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Abstract: The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method
of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of
the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth
of monometallic gold and bimetallic gold–silver nanostructured particles. We revised the gamma
radiolysis procedure to generate free-standing Au and Au-Ag nano- and micro-structured particles
onto a gas diffusion electrode by the immersion of the substrate in the reaction mixture. The metal
particles were synthesized by radiolysis on a flat carbon paper in the presence of capping agents.
We have integrated different methods (SEM, EDX, XPS, XRD, ICP-OES, CV, and EIS) to examine
in detail the as-synthesized materials and interrogate their electrocatalytic efficiency for glycerol
oxidation under baseline conditions to establish a structure–performance relationship. The developed
strategy can be easily extended to the synthesis by radiolysis of other types of ready-to-use metal
electrocatalysts as advanced electrode materials for heterogeneous catalysis.

Keywords: gold and silver particles; radiolysis; glycerol electro-oxidation; carbon paper electrode

1. Introduction

The selective electro-oxidation of glycerol has been proposed as the most viable
pathway for the production of value-added chemicals from waste biodiesel waste, as
well as a cogeneration pathway for the production of green H2 using high-efficiency
electrolyzers [1–3]. Glycerol production has been increasing since the early 2000s, which
on the one hand lowers its market price, and on the other hand encourages its use as a
feedstock. The selective electro-oxidation of glycerol can lead to value-added products
such as glyceric acid, dihydroxyacetone, tartronic acid, glycolic acid, and formic acid with
applications in many fields [4,5].

Electrocatalysts are required for reducing the activation energy of glycerol electro-
oxidation. Several studies have described promising strategies for designing and con-
structing efficient electrocatalysts, in which the final concept combines the production of
high-value chemicals with the production of hydrogen in electrolysis cells [2,4–9]. These
strategies suggest considering increasing the intrinsic activity of a catalyst’s active site and
increasing its number of active sites. Therefore, the design of the electrocatalyst needs a
precise control of different parameters, such as surface composition, geometry, morphol-
ogy, and support, as they may have an impact on glycerol’s affinity, catalytic activity, as
well as oxidation selectivity. Tremendous studies have been published on electrocatalyst
synthesis to improve the performance in activity and stability for glycerol oxidation. The
range of materials is relatively wide, from noble metal such as Pt, Pd, and Au, and their
combination with non-noble metals (Fe, Co, Ni, Ag, and Cu) in the form of monometallic,
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bimetallic, or tri-metallic structures [10–19]. Pt NPs were widely studied and reported as
a highly active electrocatalyst for alcohol electro-oxidation. However, their scarcity and
surface poisoning by carbonaceous intermediates requires searching for better alternatives.
Among the different electro-catalysts, gold is one of the best alternatives to Pt due to its
high stability in the electro-oxidation of glycerol under alkaline conditions and lower price.
Furthermore, unlike Pt, Au is not susceptible to surface poisoning by CO adsorption, which
promotes glycerol oxidation. In alkaline solution, OH groups adsorb on gold’s surface,
which facilitates the adsorption of glycerol molecules onto the metal’s surface and the
dissociation of the O-H and C-H bonds of glycerol [20,21]. Gold was coupled with different
metals (e.g., Pd, Cu, Ag, Ni, and Co) to modify the activity and selectivity of the electrocat-
alyst and lower the price [11,22–27]. For instance, the deposition of copper onto gold was
shown to improve the selectivity of glycerol electro-oxidation towards C3 products [23]. A
beneficial electronic effect from additional Ag in glycerol electro-oxidation was shown by
Garcia et al. [22] in alkaline medium. The authors demonstrated that the onset potential
decreased from 1.09 V vs. RHE (reversible hydrogen electrode) for monometallic Au/C to
0.51 V vs. RHE for bimetallic AuAg/C, when coupling Au with Ag on an XC-72 Vulcan
carbon substrate. Moreover, the current density of the forward scan of cyclic voltammetry
(CV) in the presence of 1 mol·L−1 glycerol reached the maximum value of 1.60 A·mgAu

−1

for AuAg, larger than other studied compositions (Au/C, Au3Ag/C, and Au3Ag/C).
Most of the methods for the preparation of gold-based electrocatalysts are multi-

step procedures that involve the synthesis of gold nanoparticles in colloidal solution or
powder and the post-synthesis deposition on a conductive substrate using a binding agent
(e.g., Nafion) before any electrocatalytic tests [28–31]. However, a multi-step procedure
complicates the preparation of large-scale electrodes. In addition, the use of a binding agent
can interfere with the active sites of the catalyst and reduce its activity. Therefore, methods
that allow direct growth of the gold-based catalyst on the substrate may be of interest for
future electrode development for the fuel cell and electrolysis cell industries.

Several methods were explored for the one-step growth of electrocatalytic gold
nanoparticles on an electrode’s surface [32–34]. Electrochemical deposition (e.g., gal-
vanostatic or cyclic voltammetry) allows a quick deposition and control over the size and
morphology of particles [32,35–39]; however, it produces the growth of non-conformal
nanoparticles on porous substrates. To realize the direct in situ growth of nanoparticles over
a 2D electrode substrate (e.g., carbon paper), we deploy radiolysis; that is the originality
of our work. Other unconventional physical synthesis routes exist, such as microwave-
assisted and sono- and mechanochemical procedures based on high temperatures and
pressures, high-energy ball mills, or low-temperature ultrasonic frequencies. These pro-
cedures are effective in producing metallic nanoparticles [40–42] but, unlike radiolysis,
they do not induce homogeneous reduction and nucleation throughout the sample volume,
(solutions or heterogeneous media), leading to the homogeneous nucleation and growth
of NPs at room temperature. Additionally, the high reducing power of solvated electrons
enables a reduction of salts of non-noble metals (such as Fe, Ni, or Co), which are difficult
to reduce by chemical methods at room temperature. Another advantage of radiolysis is
that it is a powerful method to synthesize bimetallic nanoparticles of controlled size and
structure (core–shell or alloys) [18,43–45]. To our knowledge, this is the first time that the
radiolytic reduction of metal salts on a solid flat substrate has been described.

In this work, ready-to-use Au and Au-Ag nanostructured particles on a carbon fiber
surface were produced by the radiolysis procedure to interrogate their electrocatalytic
properties for glycerol oxidation in basic conditions [43]. The radiolysis of an aqueous
solution of metal ions is known to lead to homogeneous metal nanoparticles in a single step
with proper control of the nucleation process without the need for addition of chemical
reducing agents [44–46]. High-energy radiations (such as gamma rays, X-rays, or electron
beams) ionize deaerated water, generating reductive (solvated electrons and H• radicals)
and oxidative (HO• radicals) species (see Equation (1)). Oxidative radicals, HO•, are
scavenged by added secondary alcohol (see Equation (2)) or formic acid, which otherwise
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would cause the reverse oxidation of low-valence metal ions or formed atoms. Additionally,
secondary alcohol molecules scavenge H• radicals while generating H2 and reducing
alcohol radicals (see Equation (3)). Metal ions are reduced by solvated electrons (eaq

−) and
by reducing alcohol radicals (see Equations (4) and (5)). The reduced atoms nucleate and
coalesce into stable aggregates whose size is controlled by adding stabilizing agents such
as surfactants, polymers, and some ligands that adsorb to the metal’s surface.

H2O→ e−aq, H3O+, H•, H2, OH•, H2O2 (1)

(CH3)2CHOH + OH• → (CH3)2C•OH + H2O (2)

(CH3)2CHOH + H• → (CH3)2C•OH + H2 (3)

M+ + e−aq → M0 (4)

M+ + (CH3)2C•OH→ M0 + (CH3)2CO + H+ (5)

Previous works describe the synthesis of supported metal nanoparticles by radi-
olysis, either from an aqueous mixture with post-synthesis deposition on conductive
substrates [47–50] or from a suspension in the presence of a powder substrate [51–53].

A phenomenon of galvanic replacement can take place (generally the case at low dose
rates) in the case of the synthesis of bimetallic Au-Ag particles that is also referred to as
silver segregation [25,54,55]. Galvanic replacement occurs between reduced silver atoms
and gold ions, and results in the oxidation of silver and the reduction of gold ions. Gamma
radiolysis at a low dose rate of a solution containing gold (III) complexes and silver (I) ions
first leads to the reduction of silver as it requires fewer transferred electrons. Then, reduced
silver atoms can be replaced by gold (0) particles upon the galvanic replacement [54]. When
all the gold ions are reduced, silver ions reduction takes place on the Au nanoparticles,
leading to Aucore-Agshell nanoparticles being obtained. The dose rate controls the reduction
kinetics. At a high dose rate, the reduction of the metal ions is very fast and AgAu
nanoalloys are obtained [54].

