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ABSTRACT  

Titanium dioxide (TiO2) is widely used in photocatalysis applications for wastewater 

treatment. Investigations demonstrated that titanium dioxide structure strongly contributes 

to increase micropollutant degradation efficiency. Indeed, pollutant degradation rates are 

enhanced when using photocatalysts with highly ordered structures and high specific surface 

area, such as TiO2 nanotubes (NTs) synthesized by  atomic layer deposition (ALD). Here, TiO2 

NTs, fabricated by ALD followed by nitrogen doping via thermal treatment, were compared 

with TiO2 nanofibers (NFs), prepared by electrospinning. Their morphology and structure were 

investigated by scanning and transmission electron microscopy, X-ray diffraction, and X-ray 

photoelectron spectroscopy. Photoluminescence measurements showed that TiO2 NT 

photoluminescence intensity was lower than that of TiO2 NFs, due to lower electron-hole pair 

recombination, and consequently their degradation efficiency was higher. As the surface to 

volume ratio was higher in TiO2 NTs than NFs, the rate of non-radiative surface recombination 

also was higher in TiO2 NTs. Comparison of their performance for photocatalytic degradation 

of acetaminophen showed higher degradation activity with TiO2 NTs than TiO2 NFs. TiO2 NT 

doping with nitrogen (N-TiO2 NTs) further enhanced their photocatalytic activity that was 5 

times higher than that of TiO2 NFs (degradation rates: 0.05 and 0.01 mg.L-1.min-1, respectively). 

The N-TiO2 NT photocatalyst was stable after four cycles of acetaminophen degradation. Acute 

toxicity assays confirmed the release of harmful by-products during the first hours of 

acetaminophen degradation, but toxicity strongly decreased after 5 hours. 
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Highlights  

• TiO2 nanotubes (NTs) were fabricated by atomic layer deposition on 

polyacrylonitrile nanofibers 

• The as-prepared samples efficiently degraded acetaminophen upon visible light 

exposure  

• The photocatalytic efficiency of TiO2 NTs was 3 times higher than that of TiO2 

nanofibers after 90 minutes of visible light irradiation 

• Nitrogen doping further improved TiO2 NT degradation efficiency by increasing the 

separation time of the photogenerated charge carriers 

• N-TiO2 NTs displayed the lowest charge transfer resistance and the largest 

electroactive surface area 

 

  



 

 

1. Introduction 

The pressing increase in clean water demand has led researchers to focus on developing 

new technologies for water treatment because the conventional systems cannot efficiently 

degrade micropollutants (e.g. drugs, pesticides, personal care products, dyes) and eliminate 

microorganisms1,2 that can resist to the conventional methods and then contaminate drinking 

water3,4. Although these contaminants are usually present at very low concentrations, they 

can harm human health and other living organisms5,6. For instance, acetaminophen (ACT) is a 

pharmaceutical product used as painkiller that have been detected in the range of ppm to ppt 

and has significant negative impacts to the aquatic and ecological systems7.   

The main challenge is the development of new removal techniques that are cheap and 

require less energy consumption. Advanced oxidation processes (AOP), particularly 

photocatalysis, are good candidates at the place or in combination with conventional 

techniques8–10. Photocatalysis is a green technology in which, pollutants under visible light 

irradiation  are degraded to CO2, H2O, and in some cases small non-toxic molecules , as final 

degradation products.11,12 In this system, upon irradiation, the semiconductor is activated by 

photon energy that is equal to or higher than its bandgap energy. This leads to the formation 

of electron-hole pairs between the conduction and valence bands that will then generate 

radicals implicated in the pollutant mineralization13,14.  

Titanium dioxide (TiO2) is among the most used semiconductors. TiO2 is not expensive and 

displays good chemical and thermal stability and low toxicity15–18, but  its wide bandgap and 

fast electron-hole pair recombination limit its use under visible light19–21. Previous studies on 

the development of materials and technologies with higher degradation efficiency for water 

treatment indicate that the catalyst structure and morphology strongly contribute to its 

catalytic activity under visible light. 22–24 In agreement, TiO2 photocatalytic activity is 

influenced by its morphology, crystallinity, surface, and textural properties. Many groups have 

tried to tailor TiO2 morphology to increase its photocatalytic performance25–28. For instance, 

0D, 1D, 2D and 3D TiO2-based materials have been fabricated using various techniques29–33. 

One-dimensional (1D) materials, such as 1D TiO2 nanofibers (NFs), nanorods, nanotubes (NTs), 



 

nanowhiskers and nanowires34–36, are particularly interesting due to their higher light 

absorption and slower recombination rates, leading to better photocatalytic activity37–39. 

Among these structures, tubular nanostructured TiO2 is a versatile material for photocatalysis 

and photoelectrolysis40–42. Many preparation techniques have been tested for fabricating such 

1D nanostructures (e.g. hydrothermal synthesis, template synthesis, anodization, 

electrospinning and atomic layer deposition, ALD) 43–46. ALD is a thin film deposition technique 

based on gas-phase precursors for the deposition of thin-film layers with thickness control at 

the Ångstrom level47–49 . ALD has been often combined with electrospinning for the deposition 

of the desired materials on polymeric fibers that are used as substrate50–53. Upon removal of 

the polymeric core by thermal treatment after the ALD cycles, a tubular structure is formed54. 

