
HAL Id: hal-04156134
https://hal.umontpellier.fr/hal-04156134v2

Preprint submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing a Blockchain-Powered Metadata Catalog
in Data Mesh Architecture

Anton Dolhopolov, Arnaud Castelltort, Anne Laurent

To cite this version:
Anton Dolhopolov, Arnaud Castelltort, Anne Laurent. Implementing a Blockchain-Powered Metadata
Catalog in Data Mesh Architecture. 2023. �hal-04156134v2�

https://hal.umontpellier.fr/hal-04156134v2
https://hal.archives-ouvertes.fr

Implementing a Blockchain-Powered
Metadata Catalog in Data Mesh Architecture

Anton Dolhopolov Arnaud Castelltort Anne Laurent

LIRMM, Univ. Montpellier, CNRS, Montpellier, France
{firstname.lastname}@lirmm.fr

Abstract. This paper explores the implementation of a blockchain-
powered metadata catalog in a data mesh architecture. The metadata
catalog serves as a critical component in managing data at scale, al-
lowing for efficient discovery, access, and governance. By integrating
blockchain technology, the metadata catalog can provide federated con-
trol, immutability, and transparency in managing metadata across a dis-
tributed network of data domains. This paper discusses the benefits of us-
ing blockchain technology in the metadata catalog and provides a proof-
of-concept implementation of a blockchain-powered metadata catalog in
a data mesh architecture using HyperLedger Fabric. The paper also high-
lights some challenges and potential solutions for adopting this approach,
including scalability, interoperability, and governance concerns. Overall,
this paper presents a novel approach for implementing a secure and fed-
erated metadata catalog in data mesh architecture that can improve the
efficiency, reliability, and transparency of data management.

Keywords: Blockchain · Data Mesh · Metadata Catalog · Data Gover-
nance

1 Introduction

Data mesh [4] is one of the most recent grounded theoretical developments in
the data management field. Contrary to the previous approaches such as data
warehouses [11] or data lakes [13], this new paradigm is inspired by the micro-
services arhictecure [18]. It advocates the logical decentralization of the data
platform. It builds upon the 4 core principles: distributed domains data owner-
ship, data-as-a-product, self-serve data platform, and federated computational
(data) governance. In data mesh, the decentralization of the analytical platform
architecture components aims to enable organizational scaling and close the gap
between data generation and data analyses.

Metadata management is another important element of an efficient data plat-
form. The research shows that it facilitates discoverability, accessibility, interop-
erability, semantic comprehension, and utilization of the data [9, 19]. However,
most of the theoretical models and practical implementations focus on central-
ized metadata catalog architectures. Therefore, these works can not be easily
adapted and employed in decentralized systems like data mesh.

2 A. Dolhopolov et al.

On the other side, blockchain technology envisions the decentralization of
information system actors at its core. The recent works show that it can be ben-
eficially applied for cross-organizational collaboration [12] and metadata man-
agement [5,14]. The attractiveness of this technology includes such properties as
a historical, secure, and immutable ledger, unified data control in form of smart
contracts, and use of the consensus algorithms for providing data distribution.

In this paper, we claim that blockchain technology can profit the institutions
that want to adapt the data mesh paradigm. First, we describe the challenges of
data governance in the mesh. Then, we draw upon the previous theoretical work
of metadata catalog distribution by providing a proof-of-concept implementation
of the catalog based on the open-source Hyperledger Fabric platform. The paper
concludes with discussions and further research plans.

2 Challenges of Data Governance in Data Mesh

According to [16], data governance “... is a collection of information-related
processes, roles, policies, standards, and metrics oriented to maximize the effec-
tiveness of deriving business value from data”. Thus, data mesh should offer a
system where technical engineers, business users, legal representatives, and other
participants can easily define business processes, regulatory policies, data access
roles, and other elements that will shape the platform’s inner operations.

The centralized governance imposes the rules and standards to follow by each
team which enables interoperability. But it has organizational scaling issues as
it has been shown for data warehouse and data lake systems [15]. At the same
time, the decentralized governance leaves a lot of freedom for each domain team
which brings the risk of building incompatible data products, duplicating the
development efforts, missing compliance procedures, etc.

