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Abstract. Over the course of the last few years, the augmentation of
processed data and an increase in the need for fast product release cycles
led to the emergence of bottlenecks in information and knowledge flows
within large organizations. Recent research works attempted to resolve
these issues from several perspectives, which span from the data platform
architectures to the storage technologies. In this positional paper, we
start by comparing the well-established methods of designing analytical
data platforms and make a review of existing problems inherent to them,
namely centralization of storage and ownership. It continues by analyzing
the principles of a data mesh proposal and by providing an examination
of unresolved challenges, such as metadata centralization. We further
consider the business domain dependencies and platform architecture of
our running example. The final section presents our vision for solving
the identified metadata management issues in large enterprises via data
decentralization and offers potential directions for future work.

Keywords: Big Data Platforms · Data Mesh · Metadata Management.

1 Introduction

In the 21st century, the information technology community highly popularized
the term big data [9]. This notion does not differ much from the original data
definition. It is rather used to reflect properties such as the amount of data, pro-
cessing speed, or heterogeneity. Commonly cited big data 5 V’s classification [10]
describes the following characteristics: the operated data volume; the processing
velocity; the variety of structured (e.g., relational), semi-structured (e.g., XML,
JSON), and unstructured (e.g., audio, video) data; the veracity - meaning truth-
fulness, correctness, or validity of data; and the value - the hidden insights or
knowledge present in data. Though it is difficult to determine who coined the
term, we can easily observe the relevant growth of both scientific research 1 and
industrial solutions 2 in this domain.

Historically, data warehouses [8] were the first generation of solutions to deal
with enterprise analytical data. While being oriented on managing the structured

1 Analytics from app.dimensions.ai. Available at https://bit.ly/3I5p3N1
2 Big data and analytics software revenue worldwide. https://bit.ly/2Gt8VFt

https://bit.ly/3I5p3N1
https://bit.ly/2Gt8VFt
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data, it provided tools for business schema enforcement on the collected data,
user query processing engines, and analytical data processing. These solutions are
still successfully applied in OLAP-related scenarios, but they struggle with other
big data requirements, namely velocity and variety. To overcome the limitations,
in [3], James Dixon proposed the second generation platform called data lake.
Its core idea is to provide a schema-on-read functionality, which is opposite to
schema-on-write in the data warehouse. The need to pre-process the data is
delayed until the future when the analyses are done by business analysts, data
scientists, or other competent users. This facilitates the velocity of batch and
real-time acquisition directly from the data generating process (application logs,
user operations, crawling) to the data variety support in the underlying platform
thanks to the storage in a raw format. Some noteworthy data lake architectures
are data reservoir [1], Constance [6], lambda [17], and AUDAL [15]. Although
data lakes can resolve the initial big data challenges, it is still seen as a centralized
solution. It brings such issues as data silos, modules inter-dependencies, and
long product delivery cycles [2]. We believe that platform decentralization will
better benefit the large organization in comparison to widespread lake platform
centralization. We thus consider the data mesh concept.

In this position paper, we make a further review of the existing data lake
problems, describe the four main principles of a data mesh, present our vision
for improving this architecture by decentralizing metadata and product catalogs
of a data platform, and conclude with the remaining open scientific questions.

2 Data Lakes: Current Issues

In general, the existing data lake architecture models are built around centralized
data storage and data ownership [5, 14]. Modern cloud computing technologies
provide physical data distribution and fault-tolerant access guarantees across dif-
ferent geographical regions. It is essential for providing highly available services
to end users. However, from a logical point of view, data is still centralized and
controlled by data engineering teams. Such centralization can create bottlenecks
in large enterprises.

In the rest of this section, we are going to review such issues as data silos,
team friction, and changing environments.

2.1 Hidden Data

A data silo is a good example that often happens in companies. Back in the
days of using data warehouses, different departments would curate their master
data sets and use them internally. Refining and improving data quality and
the analytical pipelines within the business departments isn’t something wrong.
Nevertheless, in the modern days of advanced analytics, like machine learning,
harvesting the value of data in big enterprises requires accessing all existing
datasets. As soon as the matter comes to sharing the data, problems arise. Data
lakes did not masterfully escape this fate too. Instead of putting the walls in
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Fig. 1. Simplified Data Platform View from [13].

front of the analysts, the lake approach puts everything in one logical place for
applying transformations later in time [11]. As a result, it can easily degrade
into data swamps where it is impossible to understand and meaningfully process
all of the available data [7]. A widely acknowledged solution for avoiding data
garbage is a metadata management system. We shall provide a more detailed
view of metadata in the section 3.3.