McClure et al. described TiO2 deposition on polymeric nanofibers by ALD, and then compared 

the precursor effect on the film coating. They found that the precursor choice influenced the 

final structure of TiO2 NTs55. Su et al. reported the fabrication of TiO2 NTs by ALD using 

titanium chloride and H2O as precursors and assessed the doping effect on NT photocatalytic 

and photoelectrochemical performance56. In addition, the number of ALD cycles and the 

deposition temperature may affect the material crystalline structure45. 

As TiO2 catalysts are often not stable and not much active under visible light irradiation, 

improving TiO2 morphology might positively influence the photocatalytic behavior compared 

with unmodified TiO2 (commercial Degussa p25)57. Several methods have been described to 

extend the semiconductor photo-response to the visible light region, such as doping TiO2 with 

metals and non-metals and coupling with other semiconductors58–60. Doping with non-metals 

(e.g. carbon, sulfur, phosphorus, nitrogen61–65) reduces the recombination of photogenerated 

electron-hole pairs in TiO2. Several non-metal dopants were mentioned in the literature such 

as carbon (C), sulfur (S), phosphorus (P) and nitrogen (N)61–65. N-doping is the most studied66 

and allows shifting the TiO2 band into the visible light range67. Asahi et al. found that N-doping 

extends TiO2 optical absorbance towards the visible light region68. Moreover, the presence of 

non-metals in TiO2 generally increases the specific surface area and the anatase phase 

percentage, while limiting the crystallite size growth69. Huang et al. fabricated N-doped TiO2 

(N-TiO2) by hydrothermal synthesis and calcination under NH3 atmosphere. They found that 

N-doping promoted the generation of hydroxyl and superoxide radicals that enhanced the 

photocatalytic activity70. Another study showed that N-doping promotes the formation of 



 

oxygen vacancies that contribute to visible light absorption59. These two effects were also 

observed in hierarchical structures grown by ALD in which N-doping of TiO2 was obtained by 

incorporating N atoms on the substrate71. Hence, co-doping TiO2 with nitrogen and boron can 

enhance both the visible light absorption of TiO2 and implement an efficient charge 

recombination regarding the synthesis technique72.  

On the other hand, it was widely reported that the morphologies of 1D structures can 

influence TiO2 photocatalytic properties. Interestingly, the photocatalytic activity can be tuned 

by several parameters such as particle size, specific surface area, porous structure, crystalline 

phase etc. 19. Rosales et al. compared the photocatalytic activity of different 1D morphologies 

(NTs, NFs, NWs) on the degradation of methyl orange. The author found that the shape of TiO2 

has a major role in determining their photocatalytic activity34, herein the importance of 

comparing different 1D morphologies such as TiO2 nanofibers and nanotubes for the 

degradation of organic micropollutant. 

Here, we fabricated 1D TiO2 NTs by ALD for photocatalysis. To the best of our knowledge no 

previous reports have been published on elaboration of TiO2 nanotubes by Atomic Layer 

Deposition for catalytic activity. Hence 1D TiO2 NTs have shown a great interest for the 

degradation of micropollutants when compared to NFs and NWs because of their higher 

efficiency to absorb light. Variation of the number of ALD cycles confirmed that the 

photocatalytic efficiency was directly influenced by the NT wall thickness. Moreover, TiO2 

doping with non-metals (nitrogen) further improved the photocatalytic activity by modifying 

the NT charge transportation, surface area, reflection and absorption. By comparing the 

catalytic activity of these TiO2 NTs and of TiO2 NFs prepared by electrospinning we found that 

ALD allows the formation of a well-structured nanotubular catalyst with higher degradation 

efficiency than NFs. More than 98% of acetaminophen was degraded in the presence of N-

TiO2 NTs after 180 min of visible light irradiation. N-TiO2 NTs recyclability and toxicity tests 

showed the potential of this catalyst for real applications. We also performed quenching tests 

to determine the active species responsible for acetaminophen degradation. 

 

2. Experimental 



 

2.1. Materials and chemicals 

Titanium(IV) isopropoxide (TTIP, 97%, CAS: 546-68-9), titanium (IV) chloride (TiCl4, 99.9%, 

CAS: 7550-45-0) , polyacrylonitrile (PAN, Mw=150000, CAS: 25014-41-9), polyvinyl pyrrolidone 

(PVP, Mw=1300000, CAS: 9003-39-8), acetaminophen (≥99%, CAS: 103-90-2), formalin 

solution (HCHO, CAS: 50-00-0), boron tribromide (BBr3, 99.9%, CAS :10294-33-4), Nafion™ 

perfluorinated resin solution (CAS: 31175-20-9), potassium chloride (KCl, ≥99%, CAS:), sodium 

sulfate (Na2SO4, ≥99%, CAS: 7757-82-6), sodium chloride (NaCl, ≥99%, CAS: 7647-14-5, 

potassium ferricyanide (K3[Fe(CN)6], ≥99%, CAS 13746-66-2), 2-propanol (99.9%, CAS: 67-63-

0),  p-benzoquinone (C6H4O2, ≥99.5%, CAS:106-51-4),  and ethylenediaminetetraacetic acid 

(EDTA, 99.995%, CAS: 60-00-4) were purchased from Sigma-Aldrich. Tetrahydrofuran (99.9%, 

CAS: 109-99-9) was bought from Honeywell. Acetic acid (≥96% CAS: 64-19-7) and ethanol 

(≥99.8% CAS: 64-17-5) were purchased from VWR Chemicals and used as solvents. All 

chemicals were used without any additional purification. Indium tin oxide (ITO) deposited on 

quartz was purchased from Präzisions Glas & Optik. Deionized water (>18.2 MΩ), prepared 

with the Millipore (Milli-Q® Academic) water purification system, was used for all dilutions 

and reagent preparation. Argon gas, ammonia and nitrogen were from Linde and were used 

as received. 