In [4], the author of the data mesh concept, Zhamak Deghani, highlights the
importance of federated computational data governance as the need to “maintain
a dynamic equilibrium between domain autonomy and global interoperability”.
It means a striking balance of global policies (centralization) and local freedoms
(decentralization) is required.

Federated governance systems should provide the tools that help to collab-
orate and ease the definition and access to data schemes, semantic knowledge,
and lineage, but also to automatically enforce the security, transparency, and
legal policies. However, the main challenge surfaces when constructing such a
system is based on already available tools or existing research.

In Section 1 we mentioned that in the research metadata management system
often performs the functions of the data governance system. Nonetheless, the
majority of scientific systems such as GOODS [8], AUDAL [20], DAMMS [21],
Child et al. [3], Cherradi et al. [2], and industrial products as DataHub Project1

and Apache Atlas2 implement only the centralized approach. It means that the

1 https://datahubproject.io/
2 https://atlas.apache.org/

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 3

metadata is collected within the central repository, analyzed and linked in post-
hoc fashion, and often made available to users via web portals.

Some recent works [7, 10] attempt to implement federated data governance
by using semantic web technologies, but these are still immature systems.

Therefore, there is an open research need for designing and developing fed-
erated metadata management systems.

3 Introducing Blockchain-Powered Metadata Catalog

Section 2 describes the challenges associated with building efficient data gov-
ernance in data mesh. In this section, we briefly describe 3 types of metadata
systems that can be implemented by companies. Afterward, we proceed with a
description of how Hyperledger Fabric can be used for developing an effective
federated catalog that satisfies security, traceability, transparency, immutability,
and interoperability demands.

3.1 Metadata Catalog Types

The theoretical work of authors defines 3 types of metadata catalogs in [6].

In Type I all metadata records are kept in a central repository. To enable the
data access control, it presents the visibility and access functions that are associ-
ated with each user. The initial metadata is generated upon data product release
or update and pushed to the repository that is available to the participants of
the mesh (potentially through the web portal interface).

In Type II the repository of records is distributed. Instead of pushing the
metadata about data products into a central repository, each domain of the
mesh hosts an instance of the metadata catalog. The system is also composed
of a data synchronization algorithm and standardized data access policies.

Type III catalog is seen as a complete system’s decentralization with no single
repository or standardized procedures. Each domain (or a subset of domains) is
free to implement the storage and governing policies however it likes, but it is
still required to provide the metadata exchange, discovery, and query interfaces.

3.2 Using Hyperledger Fabric for Metadata Management

Hyperledger Fabric (HLF) platform [1] is an open-source project hosted by the
Linux Foundation. Its modular architecture allows using various computational
components depending on the system requirements: pluggable consensus proto-
col, identity providers, and transaction endorsement policy. If there are addi-
tional security demands, it allows the exploitation of network segmentation via
channels and private data exchange algorithms.

We describe how Hyperledger Fabric fits the Type II catalog thereafter.

4 A. Dolhopolov et al.

Chaincode and Platform Governance. A smart contract (SM) is a universal
way of enforcing some pre-determined, beforehand agreed procedure over the
given asset during the parties’ interaction. HLF defines a notion of a chaincode
that is assembled from one or more smart contracts and policies. It is the smallest
software module deployed as a Docker container. Chaincode policies determine
how the underlying contracts should be executed. For instance, a policy can
define which nodes should perform an endorsement of the proposed transaction.

On the other hand, chaincode itself can be seen as a transparent and interop-
erable governing tool for interacting with the ledger. It guarantees a standardized
way of modifying the information and performs an ongoing metadata integrity
verification which fits the implementation requirements of the Type II catalog.

Upon the chaincode execution, it is also possible to emit events. Therefore,
the catalog users (or simply nodes) can listen to the specific types of ledger
updates and discover the newly published information.