2.2 Teams Communication

Developing monolithic applications in big companies becomes evidently prob-
lematic over time [12]. Monolith applications create intolerably many cross-team
dependencies. It means that the implementation and release of new functionality
or a product from one team are in direct reliance on the work of another one.
Thus the main issues arise in efficiently managing inter-team communications
and speeding up the product release cycle.

Unfortunately, the same limitations are faced in data platforms. Figure 1
displays a typical data lake architecture taken from [13]. It contains three main
data handling zones, namely “raw data zone” (no processing but data ingestion
that can be stream or batch), “process zone” (transformed data), and “access
zone” (self-service data consumption for data exploitation - querying, reporting,
machine learning serving, etc). The governance zone is responsible for having
a view of all the other zones and is in charge of ensuring data security, data
quality, data life-cycle, data access, and metadata management.

Oftentimes data engineers (who build these zones) require close collaboration
with application developers from the operational (data sources) plane, includ-
ing, but not limited to data quality checks, new data attributes, or new source
integration requests. The responsibility of managing and improving the data
platform, in this case, is put on the shoulders of data engineers and data scien-
tists who are detached from the day-to-day business operations of the company.

It means that engineers who work on the same product need to have high
cohesion inside a single team.
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2.3 Changing Organization Environment

Today, organizations rarely stay in a static environment, meaning that there are
always new working requirements. The provided service or product is always
subject to modifications or even cancellation. It forms a dynamic nature of all
organizational processes, impacting IT teams.

To cope with it, the analytical teams should also be dynamic, agile, and
flexible. The teams should fulfill the new requirements at an acceptable time
without compromising the present functionalities and should adapt to changes
arising from the operational plane.

In reality, it has been shown difficult to achieve in the current circumstances
of large organizations. Highly specialized data platform engineers are grouped by
skills and expertise and divided by functional modules at the same time. Their
primary objective is to harvest and employ the value from data, but instead,
they become a bottleneck in delivering innovations 3.

We have seen that the current state of analytical systems can not resolve all
exigent challenges, such as data silos, team friction, and dynamic working envi-
ronment. The following sections assess a Data Mesh architecture, which promises
to deal with the aforementioned issues.

3 Towards Decentralized Data Platforms With Mesh
Architecture

As was stated in the introduction, we advocate for the decentralization of data
platforms. This section describes the concepts of the most recent works around
platform decentralization and continues with its application on top of our run-
ning example. In the last part, we highlight the main ongoing difficulties that
are not completely addressed.

3.1 Data Mesh 4 Pillars

Zhamak Dehghani proposed a novel architecture called data mesh [2]. It sum-
mons to make a paradigm shift in the way of building big data platforms. The
shift is based on 4 main principles, and each one is essential on its own. With-
out proper implementation of all principles, it will only exacerbate the existing
problems inside the organization.

Distributed Data Domains The basic ideas for successfully implementing
data mesh architecture take their origin from the domain-driven design (DDD)
[4]. Similarly, way as the monolithic operational plane is broken up into small,
independent components like microservices so that we can divide the analytical
platform into self-contained business domains. Distributed domains architecture

3 Break Through the Centralized Platform Bottlenecks with Data Mesh. Available at
https://thght.works/40YM6Sj

https://thght.works/40YM6Sj
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represents the first principle of a mesh. Instead of forcing centralized data owner-
ship onto the narrowly specialized teams, one can benefit from forming domains
aware groups of interdisciplinary employees. Each group would contain appli-
cation developers, designers, data engineers, data scientists, business analysts,
and product owners. This way, groups would be focused on developing both
operational and analytical parts of a single product.

Data Product Design As with the software products in domain-driven method-
ology, the systematic approach of building the data-oriented products within the
domain is also required. Most of the time the users would include not only the
payable clients but other teams of the same organization too. Providing a great
service takes designing, delivering, measuring, and constantly improving the pro-
vided data, be it A/B testing results or machine learning models. It creates a
new zone of responsibility for product owners since they also need to take care
of how the data products perform. Guaranteeing SLAs, publishing trustworthy
data, and helping the users to discover, understand and consume the product
are some of the key indicators of a successful product.

Reusable Infrastructure To avoid re-implementation of similar or even identi-
cal data acquisition, processing, and serving functionality, one must benefit from
a shared self-serve infrastructure platform. Its main goal would be a set of com-
mon and interchangeable tools like data source connectors and sinks, transfor-
mation jobs, automatic logs, data lifecycle configuration, and so on. Eliminating
the basic day-to-day engineering operations behind an easy-to-use abstraction
layer will help to unlock the fast release cycle.