2.2. Support and catalyst preparation 

2.2.1. Synthesis of TiO2 nanofibers and PAN nanofibers by electrospinning 

For TiO2 NF fabrication, a mix of TTIP, PVP, acetic acid and ethanol was stirred for 2h before 

electrospinning. The solution was loaded into a 22 mL syringe, and the needle was connected 

to high voltage. The electrospinning conditions were: needle-collector distance of 10cm, 

tension of 25kV, and solution flow of 1mL.h-1. For the preparation of PAN NFs, 18mL of 

tetrahydrofuran was mixed with 2 mg of PAN at 60 °C for 24 h and then electrospinned using 

a previously described home-built electrospinning system50,51,73. The collected TiO2 NFs 

underwent calcination at 750 °C for 4h before utilization. PAN NFs were stabilized at 250 °C 

for 2h (heating rate of 1 °C.min-1) before ALD.  

2.2.2. Deposition of TiO2 nanotubes by atomic layer deposition 



 

Stabilized PAN NFs were used as substrates for TiO2 deposition at 100°C, using TiCl4 and H

2O as precursors in a home-built ALD device. After ALD deposition, we removed the PAN u

pon annealing under air at high temperatures allowing to transform into nanotubes struc

tures. 

The typical ALD cycle consisted of 0.2 s TiCl4 pulse, followed by 10 s exposure and 60 s 

purge. Then, the H2O valve was opened for 2 s, followed by 10 s exposure and 60 s purge with 

argon gas. The line connected to the reactor was heated at 100°C to avoid condensation. The 

number of ALD cycles varied between 500 and 1000 to vary TiO2 shell thickness. After TiO2 

deposition, PAN-TiO2 NTs were heated at 750°C for 4h with a heating rate of 1 °C/min under 

air before use.  

2.3. Nitrogen-doped and boron/nitrogen-co-doped TiO2 NTs 

After 500 ALD cycles, PAN-TiO2 NTs were exposed to nitrogen at 750°C for 15 min and the 

samples were denoted (N-TiO2 NTs) hereafter. For boron/nitrogen co-doped TiO2 NTs (B/N-

TiO2 NTs), BN was deposited following a previously described method  and five ALD  cycles 

were used in this case73.  

2.4. Characterization of the synthesized nanocomposites 

The NT and NF morphology was analyzed by scanning electron microscopy (SEM Hitachi 

S4800, JAPAN). Samples were placed on aluminum stubs and were sputter-coated with 

platinum/palladium using a Polaron SC7620 Mini Sputter Coater. X-ray diffraction (XRD) 

analyses were carried out using a PanAlytical X’pert system with Cu K α radiation ( = 0.15406 

nm). The diffraction patterns were measured between 10 and 80° with a step size of 0.0167°. 

The tubular morphology  NTs was confirmed by transmission electron microscopy (TEM) using 

the JEOL 2200FS (200 kV) and JEOL ARM-200F (200kV) microscopes. For TEM analysis, samples 

were dispersed in ethanol, and a drop of the suspension was dried on a carbon support film 

that covered a standard copper grid. The samples’ chemical composition and bandgap were 

determined by X-ray photoelectron spectroscopy (XPS) measurements, with an Escalab 250 

apparatus, and by UV–Visible spectrophotometry (Jasco model V570; equipped with a diffuse 

reflectance attachment (Shimadzu IRS-2200)), respectively. Optical absorbance was measured 

by recording the photoluminescence spectra with an optical fiber spectrometer (Ocean Optics 



 

usb2000), equipped with excitation wavelength of 266 nm anda nitrogen Nd:YAG laser of 

9mW.  

2.5. Electrochemical measurements 

Electrochemical impedance spectroscopy (EIS) and electrochemical active surface (EAS) 

characterization carried out by cyclic voltammetry (CV) were performed in a three-electrode 

cell system connected to a Solartron SI 1287 galvanostatic-potentiostat. A halogen lamp (150 

w), placed at a distance of 10 cm from the electrode surface, was used as the light source. 

