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Abstract 

Sodium borohydride NaBH4 (SB) has been rediscovered in the late 1990s and been 

presented as a promising hydrogen storage material owing to its high gravimetric hydrogen 

density of 10.8 wt% and ability to produce H2 by hydrolysis at ambient conditions. This 

looked promising, but soon hydrolysis of SB encountered numerous obstacles. In 2015, a 

progress report (Int J Hydrogen Energy 2015;40:2673-91) showed that the 2000-2014 

research did not overcome all of the obstacles, making SB far from being technologically 

mature. Eight years have passed since 2015. Have we put more effort into all aspects 

relating to hydrolysis of SB? If so, do we have produced scaled-up technologies and 

prototypes, of which we would have a better knowledge? Have we been able to gain in 

technological readiness level? Answering these questions is the main objective of this 

article. A secondary objective is to summarize the newly acquired knowledge. Five main 

observations stand out. First, the 2015-2022 period is regrettably similar to the 2000-2014 

since, again, catalysts have dominated the field and the other aspects (e.g. recycling of the 

by-product to regenerate SB, scale-up and implementation) have received little attention. 

Second, hydrolysis of SB still runs into numerous obstacles, some of the obstacles being 

known since a long time and other ones being relatively new and unknown. Third, there has 

been little gain in terms of technological readiness level while few research groups have 

shown that there is room for new ideas and innovation. Fourth, energy, exergy and economic 

analyses are needed to evaluate the overall cost of H2 from SB. Fifth, SB has not effectively 

thought from the end user perspective. In conclusion, many obstacles remain to be 

overcome before hydrolysis of SB can be a commercial solution for carrying and producing 
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H2. However, all efforts should be dedicated to (i) construct, operate and optimize H2 

production systems (i.e. prototypes and demonstrators), (ii) handle SB at the gram-to-

kilogram scale, (iii) make production of SB even more efficient, and (iv) overcome all 

obstacles while thinking from the end user perspective. 
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1. Introduction 

Sodium borohydride NaBH4 (SB) was discovered and identified in the 1940s as a hydrogen 

carrier (gravimetric hydrogen density of 10.8 wt%) capable of producing H2 by hydrolysis 

(Eq. 1) at ambient conditions [1,2]: 

NaBH4 (aq or s) + 4H2O (l)  NaB(OH)4 (aq or s) + 4H2 (g)     (1) 

Producing H2 at ambient conditions is attractive, but producing H2 knowing that half comes 

from water is even more attractive (Figure 1). The theoretical gravimetric hydrogen storage 

capacity of SB and water in stoichiometric conditions is 7.3 wt%. The hydrolysis reaction is 

exothermic (ca. 240 kJ mol1), which makes that H2 is produced spontaneously. Such a 

spontaneous production can be mitigated at basic pH, but it is then necessary to use a 

catalyst or an accelerator to produce H2 at controllable rates and reach conversions of 100%. 

The reaction produces sodium tetrahydroxyborate NaB(OH)4, a by-product that is less 

soluble in water than SB is [3]. 

 

SB and hydrolysis of SB were rediscovered in the late 1990s [4]. A prototype using an 

aqueous alkaline solution of SB was constructed and tested as a H2 production system for 

fuel cell vehicles [5]. This looked promising, but hydrolysis of SB encountered obstacles and 

well-founded criticism. For instance, the US Department of Energy made a no-go decision 

(for light-duty vehicles application) because of the cost of SB and the inefficiency of the 

regeneration processes studied at that time [6]. Research on hydrolysis of SB has 

nonetheless remained active and dynamic as evidenced by a selection of review articles 

released since 2015 [7-17]. Reading these articles indicates that the research on hydrolysis 

of SB performed between 2000 and 2015 had mainly focused on catalysts and accelerators, 
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and other equally important aspects (i.e. recycling of the by-product to regenerate SB, scale-

up and implementation) had been neglected [18].  

 

 

Figure 1. Hydrolysis of SB: the reactants, water in excess as solvent, a catalyst or an accelerator, the heat of the 
reaction, the by-products, the product H2, and the amounts of SB and H2 towards scale-up. 

 

Eight years have passed since 2015. Have we put more effort into all aspects relating to 

hydrolysis of SB? If so, do we have produced scaled-up technologies and prototypes, of 

which we would have a better knowledge? Have we been able to gain in technological 

readiness level? Or, on the contrary, have catalysts or accelerators dominated the field? 

Answering the above questions is the primary objective of the present article. To that end, it 

surveys the open literature dedicated to hydrolysis of SB since 2015 and until 2022. The 

second objective is to summarize the newly acquired knowledge. For the sake of clarity and 

of consistency, alcoholysis of SB and thermolysis of SB are not discussed herein.  