Another distinctive characteristic of the HLF is that developers can define
smart contracts with general-purpose programming languages like Java, Go, or
JavaScript/TypeScript (NodeJS-based contracts). This is contrary to such plat-
forms as Ethereum which makes the technology adaption curve easier in general.
In some way, it also offers interoperability capabilities since it is possible to de-
velop a number of chaincode contracts using any supported language. The only
requirement for using such a contract is the agreement of the network majority.

Overall, platform control is done through the policies management mecha-
nisms. Policies of the HLF (as a part of a single chaincode package or of the
global channel configuration) represent how members come to the agreement of
accepting or rejecting changes to the network, channel, or smart contract.

Private Communication. Permisioned (private) blockchain provides more
advantages for building the Type II metadata catalog compared to the permis-
sionless (public) one. For example, domain or user identification allows to design
more secure systems with access control management. For more details, we refer
the reader to [6] which outlines the benefits of using a permisioned blockchain.

In its nature, HLF is a permisioned blockchain platform that runs the pri-
vate network of uniquely identified components by using the membership ser-
vice providers (MSP). We may imagine the MSP as a certificate authority (CA)
extension that establishes the identity of each element of the network - orga-
nizations, nodes, applications, and policies. The whole network is structured as
a number of non-overlapping communication channels. To give an analogy, the
channel resembles a subnet of the CIDR-based network in OSI reference model3.

Private data exchange is another privacy-preserving technique that lets to
share secret data only with intended parties. The channel segregation method
limits the participating parties from access to the whole ledger. By contrast, the
private exchange mechanism lets to monitor that data sharing has taken place
without the data itself, for instance, when secretly passing the data product
access credentials and recording it on the ledger.

3 https://www.iso.org/standard/20269.html

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 5

Ledger and Consensus Algorithm. When implementing the metadata man-
agement system with the help of blockchain technologies, the ledger takes the
role of the underlying metadata records storage medium. Its properties such
as distribution, immutability (with historical information as a side effect), and
cryptographic signatures suit well the required needs.

Data indexing improves the search performance in a big pile of records which
is often the case for immutable ledgers. In HLF the equivalent indexing function-
ality is done via the ledger state database. This database keeps only the latest
modification over the given asset identified by a unique key. It is implemented
using either the key-value (LevelDB) or key-document (CouchDB) stores.

For maintaining the ledger in the synchronized state and to make the con-
figuration upgrades possible in the network, HLF provides several options for
implementing a consensus algorithm. For the extreme cases when the blockchain
users operate in a trustless environment, it is possible to use the Byzantine Fault
Tolerance (BFT) protocol. It might be well suited for the cross-organizational
(meta)data exchange initiatives (like in healthcare or finance) when security and
network poisoning fault-tolerance are of high importance.

By contrast, if the environment is partially or fully trusted (like within the
same organization), it might be sensible to implement a more performant Crash
Fault Tolerant (CFT) consensus algorithm. In fact, due to the modular architec-
ture, it is possible to use distinct protocols for ledger or configuration updates.

In this section, we discussed 3 metadata catalog types: centralized, dis-
tributed, and decentralized. We also presented the advantages of employing a
blockchain platform for building a distributed catalog. Next, we present our
proof-of-concept catalog model and the implementation based on the Hyper-
ledger Fabric.

4 Metadata Catalog Model and Implementation

Our research contribution is three-fold. First, we derive our model from the works
on the federated data exchange [12] and provenance metadata management [5]
by proposing novel asset structures to be used in the metadata catalog.

Second, we define a catalog architecture integrated with data mesh products
and a smart contract that consists of several functions for using the ledger as
the metadata information store.

Third, we provide 4 scenarios of how the proposed model and contract would
be used for managing the data products metadata in the context of a data mesh.

4.1 Ledger Asset Structure

At the baseline, the metadata should describe the data product (DP) from dif-
ferent perspectives to facilitate its discovery, addressing, understanding, and ma-
nipulation. The standard functional classification includes operational (location,
size), technical (format, type, schema), and business (notions, context, process
lifecycle) metadata.