Platinum wire and Ag/AgCl were the counter and reference electrode, respectively. The 

working electrode (2x2.5cm) was a suspension of 5 mg photocatalyst, 1 mL isopropanol, and 

40 µL Nafion® aqueous solution. After 30 min in an ultrasonic cleaner, this suspension was 

dropped on the ITO glass, to obtain the working electrode after isopropanol evaporation. For 

EIS measurements, the three electrodes were immersed in a Na2SO4 solution (0.1 mol.L-1) 

considered as the electrolyte. For EAS analysis, 10 mM K3[Fe(CN)6] and 1.0 M KCl were used 

as electrolytes. The samples’ electroactive surface area was estimated by CV performed in a 

voltage range of -0.4 to 0.8 V vs reference at scan rate of 20 mV.s-1. The EAS was calculated 

using the Randles–Sevcik equation: 

𝐈𝐩 = 𝟐. 𝟔𝟗 × 𝟏𝟎𝟓 × 𝐀𝐃𝟏/𝟐 × 𝐧𝟑/𝟐 × 𝐂𝐯𝟏/𝟐                        (1) 

where Ip is the maximum current (A), n is the number of transferred electrons (n = 1), A is 

the electrode area (cm2), D is the diffusion coefficient of [Fe(CN)6]3- (7.60 × 10-6 cm2.s-1), C is the 

concentration of [Fe(CN)6]3- (1 × 10-5 mol.cm-3), and v is the scan rate (0.01 V.s-1).  

 

2.6. Acetaminophen degradation 

The TiO2 samples’ photocatalytic activity under visible light (linear halogen lamp; 400W, 

Avide) was tested by quantifying acetaminophen degradation in an aqueous solution. The 

solution was maintained at 10 cm from the lamp for all experiments. First, TiO2 NT samples 

with different wall thicknesses (different ALD cycle number) were compared. Then, the 

catalytic performances of TiO2 NTs (500 ALD cycles), TiO2 NFs, and doped TiO2 NTs were 

evaluated.  



 

The photocatalytic degradation experiments were performed in the following conditions: 

the photocatalyst with an initial concentration of 0.5 g.L-1 was added to 250 mL of 

acetaminophen aqueous solution (5 mg.L-1) in a 600 mL glass reactor put in a water bath at 

30°C to minimize the temperature increase in the solution under light irradiation. After stirring 

in the dark for 30 min to ensure equilibrium adsorption, the solution was exposed to visible 

light and at different intervals, 2 mL aliquots were collected and filtered with 0.22 µm filters. 

Acetaminophen degradation was quantified by high-performance liquid chromatography 

coupled to a Quattro-Micro mass spectrometer with an Electrospray ionization probe (Waters 

Micromass, Wythenshawe, Manchester, UK) as detector (HPLC-MS). The separation was 

carried out using a C-18 column (RP18 Column, Nucleoshell). The mobile phase was composed 

of Buffer A (0.1% formic acid in HPLC-grade water) and Buffer B (0.1% formic acid in HPLC-

grade acetonitrile) with a 97:3 (A:B) ratio. The flow rate was set at 0.25 mL min-1 and the run 

time was 3 min. 

The recyclability of the catalyst with the highest degradation efficiency was further 

investigated for 5 cycles of acetaminophen degradation in the same conditions.  

The degradation efficiency (D(%)), was calculated according to equation (2): 

𝐃(%) = [(𝐂𝟎 − 𝐂)/𝐂𝟎 ] × 𝟏𝟎𝟎              (2) 

where C0 and C are the initial and final acetaminophen concentrations after the test, 

respectively. 

2.7. Photocatalytic kinetic model 

TiO2 degradation kinetics is usually described using the Langmuir–Hinshelwood model74,75. 

When the pollutant concentration is low, a pseudo-first-order kinetics is applied76, as 

described in Equation (3): 

𝐥𝐧 (𝐂𝟎/𝐂)  =   𝐤𝐭                                                                                                      (3) 

where C0 (mg/L) is the initial pollutant concentration, C is the pollutant concentration at 

time t (min), and k (min-1) is the pseudo-first-order rate constant. 

2.8. Eco-toxicity assays  



 

During acetaminophen degradation many by-products may be formed 77. To assess their 

toxicity, inhibition of Vibrio fischeri bioluminescence was monitored using a Microtox® Model 

500 Analyzer (Modern Water Inc.; United Kingdom) as previously described69.   

2.9. Quenching tests 

Scavenger tests were performed to determine the main active species responsible for 

acetaminophen degradation. Benzoquinone, isopropanol and EDTA were added to the 

solution at a concentration of 10 mM before exposure to visible light (same conditions as for 

the degradation experiments). Aliquot were collected at different intervals, and 

acetaminophen concentration was measured by HPLC-MS as described in 5.6.  

3. Results and Discussion 

3.1. Morphological characterization 

The morphology of all prepared materials (calcinated TiO2 NFs after electrospinning and 

TiO2 deposited on PAN NFs by ALD) was verified by scanning electron microscopy (SEM). 

Before the analysis, TiO2 was deposited on PAN nanofibers substrate by ALD and TiO2 

nanofibers elaborated by electrospinning were subject to thermal treatment at 750°C under 

air for 4h. A well nanotubular structure was observed after ALD deposition with a TiO2 pulse 

time of 0.2 s, but not with shorter pulse times (Erreur ! Source du renvoi introuvable.). In 

addition, it was reported elsewhere that more than 200 ALD cycles are necessary to obtain 

well-structured NTs78. Moreover, Figure 1a shows TiO2 nanotubular morphology of several 

microns in length after removal of the PAN substrate. This indicates that PAN NFs were an 

efficient ‘template’ for TiO2 NT synthesis. TiO2 NTs with an inner diameter of approximatively 

400 nm and high surface roughness were obtained after 500 ALD cycles (Figure 1b). SEM 

confirmed the nanofibrous structure of TiO2 NFs (Figure 1(c)). The surface roughness is 

attributed to the crystalline structure of the nanofibers at 750°C. No clear difference was 

observed after NT doping (Figure 1 (d-e)), confirming the previous findings that N- and B-

doping do not change TiO2 shape70 and that doping with non-metals could occur in the NT 

bulk79.  