 

The structure of the present article is based on the different aspects of the hydrolysis 

reaction as illustrated in Figure 1. The first of the next sections is about the reaction, the 

reactants and the products. The second one deals with catalysts and accelerators in a brief 

and concise manner. The third one is entitled scale-up and focuses on scaled-up 

technologies and prototypes. The fourth, and last one before the conclusion, is about 

regeneration of SB. Before getting to the heart of the matter, it is worth mentioning that 

catalyzed hydrolysis of SB has been also considered for other applications such as 

hydrogenation/reduction of nitro compounds to produce amines [19-38], reduction of azides 

to anilines [39,40],  N-cycle hydrogenation of quinolone [41], reduction of carbon dioxide 
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CO2 into the formate ion [42], reduction of bromate ions onto bromide ions [43-46], removal 

of Cr(VI) from aqueous solutions [47-50], degradation of organic dyes [51-53], detoxification 

of olive-tree pruning hydrolyzates [54], and gas foaming [55]. 

 

 

2. Hydrolysis of SB 

SB in solid state degrades if contaminated by moisture and CO2 of air (upon its storage for 

example). Such an aspect had been neglected until recently [56]. Such a contamination 

leads to the formation of sodium polyborates (e.g. Na2B4O7) and sodium carbonate Na2CO3, 

and these degradation products cover the SB grains. It then becomes necessary to purify 

SB before its use. This can be done by using diglyme as solvent, plus ammonia to increase 

the dissolution of SB, and the process is terminated by the crystallization of SB. This way, a 

95%-pure SB can be recovered. 

 

SB and water carry hydrogens that are respectively negatively and positively charged, i.e. 

Hδ and Hδ+. These hydrogens interact and combine to produce H2, which implies that 

dihydrogen bonds BHδ···Hδ+O form is an intermediate step [57]. This was notably 

predicted by theoretical calculations [58]. The anion BH3OH is assumed to form as the first 

short-living reaction intermediate and the corresponding reaction is the rate-determining 

step [59]. This was experimentally confirmed by using NMR spectroscopy [60]. The 

formation of BH3OH is followed by that of the consecutive short-living reaction intermediates 

BH2(OH)2, BH(OH)3, and finally, B(OH)4. With respect to BH3OH, it was also predicted 

that it may exist in the form of BH3 and OH separated by water molecules [61]. Because of 

the intermediates BH3OH and BH3 (both being able to oscillate), hydrolysis of SB 

undergoes an oscillatory instability and the consequence is that the production of H2 is not 

smooth (i.e. occurrence of fluctuations) [62]. 

 

From a practical point of view, it would be more convenient to provide an aqueous solution 

of SB (instead of SB in solid state and water separately) to the end user. This supposes that 

the aqueous solution of SB is stabilized by addition of sodium hydroxide NaOH (basic pH), 

even though this does not totally hinder the occurrence of spontaneous hydrolysis of SB. 

The question of long-term storage of aqueous alkaline solution of SB then arises. Netskina 

et al. [63,64] answered it. A solution containing 15 wt% SB and 5 wt% NaOH was kept for 
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one year at 23-25 °C. During this time, 66% of the initial SB hydrolyzed, and the solution pH 

increased from 11.5 to 12.9. For another solution initially containing 25 wt% SB and 1 wt% 

NaOH, 76% of SB hydrolyzed after one year, and the pH increased from 11.2 to 13.2. The 

by-product that formed and precipitated is sodium tetrahydroxyborate dihydrate 

NaB(OH)4·2H2O. We [65] also answered the above question. We conducted a systematic 

study by using NMR spectroscopy. The SB concentration was varied from 3.65 to 31.22 

wt%, the NaOH concentration from 1 to 16 M, and the storage temperature from 15 to 60 

°C; each solution was stored for up to 12 weeks. Hydrolysis took place whatever the 

conditions (Figure 2). Nonetheless, a relatively good stability of SB was noticed when the 

solutions with a NaOH concentration of 8 M were kept at 4 °C. Otherwise, storing at higher 

temperatures, and above all at the high temperatures that are reached in summer time (>30 

°C in Montpellier, France, from June to September, even nowadays from May to October) 

will pose serious safety concerns. 

 

 

Figure 2. SB remaining (in mole percentage) in aqueous alkaline solution after a storage of 12 weeks: (top) 
effect of the temperature (-15, 4, 20, 40 and 60 °C) for an aqueous solution of SB (initial concentration of 4 
M) having a concentration of NaOH of 4 M; (bottom) effect of the initial concentration of NaOH (1, 2, 4, 8 

and 16 M) for an aqueous solution of SB (initial concentration of 4 M) stored at 20 °C. 