Federated Computational Governance The importance of providing gov-
erning policies and mechanisms can not be overstated. It is the only way how a
lot of independent, distributed, interconnected, and dynamic data domains will
work efficiently together. Policies help to determine how the individual domain
or product should behave in the mesh. For instance, interoperability standards
would describe the data publishing formats (e.g., JSON, Protobufs), schema in-
tegrity checks, information security, and privacy rules. At the same time, enforce-
ment mechanisms will allow leveraging the verification, monitoring, or alerting
processes automatically. Defining and enforcing the governance elements is not
easy, but it must not be centralized. The mechanisms must be incorporated di-
rectly into the infrastructure platform, and the policies could be defined by the
committee of data domain representatives and other experts (e.g. legal team).

3.2 Running Example

We experimented with our running example by applying the mesh principles. We
consider different departments in a video-streaming platform: Human Resources
(HR), Sales, Finance, and content production Studios. In Figure 2 (left part) we
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Fig. 2. Data mesh cross-domain dependencies (left) and functional architecture (right).

can easily notice that these departments inevitably have inter-dependencies, even
when performing different day-to-day operations. For example, contracts issued
by Sales would be related to creating new content and signing up partnerships
with actors or directors (talents entity).

If we would like to integrate some analytical pipelines, it would be natural to
proceed with extending the existing departmental technical modules. The Studio
representatives may be interested in planning the load schedule. To deliver such
an estimation, the Studio engineers will have to consume the information on
contracts that the directors and actors have signed (an external data source
provided by the Sales team), as well as the movie schedules (an internal source).

An important aspect of building the analytics here is not to be inclined
with just another warehousing solution. One has to remember to provide the
data product, not merely the statistical calculations. Our Studio product would
include the metadata about data freshness, running transformation history, and
semantic info on parties, costs, and jurisdictions in case we would like to filter
the data further. In plus, the product could be consumed via different means:
asynchronous message queues, HTTP requests, or even direct disk mounting in
case of large blobs and supported data fabric functionality.

Overall, these interactions form a net of dependencies on the analytical plane
in a similar way as on the operational one. The net would directly affect the de-
sign of the functional platform architecture, as is shown in Figure 2 (right part),
where different departments or domains pass the data to each other directly.

In addition, the specialized data (product) and extract-transform-load (ETL)
catalogs can help in data discovery, development automation, etc., as is often
done in the literature. Such catalogs can be implemented in metadata man-
agement systems by using, for instance, graph databases that provide efficient
processing of graph structures (that naturally arise in our running example).

We shall consider the benefits of graphs in more detail in Section 4.2.
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3.3 Challenges

It may not be obvious at first look, but the principal part of building the de-
centralized platform stems from changing the organizational hierarchy. Compa-
nies and institutions have to update their framework for creating engineering
teams, zones of responsibility, and, finally, the rendered products. One of the
data mesh paradigm objectives is to unite the once-divided operational and an-
alytical planes together across different distributed data domains. Now we shall
look into left open questions.

User Profile We have mentioned previously that users operating in a cen-
tralized environment have to understand the business domain processes. It is
necessary to know how the data was generated, processed, and stored in the
operational plane, as well as the meaning, semantics, and relationships between
attributes, tables, datasets, etc. Since all of the data is available to the end user
as a huge chunk of files in one place, it becomes challenging to analyze it. Com-
monly, the data lake user profile is a technically knowledgeable person who has
to use specific software (e.g., Apache Spark, Flink, Beam) to get the utility from
data. It constrains the adaption and digital transformation of the organization
which tries to implement big data managing solutions.

When adopting a decentralized platform architecture, special care should be
taken to support multiple consumer profiles. Needless to say that if the advertised
domain data is a chunk of files, it won’t generate much utility. It means that
consumption interfaces should provide and publish the data in multiple formats
(datasets, analytical models, reports, etc). There is a clear need to adapt the
data product attitude to unlock the underlying value.

Such an approach will expand the list of end users - from data engineers
and data scientists to analysts, marketing teams, or business owners. The latter
would be able to find the required information via metadata and product catalog
search or relationship traversal and plug it directly into visualization tools such
as Grafana, Tableau, Data Studio, etc. The growth in the number of active data
users will accelerate the transformation of the organization into a data company.

