3, 16.4 Hz).
31P{/1H} NMR (122 MHz): δ = 15.99 (d, J = 70.1 Hz).

28d: Diagnostic signals 19F NMR (283 MHz): δ = −216.77 (ddd, J = 79.8, 45.2, 24.3 Hz).
31P{/1H} NMR (122 MHz): δ = 15.88 (d, J = 79.6 Hz).

3.12. Ring Opening of Fluorinated Aziridine-2-phosphonate: Synthesis of Diethyl ((1R,
2S)-1,2-Dimethoxy-2-phenyl-1-(((S)-1-phenylethyl)amino)ethyl)phosphonate (29a) and Diethyl
((1S, 2S)-1,2-Dimethoxy-2-phenyl-1-(((S)-1-phenylethyl)amino)ethyl)phosphonate (29b)

To the mixture of aziridines 24a–d (cis/trans 1(dr 1:0.45):0.65(dr 1:0.04), 211 mg,
0.5 mmol) dissolved in MeOH (2 mL), H2SO4 (98%; 27 µL, 49 mg, 0.5 mmol) was added
dropwise. The reaction was stirred at 70 ◦C for 2h. Next, the solution was concentrated,
and the crude mixture was neutralized with aqueous NaHCO3, extracted with CH2Cl2
(3 × 6 mL), and washed with brine (6 mL). The organic layers were combined and dried
over anhydrous Na2SO4. After evaporation of the solvent, the crude product was puri-
fied by column chromatography to give a mixture of diastereomers 29a,b (dr 1:0.5) as a
pale-yellow oil, 149 mg, yield 63%.

29a: 1H NMR (401 MHz): δ = 7.42–7.39 (m, 5H, Har), 7.35–7.31 (m, 5H, Har), 4.33
(d, J = 11.9 Hz, 1H, CHOCH3), 4.02–3.89 (m, 4H, 2x OCH2CH3), 3.50 (q, J = 6.7 Hz, 1H,
CHCH3), 3.48 (d, J = 0.7 Hz, 3H, C(P)OCH3), 3.28 (s, 3H, CHOCH3), 1.25 (d, J = 6.4 Hz,
3H, CHCH3), 1.18 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.11 (t, J = 7.0 Hz, 3H, OCH2CH3).
1H{/31P} NMR (401 MHz): δ = 7.43–7.39 (m, 5H, Har), 7.37–7.32 (m, 5H, Har), 4.32 (s, 1H,
CHOCH3), 4.00–3.89 (m, 4H, 2x OCH2CH3), 3.51 (q, J = 6.7 Hz, 1H, CHCH3), 3.49 (s, 3H,
C(P)OCH3), 3.29 (s, 3H, CHOCH3), 1.25 (d, J = 6.4 Hz, 3H, CHCH3), 1.19 (t, J = 7.0 Hz, 3H,
OCH2CH3), 1.11 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 144.55 (s, Cipso),
138.47 (d, J = 5.5 Hz, Cipso), 104.47 (d, J = 196.3 Hz, CP), 63.38 (d, J = 14.7 Hz, CHOCH3),
63.02 (d, J = 6.7 Hz, OCH2CH3), 62.70 (d, J = 6.9 Hz, OCH2CH3), 53.73 (s, CHCH3), 52.79 (d,
J = 4.0 Hz, CHOCH3), 50.49 (d, J = 8.9 Hz, C(P)OCH3), 20.91 (s, CHCH3), 16.48 (d, J = 5.9 Hz,
OCH2CH3), 16.31 (d, J = 6.1 Hz, OCH2CH3). 31P{/1H} NMR (122 MHz): δ = 18.20 (s, 1P).
HRMS (ESI): m/z calcd for C22H33NO5P, [M + H]+: 422.2096 found: 422.2092.

29b: 1H NMR (401 MHz): δ = 7.28–7.24 (m, 5H, Har), 7.22–7.17 (m, 5H, Har), 4.13–4.02
(m, 5H, 2x OCH2CH3, CHOCH3), 3.42 (q, J = 6.5 Hz, 1H, CHCH3), 3.34 (br s, 3H, C(P)OCH3),
3.11 (br s, 3H, CHOCH3), 1.24 (d, J = 6.6 Hz, 3H, CHCH3), 1.17 (t, J = 7.1 Hz, 3H, OCH2CH3),
1.04 (t, J = 7.1 Hz, 3H, OCH2CH3). 13C NMR (101 MHz): δ = 145.03 (s, Cipso), 138.21 (d,
J = 3.1 Hz, Cipso), 103.89 (d, J = 196.3 Hz, CP), 63.09 (d, J = 6.9 Hz, OCH2CH3), 62.58 (d,
J = 6.8 Hz, OCH2CH3), 62.24 (d, J = 7.2 Hz, CHOCH3), 54.16 (s, CHCH3), 52.27 (d, J = 3.0 Hz,
CHOCH3), 49.65 (d, J = 10.4 Hz, C(P)OCH3), 21.85 (s, CHCH3), 16.25 (d, J = 6.1 Hz,
OCH2CH3), 16.15 (d, J = 6.2 Hz, OCH2CH3). 31P{/1H} NMR (122 MHz): δ = 17.32 (s,
1P). IR (neat): 1494, 1452, 1276, 1259, 1233, 1024, 969 [cm−1].
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4. Conclusions

In conclusion, we have successfully developed the first synthesis of N-inactivated
aziridines 24–26 bearing both a fluorine and phosphonate group on the same carbon atom.
Our synthetic methodology involved the one-pot halofluorination of an enamine-imine
tautomeric mixture, resulting in α,α-halofluorinated β-iminophosphonates 10–15, which
were subsequently reduced to yield the corresponding β-aminophosphonates 16–21. When
starting from (R)- or (S)-α-methylbenzyl imine derivatives 10–11,14, the reduction occurred
with high diastereoselectivity (dr 1:1:0.1:0.07). We have also investigated the influence of the
solvent and the base on the aziridine ratio and reaction yield. Based on the spectroscopic
and theoretical studies, we have determined the cis/trans geometry of aziridines obtained
as a racemic mixture or prepared in a diastereoselective manner, through intramolecular
cyclization. Our procedure involving the reduction of cis/trans-aziridine mixture 24 allows
us to isolate chiral trans-aziridines 24 as well as fluorine-free cis aziridines 27. Moreover,
the cis/trans fluoroaziridines 24 can react with sulfuric acid and methanol to give the
non-fluorinated α, β-dimethoxy-α-aminophosphonate 29 in high yield.

The conformational analysis of both diastereomers of α,α-bromofluoro β-aminophosp-
honates conducted through DFT calculations (PCM/ωB97x-D/def2-TZVPD level of the-
ory) allowed us to conclude that the stability of P=O. . .H-N hydrogen bonding can be
influenced by the electrostatic interaction between C-F (C-Br) and N-H, except when it
leads to a phosphonate−aromatic (P=O. . .π) repulsive interaction. This analysis has also
confirmed the configuration at stereogenic centers. To explain the observed differences in
the cyclization tendencies of pairs of β-aminophosphonates, the proper transition states of
the aziridine ring-closure reaction have been modeled.
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