 

Water has not been the subject of particular attention until recently. Yet, it is just as important 

as SB (Eq. 1). For example, what water should we use? At the laboratory scale and to avoid 
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any experimental bias, it is obvious that we have to use distilled water. However, the use of 

distilled water by the end user will be a constraint and will add to the cost of the H2 production 

system. Mosier-Boss et al. [66] studied the effect of distilled water, tap water and seawater, 

on the CoCl2-catalyzed hydrolysis of SB. They observed slower kinetics of H2 production 

when tap water was used, and even slower when seawater was used. Organic species 

present in both tap water and seawater were found to form complexes with Co2+, thereby 

impeding an efficient catalysis of the hydrolysis reaction. One cannot generalize these 

observations because of the use of CoCl2. Indeed, in such conditions, Co2+ of CoCl2 is a 

pre-catalyst, and as such it in situ transforms into a Co-based catalyst (e.g. cobalt boride) 

when it is put into contact with SB in aqueous solution. The Co-based catalyst, and not Co2+, 

thus catalyzes the hydrolysis reaction, whereas in this study, a proportion of Co2+ did not 

generate the Co-based catalyst. With less catalyst, the hydrolysis reaction is thus less 

efficient. Oh et al. [67] reported different results for Co-P-B/C used as catalyst. They found 

that fresh water (versus distilled water) allows better performance in terms of H2 production 

yields and rates. Regrettably, and in conclusion to these paragraph, too little is known about 

the use of water of different qualities.  

 

The by-product that forms upon hydrolysis of SB is NaB(OH)4. It is less soluble than SB is 

in water (16 vs 55 g in 100 mL of water), and precipitates when SB solutions are 

concentrated (as mentioned above) [69]; this is an issue (see section 4). NaB(OH)4 forms 

when the mole ratio Na/B is 1 as in the case of the use of SB without addition of NaOH, and 

when the mole ratio Na/B is 1 as in the case of aqueous alkaline solutions [68]. When the 

mole ratio Na/B is lower than 1 (e.g. 0.33), polyborate anions (B3-, B4-, B5-based) form [70]. 

Sodium polyborates are more water-soluble than NaB(OH)4. Note that a mole ratio of e.g. 

0.33 assumes that a boron-containing compound like boric acid B(OH)3 has to be added to 

the SB solution. Another option would be to use sodium octahydrotriborate NaB3H8 instead 

of SB. 

 

The value-added product of hydrolysis of SB is H2, and the reaction (Eq. 1) suggests that 

the produced H2 is pure. However, the situation is not quite as simple as that. Because of 

the reaction exothermicity, water vapor is transported along with H2, and this water vapor 

contains Na+ and B(OH)4– [71,72]. This poses a constraint and a question. The constraint is 

that the produced H2 must be purified (owing to downstream traps; see section 4) or the 

reactor design should be thought so that NaB(OH)4 remains within it. The question is, what 
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will be the purity of H2 when its production will be considered for greater amounts of SB and 

water? A response and actions are required, but an experiment based on the use of a lot of 

SB requires an appropriate and secured facility (1 kg of SB for example, is able to produce 

more than 2500 liters of H2 at 20 °C).   

 

 

3. Catalysts and accelerators 

This article does not intend to explore the complete list of catalysts and accelerators reported 

since 2015. It aims to be concise, to focus on the essentials (i.e. new findings and 

knowledge), and to present a selection of catalysts and accelerators that can be defined as 

being out of the ordinary and/or that offer obvious prospects for scale-up and 

implementation. That represents 15 articles (see below), knowing that a total of 466 articles 

with catalysts or accelerators as central topic were found for the period 2015 to 2022. 

 

The remaining 451 articles (listed as supplementary material) can be summarized as 

follows. Most of them report on catalysts, synthesized via chemical or physical methods, 

and intended to be used many times: e.g. mono-/bi-/tri-metallic or multi-element catalysts 

supported onto a support like mesoporous silica, carbonaceous materials (e.g. graphene, 

carbon nanotubes, biosourced carbons) and metal organic frameworks (among other ones); 

mono-/bi-/tri-metallic catalysts (including alloys) in the form of nanostructures, being dense 

or porous, and with or without magnetic properties; metallic catalysts contained into polymer 

capsules; polymer- and ionic liquid-based composites containing a metallic active phase; 

supported or unsupported metal oxides; alkali metal oxides; salts or hydroxides of metal 

cations; and, boron- and nitrogen-doped, functionalized and/or surface-charged carbon 

dots. Cobalt remains the most studied metal, though it is often combined with at least one 

p-block element (e.g. B or P) or one other transition metal. Metals like platinum, ruthenium, 

nickel and gold were also reported. Some articles report on photocatalysts (based on e.g. 

titanium oxide) as well as single-use accelerators (e.g. acids, polyols, oxides or clays with 

H+-treated surfaces, sulfonated polymers, metal chlorides). Beyond the routinely studied 

aspects (e.g. kinetics and thermodynamics), reusability and stability of the catalysts over 

cycles (generally 5 to 10) were studied, and the majority of the catalysts show more or less 

pronounced loss of activity upon cyclic use. Such a loss is mainly explained by catalyst 

poisoning due to surface adsorption of borates. Another explanation, in the case of the 
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cobalt catalysts, is the loss of the active phase by formation of cobalt hydroxide and 

oxyhydroxide and their detachment from the catalyst surface [73]. To go beyond this 

summary, the reader is invited to refer to a selection of review articles [7-17]. 