Our proposed catalog ledger structure is comprised of the following assets:

6 A. Dolhopolov et al.

– DataProductAsset - describes the main information such as name, location
– MetadataAsset - describes the DP’s metadata such as owner, state, lineage
– ConsumptionRequestAsset - defines a request to use the published DP
– ConsumptionResponseAsset - defines a response to the open DP’s request
– ConsumptionResponseUpdateAsset - defines an update to the response

These assets (with detailed definitions available in Appendix A) enable the
data mesh governance in the following aspects.

The Lineage field allows DP discovery and risk assessments. By traversing
and studying the dependency graph users can project the product failure conse-
quences, or they may decide to consume more coarse or refined products.

The Schema and SampleDataLocation fields help with DP understanding
and interoperability. Schema may contain semantics, while samples represent the
underlying data that is open to everyone. SampleDataLocation helps with the
development of more refined products without administrative approval delays.

The asset ownership and integrity verification is implemented through the
cryptographic hashes mechanism. The hash matching during the DP processing
is essential for mitigating fraudulent activities.

Consumption-related assets (Request-Response-Update) are used for access
control and usage tracking. It helps to implement security and regulation com-
pliance measures in the first place.

4.2 Chaincode Operations and Catalog Architecture

As mentioned in Section 3.2, we consider the smart contract machinery, and the
chaincode in particular, as an enforcement tool of the pre-agreed governance.

Our proposed chaincode contracts allow the user to define and record in the
metadata catalog new assets with various types of information:

– RegisterDataProduct function records metadata regarding new DP in the
data mesh by creating DataProductAsset and MetadataAsset objects

– RequestDataConsumption function records information about DP access re-
quest by creating ConsumptionRequestAsset object

– ResolveConsumptionRequest function records the response to the DP access
request by creating ConsumptionResponseAsset object

– UpdateDataProduct function records a new asset with updated metadata
information and old asset references by creating new DataProductAsset and
MetadataAsset objects

– UpdateConsumptionResponse function records a response update informa-
tion by creating ConsumptionResponseUpdateAsset object (optional, but
only relevant in case of a previous UpdateDataProduct function call)

– GetAllAssets function returns all available assets in the ledger

Classical Hyperledger Fabric network architecture includes a communication
channel, blockchain nodes, ledger storage, and chaincode. The applications (or
data products) and certificate authorities are considered outside of the network
but they are still communicating with nodes.

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 7

Fig. 1. Proof-of-concept metadata catalog architecture

We provide our proof-of-concept (PoC) catalog architecture in Figure 1. We
use two organizations to demonstrate the data product registration and con-
sumption interactions. It is a simplified plot since it does not contain all HLF
platform elements (like Membership Service Provider or Private Data Store).
However, it represents the most important parts of the system such as metadata
nodes that own the chaincode and/or the ledger.

The endorsement node is used for validating the proposed transactions with
new assets to be appended in the ledger. In the default policy setup, the majority
of endorsing nodes is required meaning that both Organization A and Organi-
zation B should approve the transaction for accepting it. Organization Z holds
only an ordering node that does not affect the approval or refusal decision, but
it is solely responsible for ordering a number of transactions into a block that
will be added to the ledger. It guarantees that blocks are identical across nodes.

In an example scenario, before connecting to the running metadata catalog
network, a new organization would have to setup a CA infrastructure. This in-
frastructure is wholly owned by the organization and is necessary to generate
identities for its domains, data products, feedback loops, etc. After intermediat-
ing the request to join the catalog, the MSP would assign the organization roles
and rights based on the network configuration policies. The assigned roles and
rights define how and who this organization can interact with.

4.3 Use-Cases for Distributed Metadata Catalog in Data Mesh

In this subsection, we present 4 use-cases for using the proposed distributed
catalog in the context of a data mesh platform of the video-service company.

In the most basic case, a data product owner (DPO) from organization A
wants to register a new DP in the catalog. For doing this, one has to use the
RegisterDataProduct function by passing the DataProductAsset structure (a
JSON that corresponds to the type fields) and some other parameters (name,
description, consumed DPs). When the new asset transaction is validated, it will
be recorded into the block and synchronized across the different nodes, and the
new DP will become available to other domains. The sequence diagram of the
whole process is demonstrated in Figure 2 which also shows the final ledger and
DP PromoAd Costs states.