The aim of the present work is to examine the proof of concept for the radiolysis-
assisted direct growth of gold and gold–silver nanostructured particles onto a gas diffusion
electrode (GDE) to yield free-standing electrocatalysts. To prepare the direct growth of
electrocatalysts on substrate, we revised the gamma radiolysis procedure to generate
ready-to-use Au and Au-Ag nanostructured particles on carbon paper (CP, also referred
to as GDE) by the immersion of the substrate in the reaction mixture. The metal particles
were deposited on CP during radiolysis in the presence of capping agents to avoid ag-
glomeration caused by Van der Waals forces. The electrode materials were characterized
by electrochemical techniques, Scanning Electron Microscopy, and X-ray Photoelectron
Spectroscopy, and tested in glycerol electro-oxidation under basic conditions to establish
a structure–performance relationship. This strategy can be readily extended and further
developed to other types of metal catalysts for the possible widespread deployment of
radiolysis to produce ready-to-use electrocatalysts for heterogeneous catalysis.

2. Materials and Methods
2.1. Materials

Potassium tetrachloroaurate (III) hydrate (KAuCl4·H2O, assay 99%), 2-propanol (assay
≥ 99.5%), sodium citrate dihydrate (Na3C6H5O7·2H2O, assay ≥ 99%), poly(acrylic)acid
(partial sodium salt, 60 wt.% solution in water) with average Mw = 2000 (GPC), silver
sulfate (Ag2SO4, ass. ≥ 99%), and lead nitrate (Pb(NO3)2, assay > 99.0%) were purchased
from Sigma-Aldrich. Sodium hydroxide (assay 98.70%) was obtained from Fisher Scientific
(Illkirch, France) and glycerol (assay≥ 99% extra pure) from Acros Organics (Geel, Belgium).
Gas diffusion electrode (GDE) based carbon paper (further referred to as CP), with a
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thickness of 190 µm, was ordered from the Fuel Cell Store (Bryan, TX, USA). The used
outgassing gas (argon) was of ultrapure quality and purchased from Air Liquide France
(Paris, France). Ultra-pure water was provided by Milli-Q Millipore source (MQ: 18.2 MΩ
cm at 20 ◦C).

2.2. Radiolytic Synthesis

Radiolytic protocol of Au NPs synthesis was based on previously published synthesis
procedures in the absence and presence of supports [47,48,56]. In this work, we adapted the
methodology by immersing the CP substrate in the reaction mixture during radiolysis, to
obtain ready-to-use electrocatalysts. A panoramic 60Co gamma source located at Institute of
Physical Chemistry (Orsay, France) with a maximum dose rate of 4 kGy/h was used. The CP
was cut into a rectangle of size 3× 2.5 cm and inserted into the glass vial, which was placed
in front of the gamma source. A 30 mL aqueous solution already containing dissolved Au
and/or Ag precursors (KAuCl4, Ag2SO4), 2-propanol (a scavenging secondary alcohol),
and a capping agent was poured into the vial. Either sodium citrate (further referred to as
Cit) or poly(acrylic)acid (further referred to as PAA) was used as a capping agent. Their
concentrations were varied for the different reaction mixtures, which are described below in
Table 1 for the synthesis of both monometallic and bimetallic electrocatalysts. The solution
in the presence of the CP substrate was exposed to irradiation doses, defined on the basis
of 4.8 kGy for the reduction of 1 mM Au (III) and 1.6 kGy for the reduction of 1 mM Ag (I).
The total dose was adjusted to the concentrations of the two metals in the final mixture.

Table 1. Concentrations of AuCl4−, Ag+, Cit, and PAA in the final reaction mixture.

[AuCl4−], mM [Ag+], mM Cit, mM PAA, M Sample Reference

1.0 0 1.3 0 Au_1.3mM-Cit
1.0 0 40 0 Au_40mM-Cit
1.0 0 0 0.5 Au_0.5M-PAA
1.0 0 0 1.0 Au_1M-PAA
1.5 0.5 0 0.5 Au75/Ag25_0.5M-PAA
1.5 0.5 0 3.2 Au75/Ag25_3.2M-PAA
1.0 1.0 0 0.5 Au50/Ag50_0.5M-PAA
1.0 1.0 0 3.2 Au50/Ag50_3.2M-PAA

It was not possible to synthesize a monometallic Ag electrocatalyst in the presence of
both PAA and Cit, or a bimetallic Au-Ag electrocatalyst in the presence of Cit (see Figure S1),
due to particle agglomeration and precipitation shortly before the onset of radiolysis.

2.3. Characterization Techniques
2.3.1. Cyclic Voltammetry

Cyclic voltammetry (CV) was carried out in a three-electrode cell in alkaline conditions.
An amount of 1 M aqueous solution of NaOH was used as an electrolyte. A double-junction
mercury–mercury oxide electrode (MOE) was purchased from Origalys France and utilized
as a reference electrode. All CV graphs were reported with potential values converted
to the reversible hydrogen electrode (RHE) scale. The conversion method is described in
Supplementary Materials (Figure S2). A 1 × 0.5 cm rectangular piece of the as-prepared
CP was prepared as the working electrode. Note that only half of this piece (0.5 × 0.5 cm)
was immersed in the solution and served as a working area, providing 0.50 cm2 of the
geometrical surface area that received the deposition. The real surface area of the 3D
microfiber structure was not considered. The second half of the CP was left for wire
attachment. A glassy carbon plate of 12.4 cm2 was used as a counter electrode. CV
measurements were conducted at a scan rate of 50 mV·s−1 between 0.1 and 1.6 V vs. RHE
for monometallic samples. Unless otherwise specified, bimetallic samples were analyzed
between 0.1 and 1.55 V vs. RHE. CV scans performed in 1 M NaOH solution without
glycerol are referred to as blank CV. To evaluate the glycerol oxidation activity, CV scans
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were performed in the aqueous solution of 1 M NaOH + 0.1 M glycerol. The blank and
glycerol voltammograms were corrected for iR drop. The iR-free graphs were plotted
by replacing the Eapplied with Ereal based on the expression Ereal = Eapplied − RΩ × I. The
resistance RΩ is defined by the intersection of the Nyquist curve with the X-axis at high
frequencies in electrochemical impedance spectroscopy (EIS) analysis. The calculation of the
electrochemically active surface area is provided in the Supplementary Materials document.

2.3.2. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance is identified by measuring current upon applying an
excitation potential that generates an alternating current at the same frequency,ω, as the
potential. The data points of impedance (Z(ω)) in EIS are produced at different frequencies
as real (Z′) and imaginary (Z′′) components of impedance. Setting the real component on
an X-axis and the imaginary component on a Y-axis builds up a semi-circle shape on a
Nyquist plot.

The charge-transfer resistance (Rct) is an important parameter that gives an under-
standing of the ability of the electron transfer electrode reaction to conduct a large current
density with a smaller driving force (overpotential). The Rct is defined by the size of the
semicircle in the Nyquist plots [57]. The measurements were carried out at different elec-
trode potentials in the range of frequencies between 100 kHz and 25 mHz. The amplitude
was set to 10 mV.

2.3.3. Underpotential Deposition of Lead (Pb UPD)

Pb UPD analysis was performed to identify the crystallographic orientation of grown
monometallic Au and bimetallic Au-Ag particles. The deposition of Pb on the radiolysis-
modified carbon paper electrode surface (1 × 1 cm square) was realized by cyclic voltam-
metry scans in 1 mM Pb(NO3)2 and 1 M NaOH solution. The potential was cycled from
800 to 250 mV vs. RHE in the three-electrode cell in the presence of the MOE reference
electrode and the glassy carbon plate (12.4 cm2) as a counter electrode.

2.3.4. Material Characterization

Scanning Electron Microscopy (SEM) micrographs were obtained on a ZEISS Hitachi
S-4800 microscope. To enhance the high-resolution (HR) SEM imaging capability, a thin
layer (1–5 nm) of carbon or platinum was coated on the samples. Energy dispersive X-ray
(EDX) analysis was carried out with EVOHD 15 microscope.