 

Singh et al. reported a catalyst that is out of the ordinary [74]. They synthesized Pt-black/Ti 

Janus microparticles, in fact micromotors (Figure 3), to catalyze the production of H2 by 

hydrolysis of SB. The Janus microparticle is made of a catalytically active side (i.e. Pt-black) 

and an inactive one (i.e. Ti), which allows the microparticles moving in the solution owing to 

the propulsion created by the production of H2 onto the Pt-black surface. The efficiency of 

these micromotors was demonstrated by feeding with H2 a polymer exchange membrane 

fuel cell (PEMFC) model car. 

 

 

Figure 3. Schematic representation of the Pt-black/Ti Janus micromotors by the production of H2 
microbubbles by hydrolysis of SB. Reproduced from ref. [74] with permission granted by John Wiley and 

Sons (January 6, 2023). 

 

With powdery catalysts, handling is tedious and material losses are almost inevitable. It is 

more convenient to develop one-block catalysts, at least from a practical point of view. First 

examples of one-block catalysts are based on nickel foam that is used as support of an 

active phase like the binary Co-P. Oh et al. [75] optimized such a catalyst. Co-P was loaded 

onto nickel foam by electroless deposition, and the most efficient one was selected to 

produce H2 for a 200-watt PEMFC. In a subsequent study, the PEMFC was successfully 

operated for 30 min, stopped for 30 min, and re-operated for 30 min [76]. A 500-watt PEMFC 

was successfully operated in the same way [77], as well as a 100-watt one [78]. Pure cobalt 

can also be loaded onto nickel foam, which is done by electrodeposition at –2 VAg/AgCl [79]. 

Aluminum-surface modified nickel foams, obtained through a three-step process including 

aluminization, post-annealing and selective aluminum selective leaching, are also potential 

catalysts [80]. Second examples of one-block catalysts are based on ceramic monoliths. 
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Marchionni et al. [81] explored cordierite honeycomb monoliths as supports of Co-B. Dai et 

al. [82] also studied cordierite honeycomb monoliths onto which alumina was wash-coated 

and then platinum was deposited by incipient wet impregnation. The as-obtained monolithic 

catalysts catalyzed a continuous and stable H2 production (e.g. 0.6 L min–1) by hydrolysis of 

SB (10 wt%) in aqueous alkaline (5 wt% NaOH) solution (feed rate of 2 mL min–1). Other 

examples include mesh nickel [83], dealloyed ruthenium on Teflon substrate [84], Ru/MgO 

wash-coat onto a magnesium substrate [85], and platinum-decorated polydopamine-coated 

wood pulp sponge [86]. 

 

There is also an alternative approach, not using a catalyst, as proposed by Sankir et al. [87]. 

One chamber was filled with the SB solution, another chamber with an acid solution (e.g. 18 

M H2SO4), and both chambers were separated by a proton exchange membrane made from 

a disulfonated poly(arylene ether sulfone) copolymer (Figure 4). Protons were provided by 

the acid, via the membrane, to the SB solution in order to initiate the hydrolysis reaction. 

The H2 production rate was controlled by tailoring the proton conductivities of the 

membranes, which was possible by varying the degrees of disulfonation. This H2 production 

system was coupled to a 8-watt PEMFC that worked for about 300 h. 

 

 

Figure 4. Scheme of the H2 production system, based on two half-cells, as proposed in ref. [87]. The H2SO4 
half cell is separated from the SB half cell by a proton exchange membrane (disulfonated poly(arylene ether 

sulfone) copolymer), and the H2 produced in the latter cell is vented through an outlet. 

 

 

4. Scale-up 
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Hydrolysis of SB at the milligram scale has been much studied over the past twenty years 

and we have learned about the issues that the reaction is encountering. However, hydrolysis 

of SB at the gram-to-kilogram scale has not been thoroughly studied yet [88,89], and our 

knowledge of the issues that are inevitably exacerbated due to effect of scale is limited. In 

addition, it remains possible that we are not yet aware of issues that would be specific to the 

use of SB at the gram-to-kilogram scale. We have to expend more effort on closing these 

gaps, which involves developing and studying prototypes and demonstrators (e.g. H2 

production systems feeding fuel cells powering unmanned aerial vehicles [90,91]).  

 

The period 2015-2022 was punctuated with interesting studies, showing a real dynamic 

around scale-up of hydrolysis of SB. From here on, these studies will be discussed from two 

perspectives: a selection of the prototypes developed so far will be presented (Table 1) [92-

101], and the lessons learned from the operation of these prototypes (with particular 

emphasis focused on the challenges to be met) will be summarized. For more details about 

the operation conditions (e.g. catalyst amounts, H2 yields and operation pressures), and the 

algorithms used for maintaining a constant H2 production and a constant power supply, the 

reader is invited to refer to the articles discussed hereafter. 