 

 

Figure 1. SEM images of (a-b) TiO2NTs,  (c) TiO2 NFs, (d) N-TiO2 NTs, and (e) B/N-TiO2 NTs. 

TEM images (Figure 2) confirmed TiO2 NT nanotubular structure with a nanotube wall 

thickness of ~60 nm in doped and non-doped samples. After N-doping, TiO2 nanotubular 

morphology and crystal lattice values (selected area electron diffraction images (SAED)) were 

not changed. Moreover, elemental mapping (Figure 2b) indicated the presence of N, T and O.   



 

 

Figure 2. High resolution TEM, elemental mapping, and selected area electron diffraction 
images SAED of (a) TiO2 NTs and (b) N-TiO2 NTs (500 ALD cycles in both cases). 

The crystalline structure was characterized by X-Ray Diffraction (XRD). TiO2 NT samples 

with different thickness were composed of an anatase phase at 750 °C, as previously 

described80 (Figure 3 and S2). TiO2 NTs and N-TiO2 NTs displayed the anatase crystalline 

structure peaks at 2θ = 25.3, 36.9, 37.7, 38.5, 48.0, 53.8, 55.0, 62.6, 68.7, 70.2, 74.9 and 75.9° 

81 that corresponded to the anatase phase planes (101), (004), (200), (105), (211), (204), (116) 

and (107) (JCPDS-00-071-1167), respectively82. The anatase phase was more active than the 

rutile phase due to the presence of an indirect bandgap in the anatase crystal that increased 

the electron-hole pair separation83. In N-TiO2 NTs, the anatase peaks were slightly shifted 

compared with TiO2 NTs, possibly due to N incorporation in TiO2 bulk or crystal lattice, as 

confirmed by XPS84. Unlike B/N co-doping, N-doping inhibits the rutile phase formation. Co-

doping with B and N (B/N-TiO2 NTs) led to the appearance of additional peaks 85,86. The peak 

at 2θ = 28.0° was associated with the rutile phase of the (110) plane87. It was reported 



 

elsewhere that the rutile phase formation is linked to the percentage of B incorporation into 

TiO2
88. Lastly, in TiO2 NFs, both anatase and rutile phases were observed with the rutile phase 

diffraction peaks (1 1 0), (1 0 1), (1 1 1), (2 1 0), (2 1 1), (2 2 0), (3 1 0) and (1 1 2) (rutile TiO2, 

JCPDS 21-1276)89. TiO2 NFs did not show the same crystallinity as TiO2 NTs, since the crystalline 

nature of TiO2 varies with synthesizing techniques and parameters90. 

 

Figure 3. XRD analysis of doped and non-doped TiO2 NTs (500 ALD cycles) and of TiO2 NFs (a) 

from 15 to 80° and (b) zoom on the peaks from 24 to 29°. 

To understand the effect of the different morphologies and modifications on TiO2 

structure, the percentage of anatase/rutile phase and the crystallite sizes were calculated 

using the Spurr (4) and Scherrer (5) equations91,92: 

      %ʀ =
𝟏

𝟏+𝟎.𝟖[
𝐈ᴀ(𝟏𝟎𝟏)

𝐈ʀ(𝟏𝟏𝟎)
]
                                                                                                         (4) 

𝐃 =  
𝐤𝛌

𝛃𝐜𝐨𝐬𝛉
                                                   (5) 

where IA and IR are the integrated intensities of the anatase (101) and rutile (110) 

diffraction peaks, D is the mean crystallite size, K is a shape factor = 0.89, λ is the X-ray 

wavelength, β is the full width at half maximum of the diffraction peak, and θ is the Bragg 

angle. 

Comparison of the percentage of anatase/rutile phases and their particle sizes in all 

samples (Table 1) showed that in TiO2 NT samples, doping decreased the crystallite size due 

to B and N inhibitory effect on the grain growth of TiO2 particles. The anatase particle size of 



 

non-doped TiO2 NTs and N-TiO2 NTs were 37.2 nm and 29.9 nm, respectively. This is probably 

due to the crystal lattice deformation and oxygen vacancies left by the substitution of O atoms 

by N atoms. The particle size decrease allows the photo-generated electrons to move faster 

to the TiO2 surface and consequently it improves the catalyst degradation efficiency67,93. In 

TiO2 NFs, the crystallite sizes of the anatase and rutile phases were 30.9 and 34.3 nm, 

respectively. Previous works showed that the rutile phase displays lower photocatalytic 

activity than the anatase phase94.   

Then, TEM and XPS were used to better describe the morphology of non-doped TiO2 NTs 

and N-doped TiO2 NTs compared with TiO2-NFs.  

Table 1: Percentage of anatase and rutile phases and crystallite sizes of the indicated samples. 