8 A. Dolhopolov et al.

Fig. 2. Process of a metadata asset registration

In the second case that is shown in Figure 3, a DPO from organization B
(DPO-B) wants to consume a new DP from organization A (DP-A) that was
created before. For doing it, DPO-B has to use the RequestDataConsumption
function by passing the desired product information (DP-A in this case) and the
access rights. When the transaction is accepted it is reflected on the ledger and
the request becomes available to the DPO-A for review. To approve or deny the
request, DPO-A has to use the ResolveConsumptionRequest function by passing
the request id and the rights to be granted. If the response was positive (e.g.
”read” right was granted), DPO-B can setup the product consumption, and the
lineage relationship is established between DP-A and DP-B.

Fig. 3. Process of requesting a metadata asset and responding to the request

In the third case, we have a settled product consumption chain where the
end users can see the movie promotional list. Then, a DPO-A decides to make
an update of the existing DP-A. When the update is recorded, the versioning

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 9

relationship arises since the ledger will contain a new asset pointing to the old
DP-A asset. As soon as the update is propagated across the network, Node B
is notified of the update and it can automatically stop the DP-B if there is a
breaking change of DP-A (as shown in Figure 4).

Fig. 4. Process of metadata asset update and the update event handling

In the last case shown in Figure 5, a DPO-A also decides to update its
DP-A consumption responses. Such action is optional but it is useful in the
sense that it brings automatic forward compatibility of the previously approved
requests. When the response update is recorded and propagated, Node B is
notified and proceeds with testing the new DP-A setup. If the consumption
attempt is successful, then it can re-publish the updated version of the DP-B
metadata reflecting the recent changes of the upstream dependency graph and
re-establishing the data flow.

Fig. 5. Process of response asset update and automatic consumption recovering

10 A. Dolhopolov et al.

5 Contribution Discussion

This section shows the advantages of the proposed model and its implementation,
as well as missing requirements and potential solutions.

5.1 Model Pros and Cons

Sawadogo et al. [19] outlined 6 main requirements for the metadata systems in
the data lake context: data indexing (DI), data versioning (DV), polymorphic
data (PD), semantic enrichment (SE), link generation (LG), and usage tracking
(UT). Nonetheless, these features are still relevant and necessary for constructing
efficient metadata systems in the data mesh.

Dehghani [4] did not state any need for a metadata management system per
se, but rather attributed all the mentioned properties as part of the data product
design itself. Although, we find it conceptually easier to attribute these to a
metadata catalog along with other federated governance requirements, including,
but not limited to, standards and policies as computational blocks (PCB), system
evaluation feedback loops (FL), and governance leverage points (LP) [17].

Since data mesh builds upon the micro-services architectures ideas, we also
consider the necessary properties of being independently deployable (ID) and
automatically testable (AT). A conclusive summary is displayed in Table 1.

Table 1. Supported metadata management system requirements

LP FL AT LG SE PD DI DV UT PCB ID

✗ ✗ ✗ ∗ ∗ ∗ ✓ ✓ ✓ ✓ ✓

✓ − supported ✗ − unsupported ∗ − partially supported

5.2 Potential solutions

Data product polymorphism (or polyglot data) can not be represented at once
as a single asset definition with multiple dimensions (stream, batch, report, etc).
But it is possible to register multiple DP metadata assets related to each output
dimension. Semantic enrichment and link generation are not implemented auto-
matically in the system. The user still has to pass such information as consumed
DPs, schema, and description. It can be improved by extending the model for
multiple product dimensions and by introducing AI tools for automatic metadata
extraction, such as data similarity and schema linking.

Automated testing is a big challenge that developers still face when making
upgrades in any large distributed system. Apparently, it is also inherent to our
proposed catalog model and it is difficult to point to any viable solution. Still,

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 11

HLF has channeling support that can be used for testing any platform upgrades
without affecting the main catalog network.