 

As shown in Table 1, the H2 production systems were dimensioned to produce pure H2 to 

feed 20-watt to 3000-watt PEMFCs, and in most of the case to power unmanned aerial 

vehicles. SB was used in solid state or in aqueous alkaline solution. In the former case, 

water, containing an acid for example, is pumped or injected into the SB containing reactor, 

and the by-product is kept inside the reactor. Various acids can be used, with typical 

examples being hydrochloric acid, sulfuric acid, acetic acid and citric acid [102-104]. Lee et 

al. [92] identified an issue not really seen before. They noticed that reactor pressurization is 

an important factor for stable system operation, that is, for constant H2 production rates. In 

case SB is in aqueous alkaline solution, it is pumped onto a one-block catalyst (e.g. Co-P 

loaded onto nickel foam), and the aqueous alkaline solution of the by-product is either 

purged out the system or stored in a tank placed at the outlet of the catalytic chamber. The 

fluids circulation are allowed by a pump. Known et al. [93] demonstrated that the energy 

density of a H2 production system using SB in solid state is 1.3 times higher than a system 

using an aqueous alkaline solution of SB. 
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Table 1. H2 production systems, coupled or not to a fuel cell (PEMFC) as reported in references [92-101]. Information (when available from the articles) about 
the state of SB (solid or in aqueous solution), the nature of the catalyst or accelerator used, how the reaction was made start, the cooling technology used, how 
the by-product was managed during hydrolysis, the power of the fuel cell, the H2 production rate recorded, the total volume of H2 measured, and the gravimetric 
hydrogen storage capacity (GHSC) of the system, are given. 

State of SB Cat./Accel. 
How the reaction 

starts 

Cooling 

approach 

By-product 

management 

Fuel cell 

power 

H2 production 

rate 
Volume of H2 GHSC Reference 

SB as a solid 
Aqueous HCl 

(2.5-4 M) 

Pumping HCl onto 

SB 
Fan (2.4 W) 

Kept in the 

reactor 
20 to 100 W 0.2-0.9 L min–1  11-49 mL 3.1-4.2 wt%  H [92] 

SB as a solid 
Aqueous 

NaHCO3 

Pumping NaHCO3 

onto SB 
Fan 

Kept in the 

reactor 
 7-9 L min–1 

3464 L from 

283 g SB 
5.1 wt%  H [93] 

SB as a solid 
Aqueous 

NaHCO3 

Pumping NaHCO3 

onto SB 
Fins and fans      [94] 

SB as a solid 
Aqueous FeCl3 

(1g vs. 10g SB) 

Injection of FeCl3 

onto SB 
 

Kept in the 

reactor 
20 W 1.17 L min–1   [95] 

Aqueous SB 

(25 wt%) 

Co-B supported 

on Ni foam 

Pumping SB onto 

the catalyst 
Fins and fans Purged out 100 W 1.2-1.7 L min–1  3.55 wt% H [96] 

Aqueous SB 

(20 wt%) 

Co-P supported 

on Ni foam 

Pumping SB onto 

the catalyst 
Fan Purged out 300-500 W 4.5-5.9 L min–1   [97-99] 

Aqueous SB 

(20 wt%) 
Not mentioned 

Pumping SB into 

the reactor 
Cooling coil 

Stored after the 

cooling coil 
200 W    [100] 

Aqueous SB (5-

15 wt%) 

Cobalt oxide on 

Ni foam 

Pumping SB onto 

the catalyst 
Four 4-W fans Waste tank 3000 W   31.7-149.9 L [101] 
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Within the last two years, Avrahami and co-workers developed alternative H2 production 

systems. On the one hand [105], they constructed five designs of lightweight reactors for 

which SB in solid state (powder or 3-mm granulates) is dropped into tap water containing a 

catalyst suspension of 1 wt% ruthenium black. The reactors design allows on-demand 

production of H2 with an almost constant flow of about 400 mL min–1 for 5-7 h of operation. 

All the reactors however faced technical and mechanical problems, mainly because of 

gumming of SB in the presence of water vapor rising from the exothermic hydrolysis 

reaction. Another problem was mentioned. Leakage of H2 is unavoidable especially at 

pressures higher than 0.5 bar. On the other hand [106], they constructed a modified reactor 

with the aim of taking advantage of the aforementioned gumming of SB (Figure 5). This 

reactor allowed the production of 110 L of H2 at a flow rate of 290 mL min–1, the conversion 

of SB reached 98 %, and the prototype was successfully coupled to a 30-watt PEMFC. 

 

 

Figure 5. Avrahami and co-workers’ pump-based circulation generator: (a) schematic concept (with SBH for 
sodium borohydride as denoted by the authors); (b) photograph of the generator described in (a). Reprinted 

with permission from reference [106]. Copyright 2021 American Chemical Society. 

 

At the scale of a H2 production system, the exothermic nature of hydrolysis of SB is a 

substantial issue. Cooling fins, fans, coils and/or traps (Table 1) have to be incorporated to 

the system to manage the evolving heat [98]. For example, Lee et al. [92] observed a 

temperature increase up to 110-120 °C in the absence of an appropriate cooling system. 