X-ray Photoelectron Spectroscopy (XPS) analysis was conducted on a PHI 5000 Versa
probe II apparatus from ULVAC-PHI Inc. A monochromatized Al Kα source (1486.6 eV)
was used with a spot size of 20 µm. A charge neutralization system was used to limit a
charge effect. The remaining charge effect was aligned, fixing the C–C bond contribution
of a C 1s peak at 284.8 eV. Survey spectra were recorded with a 187 eV pass energy while
high-resolution spectra were recorded with a 23 eV pass energy. All the peaks were fitted
with Casa XPS software (version 2.3.24PR1.0) using a Shirley background. Quantification
from deconvoluted spectra was carried out using the transmission function of the apparatus
and angular distribution correction for an angle of 45◦. Sensitivity factors were extracted
from their integration of cross-section and escape depth correction.

Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis was
performed on 1 × 1 cm of carbon paper after deposition of Au or Au-Ag NPs. Prior to the
measurement, samples were submerged in a mixture of concentrated HNO3 (70%) and
HCl (37%) (v/v. 1:1). The complete solubilization of the metals was achieved by heating
the whole mixture of the acids and electrocatalyst with microwaves in a sealed reactor
for 30 min. A spectrometer Optima 2000 DV from Perkin Elmer was used to conduct a
quantitative determination of metal weight fractions.

X-ray Diffraction (XRD) data were collected at IEM with an X’pert Pro 2-circle diffrac-
tometer equipped with an X’celerator detector. The diffractogram was recorded in Bragg–
Brentano configuration with Ni-filtered Cu K-alpha radiation.
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3. Results and Discussion
3.1. Characterization of the Gold-Based Electrocatalysts
3.1.1. SEM and EDX Analysis

The successful synthesis of metallic gold formed by direct growth on carbon paper by
immersing the support in the reaction mixture during gamma radiolysis was demonstrated
by SEM observations (Figure 1).
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Figure 1. SEM micrographs of Au and Au-Ag particles deposited on CP during gamma radiation of
aqueous solutions containing different KAuCl4, Ag2SO4, Cit, and PAA concentrations separated by
blue lines. Au_1.3mM_Cit; Au_40mM_Cit; Au_0.5M_PAA; Au_1M_PAA; Au75/Ag25_0.5M_PAA;
Au50/Ag50_0.5M_PAA; Au75/Ag25_3.2M_PAA; Au50/Ag50_3.2M_PAA.

Monometallic Au particles were deposited on the CP surface from a 1 mM KAuCl4
solution stabilized by different concentrations of Cit (1.3 mM or 40 mM in the first-row
images) or PAA (0.5 M or 1.0 M in the second-row images). The resulting materials are
referred to as Au_1.3mM-Cit, Au_40mM-Cit, Au_0.5M-PAA, or Au_1M-PAA, respectively.
At lower resolutions, SEM images display successful growth of metal particles on the outer
as well as inner fiber layers (a few fibers in depth). The species produced upon radiolysis,
solvated electrons and alcohol radicals, reduce the metal ions or complexes (which have
diffused in the CP) very homogeneously in the substrate [32]. Therefore, the radiolysis
method results in the formation of metal particles on the upper and inner layers of the
fibers, in contrast to the electrochemical electrodeposition method that leads to the growth
of metal particles only on the outer fibers [46].

For Au_1.3mM-Cit, the higher magnification image (scale bar of 1.2 µm) shows the
homogeneous distribution of the nanoparticles. Two different particle morphologies are
observed: flower-like particles formed by several 2D platelets with an overall size of
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1–1.5 µm, and nanoparticles characterized by individual platelets of about 40 nm. However,
the addition of a higher amount of Cit up to 40 mM significantly lowers the concentration
of Au NPs on the surface (images in the top right corner). It has been shown that sodium
citrate is able not only to stabilize Au NPs but also to induce the reduction of Au (III) ions
in solution [58]. This reduction is facilitated when a solid substrate (e.g., CP) is present in
the reaction mixture. Therefore, a reduction of AuCl4− is probably initiated by the citrate
prior to gamma irradiation and inducing the adsorption of Au colloids on the CP surface.

Radiolysis of the KAuCl4 solution in the presence of PAA generated rather different
Au particle morphologies. The PAA concentration between 0.5 M and 1 M led to the
formation of two groups of particles, one ranging from 270 to 310 nm and the second in
the 100 nm range (see second row in Figure 1). The density and size distributions of the
particles remain non-homogeneous.

An electrocatalyst consisting of a silver deposit alone was not reported in this work
due to the infeasibility of its synthesis under the studied conditions (more details in the
Materials and Methods section) and its low activity towards glycerol oxidation known
from the literature [25,30].

Au-Ag bimetallic particles were grown in situ by radiolysis of the reaction mixtures
containing the dissolved precursors of [AuCl4]− and [Ag]+ in a molar ratio of 75:25 or 50:50
(referred as to Au75/Ag25 and Au50/Ag50, respectively), while the total concentration of
metal ions was maintained constant at 2 mM. They were synthesized in the presence of
PAA with the concentrations 0.5 or 3.2 M PAA. A significant agglomeration of the particles
is observed with a very wide size distribution ranging from a few tens of nanometers
to several micrometers (see third- and fourth-row images in Figure 1). As the reaction
mixture is prepared using dissolved metallic precursor salts, the counter ions may establish
an electrolytic environment that favors the dehydration of the PAA layer, leading to its
chain shrinkage and particle aggregation [59]. An increase in particle density was observed
with increasing Ag concentration in the initial reaction mixture (from 75:25 to 50:50) and
increasing PAA concentration from 0.5 M to 3.2 M. Sodium citrate was also tested in the
fabrication of Au-Ag particles; however, rapid precipitation when Cit was added to the
reaction mixture prior to radiolysis did not allow for the radiolytic synthesis of Au-Ag
particles on the CP surface.

The EDX spectra and calculated atomic fractions support the relative increase in the Ag
fraction in the final materials with the increase in PAA concentration (see Figures S3–S6 and
Tables S1–S4). When PAA increases from 0.5 M to 3.2 M, the Au:Ag ratio varies from 20:1
to 15:1 for the Au75/Ag25 sample, and from 10:1 to 2:1 for the Au50/Ag50 sample. These
variations confirm that a higher amount of PAA leads to a higher fraction of Ag adsorbed
on the CP surface compared to Au. The galvanic replacement phenomenon, leading the
reduced silver (Ag0) to react with the Au (III) species to form Au0 and Ag (I), could be a
reason for the high Au/Ag ratio. Such galvanic replacement leads to the eventual reduction
of the gold precursor rather than silver in the initial stages of radiolysis [54].

In this work, the Au particles reached a much larger size, between 100 nm and
1300 nm, depending on the nature of the capping agent, with a very wide size distri-
bution as compared with 2–20 nm Au synthesized by gamma radiolysis reported in the
literature [43,46,52,60]. In most previous studies, Au NPs were deposited in situ or by
subsequent wet impregnation on powder substrates using templates or binders. We have
provided the first proof of concept to directly grow gold–silver-based nanostructured
materials by radiolysis onto gas diffusion electrodes (GDEs) as free-standing electrocat-
alysts. Further optimizations, including the impact of irradiation dose, dose rate, and
pH [31,32], should be considered in future work to decrease the particle size and reduce
the size distribution.

3.1.2. Electrochemical Analysis

To determine the electrochemical characteristics of the as-fabricated materials, we
next utilized the CV in 0.1 M NaOH solution (further referred to as blank CV). For the
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monometallic samples, the blank CV profiles shown in Figure 2A display a capacitive
current range between 0.1 and 0.6 V vs. RHE and a broad anodic peak around 1 V vs.
RHE, which is attributed to the specific adsorption of OH− species (i.e., formation of
surface Au(OH)* species) [61,62]. The following increase in the anodic current around
1.3 V vs. RHE samples occurs due to oxidation of Au(OH)* to AuOx oxide [61,63]. The
potential sweep was reversed at 1.6 V vs. RHE prior to further oxidation of the water. An
asymmetric cathodic peak was observed at 1.07 V vs. RHE, assigned to the reduction of
gold oxide back to metallic gold. For the sample Au_1.3mM-Cit firstly synthesized (black
dash line), the increase in negative current at low potential is assigned to the reduction of
O2 at the surface, which originates from a poor removal of the dissolved gas by bubbling
N2 gas in the electrolyte that was further improved for the following samples. For the
sample Au_40mM-Cit (red dash line), a greater Cit induces a current density that is about
four times lower, and it is consistent with the reduced deposition density observed in
the SEM micrographs. For samples prepared with PAA (blue and green dash lines), the
voltammograms show broader oxidation peaks which are probably due to the altered access
and diffusion of solutes at the metal surface [64,65]. The current density peaks increase
with increasing PAA concentration, consistent with the deposition density observed in
the SEM images. The reduction peak shows a shoulder on the more negative potential
side, suggesting the possible formation of different Au crystal lattices, as evidenced by the
different Au morphologies (small particles and larger agglomerates).
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Figure 2. Cyclic voltammograms recorded for (A) monometallic and (B) bimetallic samples grown in
situ during gamma radiation in 1 M NaOH solution at 25 ◦C (scan rate = 50 mV·s−1). Insert zooms
into a range between 0.2 and 1.3 V vs. RHE to better show the increase in current at 0.90–1.15 V
vs. RHE.