Sample 
Anatase (A) 

phase 
(%) 

Rutile (R) 
phase 

(%) 

Crystallite 
size (A) 
(nm)* 

Crystallite 
size (R) 
(nm)* 

TiO2 NTs (500 AD cycles) 100.0 - 37.2 - 

TiO2 NTs (1000 ALD cycles) 100.0 - 42.1 - 

TiO2 NFs 24.5 75.5 30.9 34.3 

B/N-TiO2 NTs 91.0 9.0 32.1 46.5 

N-TiO2 NTs 100.0 - 29.9 - 

*The error on the crystallite size is lower than ± 0.01% 

The XPS survey of N-TiO2 NTs confirmed the presence of Ti, O, C and N (Figure 4a). Carbon 

detection could be due to the presence of residues after calcination and PAN NF removal. The 

high-resolution XPS spectra of Ti 2p and of O 1s included two peaks (at 458.4  for Ti 2p3/2 and 

at 464.1 eV for Ti 2p1/2) and three peaks (at 529.5, 530.6 and 532.3 eV), respectively. The 

binding energies of Ti 2p and O 1s for TiO2 NTs (Erreur ! Source du renvoi introuvable.) were 

lower than those of doped TiO2 NTs, unlike previous literature data showing that N-doping 

decreases the binding energy values95,96. These reports demonstrated the presence of oxygen 

vacancies due to O substitution by N. Conversely, in our samples, the N peak (Figure 4d) at 

399.9 eV was assigned to the presence of interstitial N atoms in the O–Ti–N environment, and 

not to substitutional doping of TiO2 lattice by N. The N-O interaction in TiO2 NT lattice increases 

the binding energy of the N 1s level, in agreement with our results97. Moreover, the existence 

of Ti-N bonds could be excluded because N1s would be located at lower binding energies 



 

(<397 eV)71,98. This result might be interesting for photocatalytic applications because N-

doping in TiO2 NTs without Ti–N bonding causes visible-light sensitization. The total N amount 

in N-TiO2 NTs was ~0.7%. Conversely, in B/N-TiO2-NTs, B and N amounts were estimated at 

6.6 and 1.3%, respectively. The higher N amount in the co-doped samples could be explained 

by the different doping method used. Only one peak at 192.3 eV was attributed to B 1s (Figure 

4e), suggesting the presence of B-O-Ti groups99. The absence of B-N linkages indicates that 

B/N-TiO2-NTs were not doped by BN, but co-doped by B and N. The N 1s peak at 398.2 eV (N 

1s A) was explained by the substitutional N atom that replaced one O atom in the TiO2 lattice. 

The peak at 401.5 (N 1s B) eV corresponded to NH4
+ions at the TiO2 surface100. The  N atom 

location in the TiO2 lattice depended on the synthetic route of N-doped TiO2.  



 

 

Figure 4. XPS spectra of N-TiO2 NTs: (a) Survey spectra, (b) Ti 2p, (c) O 1s, (d) N 1s; and of B/N-
TiO2-NTs: (e) B1s and (f) N1s. 

 

 



 

3.2. Electrochemical measurements 

The fabrication of catalysts with low electron-hole pair recombination rate and high 

electron-charge transport is crucial for enhancing their degradation efficiency under visible 

light. Photoluminescence (Erreur ! Source du renvoi introuvable.), EIS and EAS measurements 

were carried out to investigate the interfacial charge transport process. The Nyquist plots of 

TiO2 NTs, TiO2 NFs, N-TiO2 NTs and B/N-TiO2 NTs are shown in Figure 5 (a). The Nyquist plot 

of TiO2 is described by its semicircle frequency region related to the electron transfer from the 

TiO2 conduction band to the electrolyte101. The radius arc resistance is directly correlated to 

the catalyst charge transportability and is determined based on the electrical model given in 

Figure 5 (a) in which R1 is the electrolyte resistance and R2 the charge transfer resistance. N-

TiO2 NTs displayed the lowest radius arc (i.e. R2 value) among all samples, indicating higher 

charge transport and very low recombination rate. Calculation of the charge transfer 

resistance values (R2) (Table 2) confirmed that N-TiO2 NTs had the lowest R2 (15.22 kΩ vs 19.11 

kΩ for non-doped TiO2 NTs and 16.52 kΩ for TiO2 NFs). This suggests that N-doping decreases 

TiO2 surface resistance and delays charge recombination at the TiO2-electrolyte interface. 

Concerning TiO2 morphology (NTs vs NFs), TiO2 NFs showed better electron-hole pair 

separation resistance (i.e. lower R2 than non-doped TiO2 NTs), possibly due to their higher 

crystallinity that favors the charge carrier separation and transport25. Co-doping affected 

negatively the charging kinetics, indicating the occurrence of trap states and recombination 

centers102. CV with [Fe(CN)6]3-/[Fe(CN)6]4- were used to investigate the effect of morphology 

and doping on the electrochemical response (Figure 5b and Table 2). Concerning the 

morphology, the current density peak was higher in TiO2 NFs than TiO2 NTs, possibly because 

of their higher EAS (Table 2), despite their slightly higher Epeak.  N-doping led to the highest 

current density response towards [Fe(CN)6]3/4 and lower Epeak , suggesting higher electrode 

reaction rate.  