Kwon et al. [93] observed that the side of their reactor that was cooled down thanks to a fan 

kept its temperature below 30 °C whereas the top side, free of a fan, attained a temperature 
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of 65 °C. Heat removal is important to avoid heat damages, fuel cell inundation because of 

evaporated water, as well as uncontrollable and unpredictable hydrolysis rates [107,108]. 

 

Lapena-Rey et al. [100] published an excellent article where all the recurring issues that a 

H2 production system feeding a 200-watt PEMFC to power an unmanned aerial vehicle is 

able to encounter. The issues are shown in Figure 6.  These issues were actually rather well 

identified (as discussed above and in the previous sections). For example, the catalyst 

deactivation issue is known since many years now and is still reported [109,110]. 

Nevertheless, it must be admitted that the Lapena-Rey et al.’s study clearly underlines how 

critical the issues are when SB is used at the gram-to-kilogram scale. 

 

 

Figure 6. The recurring issues encountered by a H2 production system, as reported by Lapena-Rey et al. 
[100]. 

 

Other issues were reported elsewhere (Table 2) [100,108,111,112]. One of them is specific 

to the aircraft applications as it is about the importance of keeping stable the center of gravity 

of the plane even when the SB tank is depleted [100]. Another issue is related to the alkaline 

pH values (up to 12) that are reached upon hydrolysis of SB and/or when the solution is 

stabilized with NaOH. Corrosion is likely to occur with stainless steel [108] and is 

unavoidable with aluminum alloys [111]. Coating of the internal walls of reactors will thus be 

required for long-term utilizations. Polytetrafluorethylene coating is a possibility [108]. A last 

issue concerns the weight of the constituent materials of a H2 production system, and 

specifically that of the reactor materials. Nunes et al. [112] pointed out the negative impact 
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on gravimetric hydrogen storage capacities when stainless steel is used. Lighter materials 

and reactors are required, especially for small portable applications. A similar conclusion 

was made by Gang et al. [98], and they even stated that their portable electric fuel cell 

system is not optimized in terms of weight as shown in Figure 7. Indeed, the weight fraction 

of the SB solution is only 31% of the total weight. This is lower than the 50% that we generally 

target when discussing about the storage capacities of a H2 production system [89]. The net 

gravimetric hydrogen storage capacity (i.e. the capacity for the system as a whole) is limited 

to 1.3 wt% in such a case. There is nevertheless room for improvement. One of the main 

challenges is just to make the system lighter without compromising security. 

 

Table 2. Other issues to be encountered by H2 production systems and reactors, as reported in references 
[100,108,111,112].  

Studied device or system Issue Consequence / Risk Reference 

Complete H2 production system 
Depletion of the tank containing the 

SB fuel 

Risk of disrupting the aircraft center 

of gravity 
[100] 

Complete H2 production system Increase of pH up to 12 

Leaching of the stainless steel 
pressure vessel, implying coating 

with inert material 

[108] 

Aluminum alloy as light material for 

low weight reactor 

Corrosion of aluminum (dissolution 

with alkali) with formation Al(OH)3 

Unavoidable degradation of the 

reactor 
[111] 

Stainless-steel mini-reactor Use of stainless steel 
Negative impact on the gravimetric 

hydrogen storage capacities 
[112] 

 

There are few other articles including simulation works that are worth being briefly 

mentioned. Tomoda et al. [113] used a reactor simulation model to simulate hydrolysis of an 

aqueous alkaline solution of SB at 90 °C. Shabunya et al. [114] modeled heat- and mass-

transfer processes in a circulating-type reactor. Chen and Lin [115] studied the dynamic 

response of a reactor between the input of the aqueous solution of SB and the output of the 

produced H2. Jung et al. [116] studied the H2 pressures and the H2 production rates for 

different geometries of their system channels. For a H2 production system that will gain in 

maturity, simulation and optimization will bring much more studies in these topics. Scale-up 

is the only option to leapfrog towards hypothetical commercialization. 
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Figure 7. Weight percentage of the SB solution for the H2 production system reported in reference [98]; this 
original scheme was drawn from the data available in this reference. The system is simply described by five 
items such as the SB solution, the traps (water and silica and their containers), the components (fuel tank, 

hydrogen generator, separator, pumps, cooling fan and fittings), the electronics (controller, monitoring 
device and DC-DC converter), and the fuel cell stack. The gravimetric hydrogen storage capacity for the 

system as a whole is given, as well as for the SB solution and for the couple SB+4H2O (as shown in Eq. 1). 

 

Since 2018, our group has placed a renewed focus on scaling-up. We constructed a 

prototype, and we are working on its evolution and optimization with the objective to produce 

at least 100 liters of H2 to feed a 200-W PEMFC. We have learned a lot about the change 

in scale (from e.g. 120 mg SB to 40 g SB), and though a large part of our results are 

confidential (due to partnerships), I am able to share our experience. Firstly, we do confirm 

the main observations reported and discussed above, such as the importance of heat 

removal, fast deactivation of cobalt and even ruthenium-alumina catalysts (commercial 

ones) requiring then reactivation, the fact that the H2 production rates are not constant during 

the reaction, hygroscopicity of SB resulting in its gumming, and lowered gravimetric 

hydrogen storage capacities because of the weight of the stainless vessel we currently use. 