In the case of bimetallic CP-Au-Ag samples, a capacitive current is observed between
0.1 and 0.7 V vs. RHE on CV profiles (Figure 2B). A slight increase in current between
0.90 and 1.15 V vs. RHE is assigned to the specific adsorption of OH− species on the Au-Ag
surface [63,66]. The anodic current increases from 1.20 V vs. RHE and diminishes to about
1.52 V vs. RHE. The current density peaks decrease in the following order of samples:
Au50/Ag50-3.2M-PAA > Au75/Ag25-0.5M-PAA > Au75/Ag25-3.2M-PAA > Au50/Ag50-
0.5M-PAA, contrary to the deposition density observed in SEM images. This may be
attributed to an inhomogeneous distribution of the particles deposited on the outer surface
and inner fibers and to the instability of the PAA-capped particles. Nevertheless, the
positions of the peaks provide useful information about the electrode surface. The samples
Au75/Ag75-3.2M-PAA (red solid line) and Au50/Ag50-3.2M-PAA (green solid line) exhibit
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an oxidation peak at 1.37 V vs. RHE with a shoulder at 1.28 V vs. RHE. This peak shift to a
more positive potential, as compared to the monometallic Au samples, can be linked to
the presence of silver and PAA on the surface. The shoulder can be attributed to the late
oxidation of Au→Au(OH)*, while the peak can be assigned to the further oxidation of gold
and silver to oxides, AuOx and Ag→ Ag2O. The anodic peak of Au75/Ag25-0.5M-PAA
(black solid line) is even more shifted towards the higher potential of 1.47 V vs. RHE, with
a shoulder at 1.34 V vs. RHE. The shoulder can be ascribed to the oxidation of Au and Ag
to their oxides, while the main peak is a sign of the oxidation of residual silver [61]. The
presence of a residual fraction of Ag is supported by the highest Au:Ag ratio in Au75/Ag25-
0.5M-PAA defined by EDX (i.e., lower Ag content). A very low and broad anodic peak
observed for the Au50/Ag50-0.5M-PAA (blue solid line) points to a low loading of Au and
Ag NPs or serious coagulation, leading to a decrease in the active surface area.

Reversing the potential scan at a higher potential of 1.6 V vs. RHE for the Au50/Ag50-
3.2M-PAA sample induced further oxidation of surface species. As no such oxidation was
observed for the monometallic radiolytic samples, the origin of this second peak can be
ascribed to the oxidation of silver (I) oxide to silver (II) oxide. This silver (II) oxide species
are then reduced back to silver (I) oxide at 1.34 V vs. RHE (see green line). When the scan
was reversed at 1.55 V vs. RHE for the other bimetallic samples, an analogous second
electron exchange was not observed. The following narrow cathodic peak appears at 1.12 V
vs. RHE for Au75/Ag25-3.2M-PAA (red line), which is assigned to the reduction of Ag2O to
Ag0. The shoulders of these peaks are at 1.02 V vs. RHE resulting from the reduction of
AuOx to Au. The high current density generated by the narrow part of the peak supports
the segregation of Ag particles to the outer shell. In contrast, the Au75/Ag25-0.5M-PAA
(black line) and Au50/Ag50-0.5M-PAA (blue line) samples display a little bump on the peak
shoulder, pointing to a smaller Ag surface area in agreement with EDX analysis. Their peak
maxima are at 1.02 V vs. RHE and support a larger Au surface area. The other sample,
Au50/Ag50-3.2M-PAA (green line), shows a broad peak at 1.06 V vs. RHE that is attributed
to the reduction of AuOx and Ag2O, pointing to the presence of an alloyed structure.

Monometallic Au particles were obtained using PAA and Cit as capping agents,
whereas bimetallic Au-Ag particles were obtained only with PAA (rapid precipitation of
Au-Ag in the presence of Cit). Therefore, the difference in the impact of PAA or citrate on
the final electrochemical properties can only be evaluated for Au particles. The higher con-
centration of PAA promoted a higher deposition density of the particles, which correlates
with the greater reduction peak. However, a higher concentration of Cit led to lower Au
deposition density on the CP and a low reduction peak, which may be related to a higher
concentration of remaining undeposited Au particles. The sample with a lower concentra-
tion of Cit, Au_1.3mM-Cit, led to higher deposition density and a higher reduction peak. A
similar influence of PAA was observed for bimetallic samples. The higher concentration of
PAA led to higher reduction peaks of bimetallic samples, which is also consistent with the
greater deposition densities in Au75/Ag25-3.2M-PAA and Au50/Ag50-3.2M-PAA.

3.1.3. X-ray Photoelectron Spectroscopy

We used XPS to probe the surface state and composition of the bimetallic Au75/Ag25-
0.5M-PAA, Au50/Ag50-0.5M-PAA, and Au50/Ag50-3.2M-PAA samples more closely. For all
three samples, survey XPS analysis (Figure S7) confirms the presence of gold, silver, carbon,
and oxygen atoms (more detailed information on the XPS peaks from the survey analysis
can be found in the Supplementary Materials) [67].

For the Au75/Ag25-0.5M-PAA sample, the high-resolution XPS spectra of typical Au
4f and Ag 3d orbital ranges show the formation of the metallic Au and Ag states with the
Au 4f7/2 peak at 84.4 eV and Ag 3d5/2 peak at 368.2 eV (see Figure 3a). Furthermore, the
observation of O 1s peaks at 533.4 eV in the high-resolution XPS spectra (see Figure S8)
corroborates the absence of metal oxides that generate a characteristic signal below 531
eV [67]. The data of deconvoluted XPS spectra are reported in Tables S5–S7. The observation
of the peak positions is consistent with XPS reports for supported Au0 and alloyed Ag0
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structures [68–71], while they disagree with XPS reports of their oxidized forms [67,72,73].
However, the large FWHM of the Ag 3d signals suggests the presence of another component
at a higher binding energy. We hypothesized the emission of Au 4d5/2 and 4d3/2 plasmons
at 370.6 and 376.8 eV, respectively. The observation of this plasmon effect under X-ray beam
suggests the presence of gold particles of nanometric size on the surface. The deconvolution
of the peaks resulted in a Au:Ag atomic ratio of 2.2:1. An important difference between
the Au:Ag atomic ratios defined by XPS (2.2:1) and EDX (20:1) in Au75/Ag25-0.5M-PAA
suggests the segregation of silver atoms on the upper surface of Au-Ag particles (see
comparison of metal fractions by XPS and EDX estimates in Table 2). This is related to
the different depth of analysis of the two instruments. The XPS analysis provides the
compositional information only for the top thin layer (4–10 nm) and EDX characterizes the
bulk by penetrating much deeper (>1 µm). Therefore, the different Au:Ag ratios obtained
by the two instruments confirm that the Ag content increases from bulk to the top surface
with respect to the Au content. Therefore, it suggests that Ag is more concentrated at
the outer surface of Au-Ag particles, pointing to a possible segregation of silver. This is
consistent with the reported Ag segregation in the radiolytic synthesis of Au-Ag bimetallic
nanoparticles [54].

Table 2. The Au:Ag atomic ratios estimated by XPS and EDX measurements of Au75/Ag25-0.5M-PAA,
Au50/Ag50-0.5M-PAA, and Au50/Ag50-3.2M-PAA.