Feedback loops and leverage points are other important but highly chal-
lenging elements with no evident solution. Donella Meadows, the author of the
concepts, mentions the use of global incentives that may profit from the imple-
mentation of FL and LP. Introducing such incentives component easily aligns
with the nature of blockchain platforms in the first place. However, we think
that it is also required to have well-integrated federated governance and self-
serve infrastructure platforms which is not the case today.

6 Conclusions and Further Research

Overall, this paper presented a novel approach for implementing metadata cat-
alog in data mesh architecture. At first, we inspected the challenges of federated
governance and the limits of existing systems. Second, we described the bene-
fits of using Hyperledger Fabric. Third, we proposed a new, blockchain-based
metadata model, distributed system architecture, and demonstrated 4 relevant
metadata catalog use cases for enabling computational governance in data mesh.

Our further work will focus on extending the proposed model and running
experiments for estimating the model performance throughput. We will also
investigate graph-based distributed ledger technologies for improving catalog
functionalities and make a comparative study of the construction process of a
Type III metadata catalog on top of property graphs.

References

1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a
distributed operating system for permissioned blockchains. In: Proceedings of the
thirteenth EuroSys conference. pp. 1–15 (2018)

2. Cherradi, M., El Haddadi, A., Routaib, H.: Data lake management based on dlds
approach. In: Networking, Intelligent Systems and Security: Proceedings of NISS
2021. pp. 679–690. Springer (2022)

3. Child, A.W., Hinds, J., Sheneman, L., Buerki, S.: Centralized project-specific meta-
data platforms: toolkit provides new perspectives on open data management within
multi-institution and multidisciplinary research projects. BMC Research Notes
15(1), 106 (2022)

4. Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly (2022)
5. Demichev, A., Kryukov, A., Prikhodko, N.: The approach to managing prove-

nance metadata and data access rights in distributed storage using the hyperledger
blockchain platform. In: Ivannikov Ispras Open Conference. IEEE (2018)

6. Dolhopolov, A., Castelltort, A., Laurent, A.: Exploring the benefits of blockchain-
powered metadata catalogs in data mesh architecture. arXiv preprint (2023)

7. Driessen, S., Monsieur, G., van den Heuvel, W.J.: Data product metadata man-
agement: An industrial perspective. In: Service-Oriented Computing–ICSOC 2022
Workshops: ASOCA, AI-PA, FMCIoT, WESOACS 2022, Sevilla, Spain, November
29–December 2, 2022 Proceedings. pp. 237–248. Springer (2023)

12 A. Dolhopolov et al.

8. Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.:
Managing google’s data lake: an overview of the goods system. IEEE Data Eng.
Bull. 39(3), 5–14 (2016)

9. Hillmann, D.I., Marker, R., Brady, C.: Metadata standards and applications. The
Serials Librarian 54(1-2), 7–21 (2008)

10. Hooshmand, Y., Resch, J., Wischnewski, P., Patil, P.: From a monolithic plm
landscape to a federated domain and data mesh. Proceedings of the Design Society
2, 713–722 (2022)

11. Inmon, W., Strauss, D., Neushloss, G.: DW 2.0: The architecture for the next
generation of data warehousing. Elsevier (2010)

12. Koscina, M., Manset, D., Negri-Ribalta, C., Perez, O.: Enabling trust in healthcare
data exchange with a federated blockchain-based architecture. In: International
Conference on Web Intelligence-Companion Volume (2019)

13. Laurent, A., Laurent, D., Madera, C.: Data Lakes. John Wiley & Sons (2020)
14. Liu, L., Li, X., Au, M.H., Fan, Z., Meng, X.: Metadata privacy preservation for

blockchain-based healthcare systems. In: Database Systems for Advanced Applica-
tions: 27th International Conference, DASFAA 2022, Virtual Event, April 11–14,
2022, Proceedings, Part I. pp. 404–412. Springer (2022)

15. Machado, I.A., Costa, C., Santos, M.Y.: Data mesh: concepts and principles of
a paradigm shift in data architectures. Procedia Computer Science 196, 263–271
(2022)

16. Majchrzak, J., Balnojan, S., Siwiak, M., Sieraczkiewicz, M.: Data Mesh in Action.
Manning Publishing (2022)

17. Meadows, D.H.: Leverage points: Places to intervene in a system (1999)
18. Newman, S.: Building microservices. O’Reilly Media, Inc. (2015)
19. Sawadogo, P., Darmont, J.: On data lake architectures and metadata management.