 

Table 2: Electrochemical results for TiO2 NTs, TiO2 NFs, B/N-TiO2 NTs, and N TiO2 NTs. 
 

Sample R2 
(kΩ) 

Ip 
(A.cm-2) 

ΔE  
(mV) 

EAS 
(cm2) 



 

TiO2 NTs  19.11 1.86±0.02 0.38 1.78±0.01 

TiO2 NFs 16.52 1.94±0.01 0.43 1.85±0.02 

B/N-TiO2 NTs 51.35 2.01±0.01 0.40 1.90±0.01 

N-TiO2 NTs 15.22 2.50±0.03 0.37 2.40±0.04 

 

The ΔE=Eanode - Ecathode values showed that the mean peak-to-peak separation was shorter 

in N-TiO2 NTs (0.3711 mV at V= 20 mV/s). When ΔE is shorter, electron transfer is faster in the 

redox reaction and the electrode surface is more conductive. The EAS values were 1.78 (TiO2 

NTs, 500 ALD cycles), 1.85 (TiO2 NFs), 1.90 (B/N-TiO2 NTs), and 2.40 cm2 (N-TiO2 NTs)103. This 

confirmed that doping plays a major role in enhancing TiO2 photocatalytic activity by 

improving the electron-hole pair separation, as confirmed by the photoluminescence results. 

According to the literature, a smaller grain size increases the number of active surface sites 

and also the surface charge carrier transfer rate in 1D structured photocatalysts, leading to 

higher photocatalytic activity104. N-TiO2 NTs had the smallest crystallite grain size compared 

with TiO2 NFs, non-doped TiO2 NTs and B/N co-doped TiO2 NTs. It is worth noted that TiO2 

photocatalytic performance is influenced not only by one factor but different factors in the same time 

such as particle size, specific surface area, porous structure, crystalline phase, and exposed surface 

facets. All these parameters should be assessed to understand the catalytic performance of the 

material.    

  



 

 

 

Figure 5. a) Nyquist plots and b) Cyclic voltammograms, obtained in potassium 
hexacyanoferrate solution with a scan rate of 20 mV/s, for TiO2 NTs, TiO2 NFs, N-TiO2 NTs, and 
B/N-TiO2 NTs (surface= 1 cm2). 

 

3.3. Photocatalytic experiments 

3.3.1. Photocatalytic degradation 

Visible light photodegradation of acetaminophen (Figure 6) was compared using different 

TiO2-based catalysts. This showed that higher number of ALD cycles increased the wall 

thickness (not presented in this paper) that strongly affected acetaminophen degradation 

efficiency (Figure 6a), in agreement with the litterature80. The highest degradation efficiency 

was obtained with TiO2 NTs prepared using 500 ALD cycles compared with 800 and 1000 ALD 

cycles: 95.7% after 90 minutes of visible light irradiation versus 76.6% and 56.0%, respectively. 

On the basis of these results, TiO2 NTs fabricated using 500 ALD cycles were used for all the 

other experiments. As the catalyst morphology plays a major role in the degradation of 

pharmaceutical pollutants, it was important to understand the effects of the surface area, 

crystallinity, electron-hole pair recombination, and bandgap on the photocatalytic 

properties95. The visible light catalytic properties of TiO2 NFs (fabricated by electrospinning 

followed by calcination at 750°C for 4h) were compared with those of TiO2 NTs (Figure 6). As 



 

N-TiO2 NTs have lower recombination rate and higher surface area than TiO2 NFs (see EIS and 

EAS data), their photocatalytic activity was higher. It was previously reported that anatase 

TiO2 displays higher degradation efficiency than a catalyst with both crystalline phases80,93. 

Wang et al. observed better photocatalytic degradation of methylene blue by TiO2 nanosheets 

than TiO2 nanoparticles, highlighting the importance of the catalyst structure. Moreover, they 

reported that higher surface area further improves degradation under visible light105.   

Then, different TiO2 NT samples were prepared by varying the dopant nature to explore 

how to limit the recombination of photogenerated electron-hole pairs for feasible charge 

separation and transfer, and how to expand the absorption edge to the visible light range. 

After 90 minutes of visible light exposure, 98.3%, 95.7% and 31.9% of acetaminophen were 

degraded in the presence of N-TiO2 NTs, TiO2 NTs, and B/N-TiO2 NTs, respectively (Erreur ! 

Source du renvoi introuvable.). This indicates the N-doping better increase the degradation 

efficiency compared with B and D co-doping.  This modification step might be affected by 

many factors, including the type and level of N-doping and the concentration of O2 vacancies, 

and this will greatly influence the photocatalytic activity106,107.  

The positive effect of N-doping on TiO2 catalyst properties has been widely reported. 

Indeed, N-doping creates O2 vacancies that participate in trapping the photoinduced electrons 

and act as a reactive center for the photocatalytic process. As the number of articles on TiO2 

modification by N-doping is too high, comparing their results is complicated due to the many 

different experimental conditions (e.g. catalyst structure, concentrations, matrix, lamp 

source)69,93,108–110.  