Analyzed Samples
Au:Ag Atomic Ratios Determined By

XPS EDX

Au75/Ag25-0.5M-PAA 2.2:1 20:1
Au50/Ag50-0.5M-PAA 5.4:1 10:1
Au50/Ag50-3.2M-PAA 1.1:1 1.6:1

For the Au50/Ag50-0.5M-PAA sample, with equal molar fractions of [AuCl4−] and
[Ag+] in the initial reaction mixture, the high-resolution XPS spectra (see Figure 3b) displays
narrow-scan spectra of Au 4f and Ag 3d at the same positions, confirming the metallic state
of both metals.

The resulting deconvolution of these spectra revealed a Au:Ag atomic ratio of 5.4:1
(Table S6), which is twofold lower than the value defined by EDX (10:1). This suggests that
gold is enriched more in the core of the Au-Ag particles rather than in the top layer of the
particles (see Figure 4). It also points to the difference in the reduction rates of Au (III) in
the initial and final stages of the radiolysis. In the initial stages of the radiolysis, reduced
silver promotes the reduction of gold and oxidizes back to silver (I), contrary to the final
stages. Moreover, the Ag 3d region in XPS also shows the presence of plasmons from the
Au 4d5/2 and 4d3/2 components similarly to Au75/Ag25-0.5M-PAA, which supports the
presence of metallic Au on the top surface.

Finally, for the Au50/Ag50-3.2M-PAA sample, the high-resolution XPS measurement
also exhibits Au 4f and Ag 3d at the analogous positions consistent with the metallic state
(Figure 3c). Herein, the ratio of atomic fractions Au:Ag decreased to 1.1:1 (Table S7). This is
consistent with increased concentrations of Ag (I) (from 0.5 mM to 1 mM) and PAA (from
0.5 M to 3.2 M) in the reaction mixture. The analogous decrease in the Au:Ag ratio was
also observed by EDX analysis (1.6:1). Therefore, it suggests that the Ag content is slightly
more concentrated near the upper surface of the particles rather than in the core. Such
segregation of Ag to the top surface and low Au:Ag ratio (1.1:1) could be a reason for the
absence of the Au 4d plasmon signal.
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High-resolution XPS analysis of two equimolar (Au50/Ag50) samples confirms the
reduction of Au and Ag to the metallic states and corroborates the segregation of Ag atoms.
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It can be proposed that promotion of Au (III) reduction by Ag segregation is affected by the
initial ratio of Au and Ag precursors. When the initial Au:Ag ratio is low, the reduction of
gold occurs at a higher rate than the reduction of silver due to two processes: radiolytic
effect (reduction by solvated electrons and reducing radicals) and galvanic replacement
with the silver atoms. This results in a silver-rich shell on the bimetallic particles. When
the initial Au:Ag ratio is high (e.g., Au75/Ag25), two mentioned paths for gold’s reduction
are also valid, but the galvanic replacement with the lower concentration of silver may
require a higher number of reduction/re-oxidation cycles and contribute less to the overall
reduction of gold. A high difference in the Au:Ag ratios (2.2 vs. 20) in the outer shell and
in the whole particle of Au75/Ag25_0.5M-PAA observed by XPS and EDX, respectively,
suggests that there were a high number of redox cycles of silver followed by its segregation.

A high-resolution XPS study of the Au 4f spin-orbitals in all the samples revealed
4f7/2 and 4f5/2 components (84.4 and 88.2 eV, respectively) matching well with metallic
Au [70,74] and locating at a lower binding energy than Au(I) or Au (III) (4f7/2 > 85 eV) [67].
Analogously, the positions of silver 3d5/2 and 3d3/2 peaks supported metallic states and
excluded the formation of silver oxide or halide. The deconvolution of the XPS data
and the comparison with EDX results have pointed to the higher concentration of gold
content in the core and lower concentration of gold in the upper surface of the particles,
which supports the phenomenon of silver segregation and the formation of core–shell
Ag@Au nanoparticles.

3.1.4. X-ray Diffraction

X-ray Diffraction (XRD) analysis reveals metallic structures on the surface of the
monometallic and bimetallic samples (see Figure S9). The samples Au_1M-PAA, Au75/Ag25-
0.5M-PAA, and Au50/Ag50-0.5M-PAA show (111), (200), (220), and (331) crystal lattice
patterns of the fcc crystal phase at 38.4◦, 44.7◦, 64.8◦, and 77.7◦, respectively. These 2θ values
are in agreement with the XRD data of Au and Ag particles reported by our group and
other research groups [33,34]. These peaks are observed with a shift from the reference XRD
patterns of Au in the fcc phase (JCPDS 00-004-0784, gray bars in Figure S9) expected at 38.2◦,
44.4◦, 64.6◦, and 77.5◦. The fcc structure of Ag exhibits XRD patterns very close to those of
the fcc Au (JCPDS 00-004-0783, green bars in Figure S9). The 2θ shift between the reference
and actual peaks is about 0.2◦, which might be related to the highly contrasting nature
and thickness of materials under an X-ray beam. It is also termed as a problem of X-ray
micro absorption. Reference patterns of carbon (see orange bars corresponding to JCPDS,
00-026-1080) helped to assign XRD peaks at 43.3◦ (with a shoulder at 42.7◦), 47.7◦, 54.8◦,
and 65.8◦ to the following carbon lattices: (101), (100), (103), (008), and (107), respectively.
The other peaks that were observed at 36.2◦, 39.6◦, 48.7◦, and 57.6◦ remained unassigned.
The presence of AgCl can be excluded as the XRD patterns would show more shifted
peaks (ca. 32◦, 46◦, 55◦, and 57.5◦) [75,76]. However, the sample Au50/Ag50-3.2M-PAA
(brown curve), obtained with a higher PAA agent, displays less intense peaks of initially
defined crystal lattices, such as (111), (200), and (220). This might originate from the use of
a six-fold higher concentration of the PAA agent in the reaction mixture, which could affect
the nucleation step of Au and Au-Ag particles. However, the unassigned peaks are still
observed with almost the same intensity as the first two samples.

By considering the intensities and areas of the peaks, the PbUPD characteristics clearly
reveal the formation of a gold metal surface upon gamma irradiation for the samples
Au_1.3mM-Cit and Au_1M-PAA (in Figure S10 and Figure S11, respectively). The peaks at
0.38 and 0.43 V vs. RHE are assigned to the adsorption and desorption of the Pb monolayer
onto the (111) facets, respectively, and the large anodic peak at 0.60 V vs. RHE and its
cathodic side at 0.52 V vs. RHE confirm a deposit on the (110) lattice. These assignments
are in agreement with previous works [77,78]. The PbUPD characteristics for the bimetallic
Au75/Ag25-0.5M-PAA and Au50/Ag50-0.5M-PAA (Figure S12 and Figure S13, respectively)
also reveal the presence of a gold metal surface with the formation of (111) and (110) crystal
facets [66,79]. However, Au75/Ag25-0.5M-PAA shows a larger crystal lattice contribution
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(110), which could be related to a higher active surface area, whereas Au50/Ag50-0.5M-PAA
shows a smaller crystal lattice contribution (110), which could be related to a smaller active
surface area, in agreement with the blank CVs.

The direct growth of monometallic Au and bimetallic Au-Ag particles directly on the
3D carbon paper was achieved by in situ gamma radiation. The Au and Au-Ag particles
formed a large average size (between 0.1 and 1.5 µm) and agglomeration as observed in
SEM images. Moreover, the difference between Au:Ag ratios provided by XPS and EDX
measurements in some bimetallic samples pointed to the segregation of Ag atoms to the
upper surface.

3.2. Electrocatalytic Performance towards Glycerol Oxidation
3.2.1. Cyclic Voltammetry Measurements in the Presence of Glycerol

We next investigated the efficiency of the samples for glycerol electro-oxidation by CV
measurements in 1.0 M NaOH + 0.1 M glycerol. The CV profiles of the positive scan only
are reported in Figure 5 (the negative CV scans were omitted to simplify the comparison of
voltammograms to positive scans). The current density starts to increase between 0.4 and
0.7 V vs. RHE due to the oxidation of glycerol and decreases from 1.35 V vs. RHE due to
the formation of an inactive oxide layer.
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Figure 5. Voltammograms recorded in aqueous solution containing 1 M of NaOH and 0.1 M of
glycerol for the monometallic samples Au_1.3mM-Cit and 1mM-Au_1M-PAA and bimetallic samples
Au75/Ag25-0.5M-PAA, Au75/Ag25-3.2M-PAA, Au50/Ag50-0.5M-PAA, and Au50/Ag50-3.2M-PAA
at 25 ◦C at 50 mV·s−1. Insert: extending to the range of potentials 0.3–0.8 V vs. RHE to show the
onset potentials.