Technology State On one side, decentralized approaches are still maturing,
and there are no settled models and tools for implementing them across the inte-
grated planes. On the other side, we should briefly note that: a) the operational
teams have already established practices of DDD via microservices architec-
ture (and later via service mesh paradigm), use of distributed computational
platforms (e.g., Docker, Kubernetes), configuration tools (e.g., Ansible, Chef,
Terraform), continuous integration and delivery services (e.g., Jenkins, GitLab);
b) analytical teams also have a wide range of tools which support distributed
technologies, including Apache Spark and Apache Beam for real-time and batch
data processing; HDFS, Apache HBase, Apache Cassandra for non-relational
and MySQL, PostgreSQL for relational data storage; Grafana or Tableau for
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data visualization. But mentioned data platform technologies provide the dis-
tribution only for scalability, fault-tolerance, and disaster recovery. It is quite
complicated to apply it in terms of complete data ownership decentralization.

Metadata Management There is a consensus in the research that a meta-
data system is an essential part of any big data platform [13, 14, 18]. Its main
role is to prevent the formation of a data swamp. It is achieved by providing
supplementary, descriptive information to the collected and processed data. For
instance, having the data type annotations helps to avoid creating bugs in the
code; marking the date and time stamps ensures the data freshness; directed
acyclic graph of transformation jobs provides the data lineage, which is in turn
important for failure detection. The author of the data mesh architecture puts
metadata management as part of the federated computational governance but
does not provide clear details on how to build it. The governance is described in
a somewhat blurred state between centralization and decentralization.

4 Research Proposal

Deriving from our running example and challenges sections, we conclude to have
a high impact of the mesh paradigm on the overall data platform transformation.

In the following section, we analyze and present our position regarding do-
main design and metadata management as part of federated governance.

4.1 Data Lake Architecture Layers

As a first attempt, we reconsider the architecture of data lakes in order to inte-
grate a layer-oriented vision. Figure 3 shows this revision, where data sources are
placed on the operational layer, while the analytic layer contains the three zones
from [13], namely raw data, process, and access zones (presented in Section 2.2).

The governance layer contains a single metadata catalog organized in a flat
or advanced manner and is responsible for having a view of all the other zones.
It is in charge of ensuring data security, data quality, data life-cycle, data access,
and metadata management.

Fig. 3. Data Lake Architecture Layers revisited from [13]
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Fig. 4. Conceptual model (left) and Neo4j implementation (right) from [19]

As presented above, this metadata catalog is crucial and has attracted a lot
of work in the literature. Also, it should be noted that such a catalog is more and
more often implemented with property graphs. For instance, the DAMMS model
[19] shown in Figure 4 uses Neo4j, which is an ACID-compliant transactional
database with native graph storage and processing.

4.2 Data Mesh Architecture Layers

In this section, we focus on the role of metadata in the context of data mesh. In
existing mesh architectures metadata are often stored in XML/JSON format.

We claim that metadata cannot be easily and efficiently modelized with flat
or tree representations. It is due to the fundamental principle of how the data is
stored and the limited ability to construct and process real-world graph struc-
tures (e.g. cross-domain relationships) when using these representations.

Therefore, we first propose more advanced models below.

Centralized Metadata Catalog In the Data Mesh architecture, the gover-
nance is seen as a federation. Within that federated governance, the metadata
layer is the part where the metadata catalog is considered.

Figure 5 shows that applications from operational layers publish data that are
then exposed by the data products. Those data products offer communication
interfaces (e.g., REST API, Message Queue) to allow the consumption of data.

Fig. 5. Centralized Metadata Catalog
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Fig. 6. Domains Perspective in Data Mesh

Every time a data product changes, it publishes its metadata to the centralized
metadata repository from which clients can discover the available data.

However, this architecture has some drawbacks. Indeed, the data mesh can
deliver data products that are inconsistent, and the data can be seen as non-
reproducible (e.g. phantom reads).

If we take the data mesh architecture from the perspectives of business do-
mains as shown in Figure 6, we can see those data products operate as a vertical
view to serve the end users’ needs. For instance, such a domain can be dedicated
to HR, Sales, Finance, etc., as presented in our running example in Section 3.2.

Fig. 7. Disjoint Metadata Graphs

In this architecture domains are disjoint and this is reflected in the metadata
(which are represented as graphs) as shown by Figure 7.

Fig. 8. Metadata Overlapping
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On the opposite, Figure 8 shows the case where domains and metadata over-
lap. In such a case, metadata entities are shared between several domains.

Fig. 9. Overlapping and Disjoint Metadata Graphs

As for disjoint domains, there is no obligation that all metadata graphs are
connected, as in the example of Domain 4 from Figure 9.