Secondly, we are faced with three other problems. The reactor design has an impact in 

terms of H2 production rates and thus times of completion of hydrolysis, even though the 

experimental conditions are identical. When SB is used in solid state, and under certain 

conditions, the results are sometimes not reproducible; we observed that, for instance, the 

way water is put into contact with SB can lead to differences in terms of H2 production rates. 

Upon the completion of the H2 production, emptying the reactor containing the aqueous 

alkaline solution of the by-products, as well as a precipitate of the by-products, requires care 

and several rinses; this makes the process tedious. In summary, many obstacles remain to 

be overcome before we achieve the ultimate optimization. 
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Last, not least, there is an aspect that is just as critical as the technical and economic 

challenges discussed above. As well pointed out by Yao et al. [117], it is essential to gain 

approval from the regulatory bodies to facilitate the applications of hydrolysis of SB. 

 

 

5. Regeneration of SB 

The hydrogen cycle and the boron cycle must be closed. Recycling NaB(OH)4 to regenerate 

and thus produce SB remains a major challenge.  

 

The achievements reported between 2015 and 2022 are summarized and discussed in the 

next paragraphs. Before, it is pertinent to briefly remind the main regeneration processes 

developed until 2014. These are the modified Brown-Schlesinger process, the modified 

Bayer process, the reduction processes using reducing agents such as methane CH4, H2, 

and the pair carbon-H2, and the electrochemical reduction process (Figure 8). To enter the 

detail of these, the reader is invited to refer to the following review articles [118-124]. 

 

 

Figure 8. The main SB regeneration processes developed until 2014, as surveyed in references [118-124]. 

 

SB can be produced from anhydrous sodium metaborate NaBO2 that is obtained by 

dehydration of the by-products NaB(OH)4 and NaB(OH)4·2H2O at >350 °C [125]. It is 

however preferable to produce SB directly from NaB(OH)4 and NaB(OH)4·2H2O to save 

energy (the one that would be required to get NaBO2) and decrease the SB production costs. 

It is with this logic in sight that Ouyang and co-workers have developed effective 

regeneration processes over the past years (Figure 9). At room temperature and 
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atmospheric pressure [126], either NaB(OH)4 or NaB(OH)4·2H2O was ball-milled with 

magnesium hydride MgH2, using a high-energy shaker mill. The milling conditions were as 

follows: 1 mol NaB(OH)4, 5.5 mol MgH2, a ball-to-powder ratio of 30:1, and 15 h of milling 

while alternating 30 min of milling and 30 min of rest; 1 mol NaB(OH)4·2H2O, 8.25 mol MgH2, 

a ball-to-powder ratio of 50:1, and 20 h of milling while alternating milling and rest. In these 

conditions, SB was produced: 

NaB(OH)4 (s) + 4MgH2 (s)  NaBH4 (s) + 4MgO (s) + 4H2 (g)    (2) 

NaB(OH)4·2H2O (s) + 6MgH2 (s)  NaBH4 (s) + 6MgO (s) + 8H2 (g)   (3) 

In both reactions, some H2 is produced. It could be recovered to hydrogenate the 

magnesium product MgO to regenerate MgH2; in doing so, the magnesium cycle would be 

closed. SB was separated by extraction using anhydrous ethylenediamine C2H4(NH2)2 as 

solvent. The SB yields were 90 and 83.3% respectively. In other studies, Ouyang and co-

workers explored alternatives to MgH2. They used Mg [127], Mg2Si [128,129], a mixture of 

Mg and Mg2Si [130], and a magnesium-aluminum alloy Mg17Al12 [131,132], with attractive 

results though the SB yields were lower than those reported above. In yet other studies, 

Ouyang and co-workers considered other borates. On the one hand, the aforementioned 

process was successfully applied to NaBO2, the SB yield being 89% [133]: 

NaBO2 (s) + 2MgH2 (s)  NaBH4 (s) + 2MgO (s)      (4) 

On the other hand, a polyborate such as Na2B4O7·10H2O that is the main constituent of 

naturally abundant borax mineral was selected [134]. This approach is interesting in two 

counts. First, Na2B4O7·10H2O is the raw material of the industrially-applied Brown-

Schlesinger process for production of SB. Second, Na2B4O7·10H2O is known to form by 

reaction of CO2 with e.g. NaB(OH)4 in aqueous solution: 

4NaB(OH)4 (aq) + CO2 (aq) + 2H2O (l)  Na2B4O7·10H2O (aq) + Na2CO3 (aq) (5) 

Similar to what has been described above, Na2B4O7·10H2O (without separating Na2CO3) 

was ball-milled with Mg, resulting in the production of SB (yield of 78.9%): 

Na2B4O7·10H2O (s) + Na2CO3 (s) + 20Mg (s)  

 4NaBH4 (s) + 20MgO (s) + CH4 (g) (6) 

Higher yields were attained with the use of additives such as sodium hydride NaH [135]. For 

instance, a SB yield of 93.1% was achieved when the system MgH2-NaH-Na2B4O7·5H2O 

was ball-milled 3.5 h. A SB yield of 85.2% was obtained with the system Mg17Al12-NaH-

Na2B4O7·10H2O after a milling of 20 h [136]. The use of aluminum (without or with silicon) 

to hydrogenate Na2B4O7·10H2O was also explored, and the SB yields were lower than 62% 
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[137]. In the main, Ouyang and co-workers have been much active and are currently the 

leading researchers on this matter [138].  