Journal of Intelligent Information Systems 56(1), 97–120 (2021)
20. Sawadogo, P., Darmont, J., Noûs, C.: Joint management and analysis of textual

documents and tabular data within the audal data lake. In: European Conference
on Advances in Databases and Information Systems. pp. 88–101. Springer (2021)

21. Zhao, Y.: Metadata Management for Data Lake Governance. Ph.D. thesis, Univ.
Toulouse 1 (2021)

Implementing a Blockchain-Powered Data Mesh Metadata Catalog 13

A Metadata Catalog Assets

type DataProductAsset s t r u c t {
Name s t r i n g ‘ j son : ”Name” ‘
DataHash s t r i n g ‘ j son : ” DataHash ” ‘
DataLocation s t r i n g ‘ j son : ” DataLocation ” ‘
SampleDataLocation s t r i n g ‘ j son : ” SampleDataLocation ” ‘
Schema s t r i n g ‘ j son : ” Schema” ‘
Vers ion s t r i n g ‘ j son : ” Vers ion ” ‘ }

type MetadataAsset s t r u c t {
ID s t r i n g ‘ j son : ” ID” ‘
I sDe l e t ed bool ‘ j s on : ” I sDe l e t ed ” ‘
CreateTime time . Time ‘ j son : ” CreateTime ” ‘
Desc r ip t i on s t r i n g ‘ j son : ” Desc r ip t i on ” ‘
Name s t r i n g ‘ j son : ”Name” ‘
Owner s t r i n g ‘ j son : ”Owner” ‘
OldAssetId s t r i n g ‘ j son : ” OldMetadata ” ‘
Product ∗DataProductAsset ‘ j son : ” Product ” ‘
Lineage [] MetadataAsset ‘ j son : ” Lineage ” ‘ }

type ConsumptionRequestAsset s t r u c t {
ID s t r i n g ‘ j son : ” ID” ‘
Name s t r i n g ‘ j son : ”Name” ‘
RequestTime time . Time ‘ j son : ” RequestTime ” ‘
Owner s t r i n g ‘ j son : ”Owner” ‘
RequestedAsset ∗MetadataAsset ‘ j son : ” RequestedAsset ” ‘
Rights [] Right ‘ j son : ” Rights ” ‘ }

type ConsumptionResponseAsset s t r u c t {
ID s t r i n g ‘ j son : ” ID” ‘
Name s t r i n g ‘ j son : ”Name” ‘
Owner s t r i n g ‘ j son : ”Owner” ‘
ResponseTime time . Time ‘ j son : ” ResponseTime ” ‘
Request ∗ConsumptionRequestAsset ‘ j son : ” Request ” ‘
ProductInfo ∗MetadataAsset ‘ j son : ” ProductInfo ” ‘
GrantedRights [] Right ‘ j son : ” GrantedRights ” ‘ }

type ConsumptionResponseUpdateAsset s t r u c t {
ID s t r i n g ‘ j son : ” ID” ‘
AutoApprove bool ‘ j s on : ” AutoApprove ” ‘
Name s t r i n g ‘ j son : ”Name” ‘
Owner s t r i n g ‘ j son : ”Owner” ‘
ProductInfo ∗MetadataAsset ‘ j son : ” ProductInfo ” ‘
Responses [] ConsumptionResponseAsset ‘ j son : ” Request ” ‘
UpdateTime time . Time ‘ j son : ” UpdateTime” ‘ }

	Implementing a Blockchain-Powered Metadata Catalog in Data Mesh Architecture