For the monometallic samples, the citrate-stabilized samples, Au_1.3mM-Cit and
Au_40mM-Cit, generate a current density of 75.6 and 48.8 mA·cm−2 (at 1.28 V vs. RHE),
and exhibit an onset potential at 0.65 and 0.80 V vs. RHE, respectively. The lower concen-
tration of citrate promotes a larger electrochemical surface area and a lower onset potential.
However, for the PAA-stabilized samples, higher PAA concentrations from 0.5 to 1 M
promote higher current densities and lower onset potential: the sample Au_0.5M-PAA
generates a current density of 63.7 mA·cm−2 at 1.28 V vs. RHE, whereas the sample Au_1M-
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PAA exhibits a current density of 89.8 mA·cm−2 at the lower potential 1.19 V vs. RHE
(Eonset = 0.60 V vs. RHE). Such a favorable enhancement of the activity could originate
from higher loading of Au with addition of higher PAA concentrations.

The Au-Ag bimetallic particles grown on CP by gamma radiation generated a high
current density. As shown in Figure 6, the Au75/Ag25-0.5M-PAA and Au50/Ag50-0.5M-
PAA materials achieve the highest current densities of 110 and 103 mA·cm−2, respectively,
at a relatively high peak potential of 1.32 V vs. RHE. For the materials prepared with
a higher concentration of PAA, Au75/Ag25-3.2M-PAA and Au50/Ag50-3.2M-PAA, lower
current density peaks are observed (ca. 83 mA·cm−2) at a lower potential ca. 1.21 V vs.
RHE. The onset potential is very similar (ca. 0.50–0.55 V vs. RHE) for all bimetallic gamma
samples, and is lower than for the monometallic CP-Au samples.
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3.2.2. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy measurements were conducted to evaluate
the charge transfer resistance (Rct) during the electro-oxidation of glycerol. Electrochemical
impedance was measured at different applied potential values such as open-circuit potential
(OCP), 0.84, 0.89, 0.94, and 0.99 V vs. RHE. The fit of the Nyquist plots by the equivalent
electrochemical circuit RΩ + QCPE//Rct enables the extraction of the Rct, the charge transfer
resistance, with RΩ the ohmic resistance or the uncompensated resistance, and with QCPE
the constant phase element to model the “imperfect” capacitance of the double layer.
Since the OCP value was different for each sample, the Nyquist plots were compared
at the applied potential of 0.84 V vs. RHE (the lowest applied potential after OCP) in
Figure S14a. The Rct values for the different electrodes derived from the fitting and OCP
values are reported in Table 3. These Rct values determined at different potentials are used
to plot the EDX slope. From the first sight, one can notice that bimetallic samples provide
lower charge transfer resistance as compared to any of the monometallic electrodes in this
work. The monometallic Au_1.3mM-Cit is characterized by a lower Rct than that of the
other monometallic samples, the highest Rct value being for the sample Au_40mM-Cit.
As observed on CV profiles and SEM images, increasing Cit concentration leads to poor
loading of Au onto the CP electrode, which could be an origin of the high Rct, whereas
higher concentrations of PAA (from 0.5 to 1 M in monometallic samples) promote greater
Au loading and thus lower Rct values.
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Table 3. Fitted EIS data from the used equivalent electrical circuit (RΩ + QCPE//Rct). Rct values were
derived from the fitting of the Nyquist plots at 0.84 V vs. RHE. Tafel slopes were obtained from the
log-log fitting E vs. Rct

−1 data points for monometallic and bimetallic samples.

Sample Reference OCP vs. RHE Rct, Ω·cm2 Tafel Slope, mV·dec−1 R2, %

Au_1.3mM-Cit 0.66 77 170 99.0
Au_40mM-Cit 0.16 222 173 99.9
Au_0.5M-PAA 0.16 164 282 99.1
Au_1M-PAA 0.19 221 266 99.8

Au75/Ag25-0.5M-PAA 0.43 17 45 95.7
Au75/Ag25-3.2M-PAA 0.56 16 223 98.1
Au50/Ag50-0.5M-PAA 0.14 32 73 99.1
Au50/Ag50-3.2M-PAA 0.57 9 192 95.7

For bimetallic samples, the higher concentration of PAA also led to lower Rct, which
is consistent with the electrochemical activities observed by CV. Apart from increasing
the overall metal loading, this can also originate from higher Ag fractions as is observed
for Au50/Ag50-3.2M-PAA. However, one can notice low loading in the SEM images of
Au50/Ag50-0.5M-PAA that could lead to a higher Rct than that of other bimetallic samples.

Tafel slopes were obtained by plotting the applied potentials as a function of the
inverse values of corresponding Rct (i.e., E vs. Rct

−1) and log fitting the data points
(Figure S14b). The Tafel slopes are commonly used to semi-quantify the reaction rates
occurring at the electrode–electrolyte interface [80]. Qualitatively, the Tafel slope value
(given in mV·dec−1) is an indicator of the reaction mechanism [80–82] that shows how
much potential is required to increase the rate of the electron exchange rate between the
electrode surface and a solute molecule by one decade. Tafel slope values, collected in
Table 3, show that the efficiency of the catalysts increases in the following order: Au_0.5M-
PAA < Au_1M-PAA < Au75/Ag25-3.2M-PAA < Au50/Ag50-3.2M-PAA < Au_40mM-Cit <
Au_1.3mM-Cit < Au50/Ag50-0.5M-PAA < Au75/Ag25-0.5M-PAA.

The trend of Tafel slopes partially correlates with the trend of peak current density
values observed in Figure 5. The lowest Tafel slopes are obtained for the two bimetallic
samples, Au50/Ag50-0.5M-PAA and Au75/Ag25-0.5M-PAA, which exhibited the highest
peak current densities towards glycerol oxidation.

3.2.3. Inductively Coupled Plasma—Optical Emission Spectroscopy

Inductively coupled plasma—optical emission spectroscopy (ICP-OES) measurements
were performed to identify the Au and Ag loading in the monometallic and bimetallic
electrodes, reported in Table 4 along with the calculated specific peak current density
in A·mg−1. The results reveal that in monometallic Au electrocatalysts, PAA promotes
a twofold lower loading than when sodium citrate is used. Nevertheless, the mass effi-
ciency (A·mg−1) by PAA-stabilized samples remains higher compared to citrate-stabilized
electrodes (8 A·mg−1 for Au_1M-PAA vs. 3.3 A·mg−1 for Au_1.3mM-Cit).

Table 4. Au and Ag loadings, defined by ICP-OES analysis, Au:Ag molar ratio, and specific current
density calculated using the metal loadings.

Sample Reference Au Loading,
µg/cm2

Ag Loading,
µg/cm2

Au:Ag
Molar Ratio

Specific Peak Current
Density, A·mg−1

Au_1.3mM-Cit 23.1 - - 3.3
Au_40mM-Cit 20.0 - - 2.4
Au_0.5M-PAA 12.2 - - 5.2
Au_1M-PAA 11.3 - - 8.0

Au75/Ag25-0.5M-PAA 73.0 2.5 16:1 1.5
Au75/Ag25-3.2M-PAA 71.7 4.9 8:1 1.1
Au50/Ag50-0.5M-PAA 40.9 2.3 10:1 2.4
Au50/Ag50-3.2M-PAA 102.6 28.8 2:1 0.6
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Bimetallic samples contain much higher amounts of Au (between 40.9 and
102.6 µg/cm2) that could originate from higher initial concentration of precursors and
the presence of Ag. The Au and Ag loadings provided by ICP-OES measurements are
used to determine the Au:Ag atomic ratios in bimetallic samples (see Table 4). The results
are consistent with the EDX analysis, suggesting that the metal loading, especially for Ag,
increases between 2 and 12 times with increasing PAA concentrations between 0.5 and
3.2 M. Furthermore, increasing the Ag content leads to a 1.5-fold lower peak current density
for the initial ratio [Au]:[Ag] = 75:25, and 4-fold lower for the initial ratio [Au]:[Ag] = 50:50.
This behavior may be related to the enhanced agglomeration observed in the SEM images
or to the segregation of the less active Ag on the outer surface of the particles.