Given a data mesh composed of ns data sources and nd data domains, we
consider that the metadata can be formalized as:

– a global graph G such that;
– G =

⋃
i=1,...,nd

Gi where Gi is metadata graph associated with Domain Di;
– There may exist i, j ∈ [1, nd] where Gi

⋂
Gj = ∅.

Decentralized Metadata Catalog Proposal The previous section highlights
that the metadata layer can be seen as a graph and that each data product should
provide metadata where entities lie in one or several business domains.

Generally, data mesh has a federation tier where centralized governance is
meant to determine what semantic to use, who defines new vocabulary, and also
to have a centralized catalog to allow the discovery of all metadata in one place.

In this era of decentralization, there are some pros and cons of this approach,
for instance, the fact that centralized architectures lead to single points of failure.

Nevertheless, we would like to highlight the consequences of the centralized
metadata repository on the delivery process. Indeed, one of the advantages of
data mesh is that data products are not beholden to a single release cycle to make
the improvements needed. This is improving time-to-market, end-user services,
agility, etc. A data product does not have to wait to deploy everything together.
Data or features can be added or transformed without waiting for the next
release cycle, as it would be with most data lake architectures.

We claim that a centralized metadata catalog can break this assumption.
For instance, updating a centralized metadata catalog should be added to the
deployment process of each data product to avoid the side effects of an eventual
consistency system. Also, if a Data Product needs to publish data about a term
that has not previously been defined in the federation governance, then the
release may be stalled.
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Fig. 10. Data Products with Metadata

Thus, our proposal is to treat the metadata catalog as a decentralized and dis-
tributed system. Each data product should provide its own metadata (business
metadata, technical metadata, operational metadata, physical schema, semantic
metadata, local and full lineage, and, quality metrics). Figure 10 illustrates that
data products should be both in analytical and metadata layers.

In our proposal, we go beyond and consider that there is no more central-
ized metadata catalog where clients can browse the data, but a distributed and
decentralized catalog accessible via discoverability, just as in the modern Web.

To go further, we consider that our metadata graph can be seen as a union of
Labeled Property Graphs (LPG), each of them being hosted on a data product
and representing its metadata as a graph and not as a tree or document (such
as in XML or JSON format).

Fig. 11. Integrating Labeled Property Graphs

Figure 11 illustrates our proposition to have for each data product an LPG.
An LPG can be defined as an extension of a property graph where 0 to N labels
can be applied to nodes (or vertices). A property graph, as presented in [16], can
be defined as a tuple PG = {V,E, S, P, he, te, lv, le, pv, pe}, where:

– V is a non-empty set of vertices;
– E is a set of edges;
– S is a set of strings;
– P contains all p = {k, v} key-value pairs describing properties;
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– he : E → V is a function that yields the source of each edge (head);
– te : E → V is a function that yields the target of each edge (tail),
– lv : V → S is a function mapping each vertex to label;
– le : E → S is a function mapping each edge to label;
– pv : V → 2P is a function used to assign vertices to their multiple properties;
– pe : E → 2P is a function used to assign edges to their multiple properties.

Given a data mesh composed of nd data domains, we consider that the meta-
data can be formalized as:

– a global labeled property graph LPG such that
– LPG =

⋃
i=1,...,nd

LPGi with LPGi the labelled property graph of meta
data associated with Domain Di.

– There may exist i, j ∈ [1, nd] where LPGi

⋂
LPGj = ∅

This approach solves the issues of eventual consistency and non-reproducible
environments (e.g., phantom reads), but of course, it generates new challenges to
address, such as labeled-property graphs partitioning, discoverability and query-
ing, networking issues (routing), etc., that will be discussed in further works.

5 Conclusions

The state-of-the-art centralized data lake architectures do not solve all modern
big data platform challenges. Organizational scaling becomes an innovation bot-
tleneck in companies with segregated operational and analytical platforms. To
address these issues, some promising paradigms like data mesh were proposed.

However, new difficulties arise. Available metadata management systems
which attempt to prevent the creation of data swamps are also designed as a cen-
tralized remedy. The mesh proposal does not offer any explicit guidelines for dis-
tributed domain implementation or evolution within the institutions. Moreover,
the available technologies are still maturing and do not support the complete
data decentralization capabilities for both operational and analytical planes.

Therefore, there is an open demand for developing the technology for building
decentralized and interoperable data mesh with distributed metadata system.

In our research proposal, we introduce the main goals necessary to achieve for
building a successful big data platform based on the data mesh principles, and
we present and discuss centralized and decentralized architectures for disjoint
and overlapping data domains.

Our future work will focus on refining our new metadata model and defining
a logical structure based on property graphs and its decentralized technology
implementation.
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