 

 

Figure 6. Acetaminophen degradation under visible light in function of a) TiO2 wall thickness 
(number of ALD cycles), b) TiO2 structure, morphology, and doping. 

3.3.2. Photocatalytic kinetic model 

The photocatalytic degradation of acetaminophen under visible light followed a pseudo-

first-order kinetics. Indeed, the closely linear relationship between ln(C0/C) and irradiation 

time (t) fits well with the first-order reaction rate of acetaminophen degradation (Figure 7a). 

The degradation rate in the presence of N-TiO2 NTs was 0.045 min-1, which is 4 times higher 

than with TiO2 NFs. This result was in agreement with the lower electron-hole pair 

recombination rate (photoluminescence and EIS measurements). Moreover, the high 

percentage of rutile phase in TiO2 NFs decreased their degradation efficiency. In conclusion, 

ALD is a promising technique for fabricating catalysts with well-organized structure and good 

degradation performance under visible light.  



 

 

Figure 7. Photocatalytic degradation of acetaminophen by the indicated TiO2 catalysts. a) Plot 
of ln(C0/C) in function of time (fitted to first order rate law), and b) Values the first order rate 
constant. 

3.3.3. Stability, quenching, and toxicity tests 

N-TiO2 NTs (500 ALD cycles) recyclability and stability were tested for five consecutive 

cycles (Figure 8a). After each cycle, the catalyst was rinsed several times with distilled water 

and dried at 70 °C before the next cycle. Acetaminophen degradation rates, after 90 min of 

visible light irradiation, were 98.3% (first cycle), 97.5% (second cycle), 96.0% (third cycle), 

93.9% (fourth cycle), and 82.6% (fifth cycle). This indicates a slight loss of degradation 

efficiency over time, although acetaminophen removal was still >82% after five runs. This 

activity decrease might be related to N loss in the catalyst after consecutive cycles, or to the 

accumulation of by-products that are formed during the catalyst surface degradation, thus 

decreasing the available active sites111. Despite this loss of activity (<20%) after five cycles, N-

TiO2 NTs can be considered a promising stable catalyst material for water treatment.  

Organic pollutant degradation by advanced oxidation processes can lead to the production 

of by-products112,113 with cyclic and aromatic structure that are highly toxic, sometimes more 

than the initial pollutant. To evaluate the acute toxicity of intermediates generated during 

acetaminophen photodegradation, V. fischeri  luminescence intensity variations were 

quantified after 15-min incubation with aqueous solution aliquots collected during 

acetaminophen degradation (Figure 8b). Acetaminophen toxicity was very low at the used 



 

concentration, as we previously reported114. Toxicity strongly increased and luminescence was 

inhibited by ~90% after 1h of visible light irradiation. This result is consistent with previous 

studies showing the formation of toxic aromatic by-products (e.g. 1,4-benzoquinone, 

hydroquinone, benzoic acid, and benzaldehyde) during acetaminophen degradation115–117. 

Then, toxicity progressively decreased and luminescence intensity inhibition was <20% after 

3h of irradiation. During this period, further oxidation of the formed molecules would result in 

the breakdown of their aromatic structures. After 6h of irradiation, when short-chain 

carboxylic acids are converted into CO2 and H2O, the luminescence inhibition rate was <5%.  

 

 

Figure 8. a) Reusability of N–TiO2-NTs for photocatalytic activity. b) Inhibition of 
of V. fischeri luminescence emission during acetaminophen photodegradation. c) Effect of 
radical scavengers on acetaminophen degradation. 



 

During photodegradation, OH° radicals, h+ and O2
− radicals are generally considered as 

active species. To determine their contribution to acetaminophen degradation, scavenger 

tests were performed using EDTA (h+ scavenger), isopropanol (OH radicals). and p-

benzoquinone (O2
− radicals) and N-TiO2 NTs as catalyst. The results (Figure 8c) suggested that 

all three active radical species are implicated in acetaminophen degradation because all 

scavengers decreased its photodegradation, particularly p-benzoquinone (O2
− radical 

scavenger) that reduced acetaminophen degradation rate from 98.3% to 40.4%. 

4. Conclusion  

In this work, we first compared the photocatalytic properties of two different 1D TiO2 

structures fabricated using two different approaches. TiO2 NTs, synthesized by ALD, displayed  

3 times higher acetaminophen degradation rates (after 90 min of visible light irradiation) than 

TiO2 NFs, produced by electrospinning. Then, we investigated whether non-metal doping 

increased TiO2 NT degradation efficiency. N-doping enhanced the catalytic properties, as 

indicated by the degradation rate of 0.045 min-1 of N-TiO2 NTs. This result could be explained 

by the lower recombination rate of the photogenerated charges and higher electroactive 

surface area (2.40 cm2 in N-TiO2 NTs versus 1.78 cm2 in TiO2 NTs). The recyclability results 

suggest that ALD is an interesting technique for preparing photocatalysts on immobilized 

supports with good degradation efficiency and high stability. Quenching tests indicated that 

superoxide radicals played a major role in acetaminophen degradation. In this work, we 

confirmed the higher degradation activity of highly structured 1D materials under visible light. 

Now, these catalysts should be tested using a real wastewater matrix with different organic 

pollutant to test the selectivity of the photocatalyst and the ability to degrade different types 

of pollutants.  
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