Nevertheless, these bimetallic samples prepared by gamma irradiation outperform
some of the works in the literature (0.6–1 A·mg−1) [17,83] in terms of the calculated specific
current density per mg of loaded metal. The recently published work of Boukil et al. [25] in
our group reported the enhanced electrochemical performance of AuAg alloyed nanocages
up to 18.2 A·mg−1, which was at that time the highest current density in the electro-
oxidation of glycerol. Such a high performance in that work could originate from the high
surface density of grown AuAg nanoparticles and high surface area of the electrocatalyst.
These qualities of the electrode should be targeted during the mentioned optimization
of the conditions for radiolysis reduction to achieve the best possible performance in
glycerol electro-oxidation.

3.2.4. Electrocatalytic Performance in an H-Type Cell

Preliminary studies of chronoamperometric performance and the selectivity of the
electrocatalysts for glycerol electro-oxidation were carried out in an H-type cell shown
in Figure S15. The half of the cell with the working electrode was filled with 1 M NaOH
solution containing 0.1 M of glycerol, and the other half was filled with 1 M NaOH solution.
The potential of 1.14 V vs. RHE was applied for all runs. The potential value was chosen to
be slightly lower than the peak potential based on the CV profiles (Figure 5) to analyze the
products at a high activity.

The chronoamperometry plots, reported in Figure 6, show that the bimetallic Au-Ag
electrocatalysts (solid lines) maintain a higher current density over a longer period than
the monometallic electrocatalysts. These features should result in a higher conversion.
Upon applying potential, the monometallic CP-Au shows low current densities (below
16 mA·cm−2), decreasing to 0.5 mA·cm−2 within 15 min. In contrast, the bimetallic Au-Ag
particles generate high current densities and display greater stability during chronoamper-
ometry measurement. Only Au50/Ag50-0.5M-PAA among the bimetallic samples shows
a sharp loss of activity (ca. 85% loss in 30 min), which is probably related to insufficient
loading. The short catalytic activity of some samples originates from surface poisoning by
intermediate oxidation products and the formation of gold oxide [84,85]. Bimetallic Au-Ag
electrocatalysts perform better than monometallic Au in the long term, most probably
thanks to the electronic and structural features of the Au-Ag alloy on the surface. It is
reported that Ag empties the Au 5d band in the Au-Ag electronic shell, and consequently
facilitates the desorption of intermediates from the surface [30]. In turn, it refreshes the Au
surface, minimizes the surface poisoning, and prolongs the conversion rate.

The small drop in current densities for all samples at the 15th minute is due to the
removal of an aliquot of the reaction mixture. Aliquots were analyzed by high-performance
liquid chromatography (HPLC) after 15 and 30 min of chronoamperometry measurement
by comparing with five possible reference compounds (shown in Scheme 1). HPLC detects
two major products: formic (48.9–63.7%) and glycolic (35.3–45.6%) acids. The identified
products of the oxidation with their concentrations and calculated selectivity are reported
for the monometallic and bimetallic catalysts, respectively, in Table S8. We note that the
high selectivity demonstrates that the present electrocatalysts can be implemented in an
electrolyzer for formic acid production given its high potential as a fuel or chemical (for
example the formic acid fuel cell). A bar plot in Figure 7 compares the selectivity of five
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electrodes (Au_1.3mM-Cit, Au_1M-PAA, Au75/Ag25-0.5M-PAA, Au75/Ag25-3.2M-PAA,
and Au50/Ag50-0.5M-PAA).
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Figure 7. Distribution of glycerol electro-oxidation products by CP-Au and CP-Au-Ag samples
in the H-type cell after 30 min of chronoamperometry as identified by HPLC. We note that the
corresponding carboxylates are the reaction products during the bulk electrolysis in 1 M NaOH.

The formation of these C2 and C1 products suggests a significant C-C bond cleavage
at these conditions of electro-oxidation. Selectivity towards C3 products is found at 2.2%
by both monometallic samples, whereas bimetallic samples keep their C3 selectivity below
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1.3%. One of the monometallic samples, Au_1.3mM-Cit, shows the highest selectivity
towards the formation of oxalic acid at about 5% among analyzed electrodes.

The presence of silver traces on the surface of bimetallic samples could be a reason
for the low yield of C3 products as electrochemical measurements (chronoamperometry,
cyclic voltammetry, and electrochemical impedance) showed increased current density and
reduced charge transfer resistance. In addition, silver can affect the affinity of glycerol
and oxidation intermediates with the surface. Nevertheless, considering the observed
relatively high selectivity towards formic acid as identified by HPLC, bimetallic samples
are of high interest to be further investigated at lower potentials. At lower potentials,
the rate of electro-oxidation should decrease to give more time for the desorption of C3
products before cleaving a C-C bond, as described in [86,87].

The results of this work were compared to other literature precedents in Table 5.
Although it is difficult to make direct comparison with other works (due to the different
conditions of synthesis, metal loading, and measurement), the values of onset potential
(Eonset), peak current density (jp), and selectivity can give a general understanding of the
relative performance. Our tests were performed at a much lower glycerol concentration
of 0.1 M. As the glycerol concentration directly influences the measured current, the
normalization of jp values as a function of glycerol concentration would highlight the very
good performance of the bimetallic electrocatalysts prepared by radiolysis. In addition,
similar to that observed in [22,88,89], bimetallic particles contribute to decreasing the
onset potential of glycerol oxidation to lower values. The selectivity of monometallic
electrodes towards the formation of the primary alcohol glyceric acid was dominant for
Au supported on different supports [86,90] (at +1.9 V and +1.6 V vs. RHE, respectively),
and could be explained by weaker interaction between the nanoparticles and glyceric
acid, allowing its desorption and hindering its further decomposition into two and one
carbon products. For the direct radiolysis-assisted growth of monometallic and bimetallic
gold–silver nanostructured particles, performed at a lower potential of +1.14 V vs. RHE, the
interaction between the particles and the support could contribute to a different selectivity
of glycerol electro-oxidation towards a significant cleavage of the C-C bond and the main
production of two- and one-carbon products.

Table 5. Comparison of the results of this work and performance of other electrocatalysts in relevant
literature reports.

Ref. Electrode jp
(mA cm−2)

Eonset
(V vs. RHE)

Concentration of
Glycerol

(mol·L−1)
Selectivity

Wang et al. [86] Au-P4P/graphene 70 0.74 0.5
Glyceric acid ~45%
/glycolic acid ~36%
/formic acid ~19%

Han et al. [90] TiO2-Au/C 960 0.70 2.0 Glyceric acid 65%
/glycolic acid 22%

Garcia et al. [22] Au3Ag/C 181 0.60 1.0 not analyzed
Pittayaporn et al. [88] Au2/Ni1/C 43 0.55 0.1 not analyzed

Zhang et al. [89] Au-CeO2/C 75.4 0.50 1 not analyzed

This work

Au_1.3mM-Cit 75.6 0.65

0.1

Formic acid
50%/glycolic acid 43%

Au_1mM-PAA 90 0.60 Formic acid
49%/glycolic acid 46%

Au75/Ag25_0.5M-PAA 110 0.55 Formic acid
56%/glycolic acid 41%

Au75/Ag25_3.2M-PAA 83 0.55 Formic acid
58%/glycolic acid 41%

Au50/Ag50-0.5M-PAA 103 0.55 Formic acid
64%/glycolic acid 35%
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4. Conclusions

In conclusion, we have provided the first proof of concept that in situ radiolysis can
lead to electroactive Au and Au-Ag catalysts on upper and inner layers of CP fibers for
glycerol oxidation. Our preliminary findings have shown that the Au and Au-Ag particles
formed large average sizes, from tens to hundreds of nanometers, and agglomeration as
observed in SEM images. Sodium citrate and poly(acrylic) acid were utilized to control the
size and morphology of particles.

Citrate was shown to act as a capping as well as a reducing agent. The use of a
relatively low concentration of 1.3 mM afforded the deposition of spherical and flower-
shaped Au nano- and micro-particles on the CP surface. However, the increase in citrate
concentration to 40 mM led to lower loading and deposition density. In the presence of the
two salts of Au (III) and Ag (I), the use of sodium citrate led to aggregation and precipitation
of the particles within 5 h. The use of PAA in the radiolytic fabrication of monometallic
Au samples led to lower metal loading and the formation of larger non-homogeneous
particles, whereas, for Au-Ag bimetallic structures, the higher PAA concentration allowed
a greater amount of Ag to be deposited. In addition, the catalytic activity of PAA-stabilized
Au remained higher than that of Cit-stabilized Au samples in view of the mass efficiency.
Nevertheless, further optimization of the synthesis conditions (dose rate, pH, and nature of
stabilizing agents) is necessary to acquire smaller NP sizes and a homogeneous distribution.

During the synthesis, the galvanic replacement was driven by the difference in redox
potentials. Initially reduced Ag atoms re-oxidized back to Ag (I) ions by transferring the elec-
trons to Au (III) ions to form metallic gold. Such phenomenon led to a bimetallic composition
with minor Ag content that led to a beneficial electronic effect between Au and Ag atoms and
allowed the onset potential to be lowered in the glycerol electro-oxidation reactions.

Our first results provide insights into the catalytic activity in glycerol electro-oxidation
and its dependence on the electrode composition. The comparison via the normalization
of the current density per unit mass (A·mg−1) showed that the maximum peak current
density of monometallic and bimetallic electrodes (8 and 2.4 A·mg−1, respectively) was
higher than some other published works (0.6–1 A·mg−1) [25,88].

The onset potential of 0.55 V vs. RHE of the Au-Ag bimetallic particles is related
to reports in the literature. The materials exhibited good selectivity in glycerol electro-
oxidation, whereby only two products of high interest, formate (49–64%) and glycolate
(35–43%), were obtained at 1.14 V vs. RHE. Compared to the Au catalyst, the Au-Ag
bimetallic specifically enhanced production of formate.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13111713/s1, Figure S1: An attempt to synthesize Au-Ag
bimetallic particles using NaCit as a stabilizing agent: aggregation of particles occurred in the reaction
mixture containing [AuCl4−] and [Ag+] regardless of the presence of carbon paper; Figure S2. CV
for the calibration of the MOE reference electrode (1 M NaOH, 1 mV s−1, 25 ◦C, unstirred, Pt as
working and counter electrodes); Figure S3. EDX spectra of the labeled zones on SEM micrograph of
the bimetallic gamma sample Au75/Ag25-0.5M-PAA; Figure S4. EDX spectra of the labeled zones
on SEM micrograph of the bimetallic gamma sample Au75/Ag25-3.2M-PAA; Figure S5. EDX spectra
of the labeled zones on SEM micrograph of the bimetallic gamma sample Au50/Ag50-0.5M-PAA;
Figure S6. EDX spectra of the labeled zones on SEM micrograph of the bimetallic gamma sample
Au50/Ag50-3.2M-PAA; Figure S7. Survey XPS spectra recorded between 0 and 1100 eV for bimetallic
Au-Ag samples grown directly onto carbon paper during gamma radiolysis: Au75/Ag25-0.5M-PAA
(black curve), Au50/Ag50-0.5M-PAA (magenta curve), and Au50/Ag50-3.2M-PAA (brown curve);
Figure S8. High-resolution XPS spectra recorded for C 1s and O 1s spin-orbitals for the bimetallic
gamma-synthesized samples Au75/Ag25-0.5M-PAA, Au50/Ag50-0.5M-PAA, and Au50/Ag50-3.2M-
PAA; Figure S9. XRD pattern recorded for monometallic Au_1M-PAA and bimetallic samples
Au75/Ag25-0.5M-PAA (red curve), Au50/Ag50-0.5M-PAA (green curve), and Au50/Ag50-3.2M-PAA
(brown curve) between 2θ angles of 30◦ and 85◦. Reference XRD patterns of the fcc Au (JCPDS
00-004-0784, gray bars), the fcc Ag (JCPDS 00-004-0783, green bars), and the carbon (JCPDS 00-
026-1080, orange bars) are shown for comparison. Red and orange dashed lines are drawn for

https://www.mdpi.com/article/10.3390/nano13111713/s1
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easier comparison of the metal and carbon peaks, respectively; Figure S10. Cyclic voltammograms
recorded for Au_1.3mM-Cit at 25 ◦C at 50 mV·s−1: black dashed curve—blank record in 1 M NaOH
solution between 0.1 and 1.6 V vs. RHE; red dashed curve—blank record in 1 M NaOH solution
between 0.25 and 0.8 V vs. RHE; blue solid curve—Pb UPD records in 1 M NaOH solution with 1 mM
Pb(NO3)2 between 0.25 and 0.8 V vs. RHE; Figure S11. Cyclic voltammograms recorded for Au_1M-
PAA at 25 ◦C at 50 mV·s−1: black dashed curve—blank record in 1 M NaOH solution between 0.1 and
1.6 V vs. RHE; red dashed curve—blank record in 1 M NaOH solution between 0.25 and 0.80 V
vs. RHE; blue solid curve—Pb UPD records in 1 M NaOH solution with 1 mM Pb(NO3)2 between
0.25 and 0.8 V vs. RHE; Figure S12. Cyclic voltammograms recorded for Au75/Ag25-0.5M-PAA
at 25 ◦C at 50 mV·s−1: black dashed curve—blank record in 1 M NaOH solution between 0.1 and
1.55 V vs. RHE; red dashed curve—blank record in 1 M NaOH solution between 0.25 and 0.8 V
vs. RHE; blue solid curve—Pb UPD records in 1 M NaOH solution with 1 mM Pb(NO3)2 between
0.25 and 0.8 V vs. RHE; Figure S13. Cyclic voltammograms recorded for Au50/Ag50-0.5M-PAA
at 25 ◦C at 50 mV·s−1: black dashed curve—blank record in 1 M NaOH solution between 0.1 and
1.55 V vs. RHE; red dashed curve—blank record in 1 M NaOH solution between 0.25 and 0.8 V
vs. RHE; blue solid curve—Pb UPD records in 1 M NaOH solution with 1 mM Pb(NO3)2 between
0.25 and 0.8 V vs. RHE; Figure S14. Nyquist plots recorded at applied potentials of 0.84 V vs. RHE
in aqueous solution containing 1 M of NaOH and 0.1 M of glycerol for monometallic samples (N)
Au_1.3mM-Cit, Au_1M-PAA and bimetallic samples (•) Au75/Ag25-0.5M-PAA, Au75/Ag25-3.2M-
PAA, Au50/Ag50-0.5M-PAA, and Au50/Ag50-3.2M-PAA at 25 ◦C. (b) Plot of applied potential as
a function of reverse Rct (E vs. Rct

−1) and their fittings; Figure S15. An H-type cell composed
of right and left compartments for chronoamperometric measurements of the working electrode
(labeled as WE) in glycerol electro-oxidation. The working electrode is the carbon paper piece after
deposition of Au or Au-Ag. It is located on the right compartment with RE, reference electrode that
is Hg|HgO|NaOH 1 M MOE, and Ar bubbler, a glass tip of the inserted argon bubbling tube. A
counter electrode (labeled as CE) that is a glassy carbon plate inserted on the left side compartment.
Anion exchange membrane (labeled as membrane) is placed between two compartments; Table S1.
Atomic fractions of Au, Ag, C, and O (among other trace contaminants) empirically defined by EDX
measurements of Au75/Ag25-0.5M-PAA on the labeled zones in Figure S3; Table S2. Atomic fractions
of Au, Ag, C, and O (among other trace contaminants) empirically defined by EDX measurements
of Au75/Ag25-3.2M-PAA on the labeled zones in Figure S4; Table S3. Atomic fractions of Au, Ag, C,
and O (among other trace contaminants) empirically defined by EDX measurements of Au50/Ag50-
0.5M-PAA on the labeled zones in Figure S5; Table S4. Atomic fractions of Au, Ag, C, and O (among
other trace contaminants) empirically defined by EDX measurements of Au50/Ag50-3.2M-PAA on
the labeled zones in Figure S6; Table S5. Deconvolution results of high-resolution XPS spectra of
Au75/Ag25-0.5M-PAA; Table S6. Deconvolution results of high-resolution XPS spectra of Au50/Ag50-
0.5M-PAA; Table S7. Deconvolution results of high-resolution XPS spectra of Au50/Ag50-3.2M-PAA;
Table S8. Concentrations (in mM) of the products after chronoamperometry (CA) conducted for
15 and 30 min of and corresponding selectivities (in%) for Au and Au-Ag particles deposited on CP
during γ-radiolysis.
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