 

 

Figure 9. The SB regeneration processes developed by Ouyang and co-workers [126-137]. 

 

 

Few other studies are also of interest. Ar et al. [139] produced SB from boron oxide B2O3, 

MgH2 and sodium amide NaNH2, by mechanosynthesis carried out at room temperature: 

B2O3 (s) + NaNH2 (s) + MgH2 (s)  NaBH4 (s) + 2MgO (s) + NH4BH4 (s)  (7) 

SB was extracted by using ethylenediamine as solvent. For a reaction lasting 500 min and 

using an excess of 30% of MgH2, the SB yield was 84%. According to the authors, 

ammonium borohydride NH4BH4 (Eq. 7) formed as by-product. However, no evidence of its 

formation is given. It is however unlikely that NH4BH4 forms. Indeed, this compound is much 

unstable in the conditions mentioned above [140]. Le et al. [141] used a magnesium-

aluminium alloy (76 wt% Mg and 13.6 wt% Al, plus other elements like Ca, Cu, Mn, Nd, Zn, 

Y, Ag) that was ball-milled with either NaBO2 or NaB(OH)4·2H2O under H2 pressure (70 bar) 

and at room temperature: 

NaBO2 (s) + 2Mg (s) + 2H2(g)  NaBH4 (s) + 2MgO (s)    (8) 

NaB(OH)4·2H2O (s) + 6Mg (s)  NaBH4 (s) + 6MgO (s) + 2H2 (g)    (9) 

Yields of 99.5%, upon extraction of SB by ethylenediamine, were found. 

 

Progress has been made. However, there are two outstanding questions. How simple and 

safe is the extraction of SB from the ball-milled mixture? Our recent attempts (unpublished 

work) taught us two things. When the ball-milling is too harsh, the particles size of the 

magnesium products is so small that they remain in suspension after weeks of storage. Even 
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centrifugation turns out to be complicated. The other point is that the aforementioned small 

particles are pyrophoric, and ethylene diamine is a highly flammable solvent. This makes 

the extraction/separation process very constraining. These observations bring up the 

second question. What is the cost of the as-produced SB, and that of the H2? It is difficult to 

answer this question because there is a lack of energy, exergy and economic analyses. The 

only study available is that of Rivarolo et al. [142]. They carried out a thermo-economic 

analysis for a process where the electricity is from photovoltaic panels, H2 is produced by 

electrolysis of water, and SB is synthesized from NaBO2 in the presence of Mg and H2 (Eq. 

8). The total cost of H2 was found to be 15.5 € per kilogram. At such a cost price, SB is not 

economically viable, except perhaps for niche applications. 

 

 

6. Conclusions and prospects 

The first conclusion that can be drawn is that the 2015-2022 period is regrettably too similar 

to the 2000-2014 (surveyed in reference [18]). Again, catalysts or accelerators have 

dominated the field, the other aspects have received little attention (Figure 10), and there 

has been little gain in terms of technological readiness level. There is now substantial 

literature on catalysts and accelerators showing a potential use in hydrolysis of SB. 

However, it is important to mention that the prototypes reported so far were based on the  

use of a one-block catalyst (e.g. cobalt supported on Ni foam) or an accelerator among very 

few ones (e.g. HCl or NaHCO3). There is clearly a gap between the hundreds (in fact >1000 

since the early 2000s) of different catalysts or accelerators reported so far and the very few 

catalysts and accelerators tested on a prototype.  

 

The 47 articles dated 2015-2022 and dealing with aspects other than catalysts or 

accelerators give valuable insights into hydrolysis of SB towards scaling up. These insights 

are much interesting, have been discussed above, and deserve to be put into perspective 

with a view of the end user. 

 

Storage of SB gives rise to constraints. SB in solid state must be kept far from air 

contamination to avoid its degradation (by reaction with moisture and CO2). Aqueous 

alkaline solution of SB suffers from spontaneous hydrolysis even for high concentrations of 

NaOH and low temperatures, and its storage will require special care (e.g. chemically inert 
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high-pressure vessel, ventilated storage areas). May one impose such constraints to the 

end user knowing that one should do because of the safety concern related to uncontrolled 

H2 production by spontaneous hydrolysis? From what we know at present, the answer to 

the question is in the negative, and one may regret that there is no study and data about 

kilograms of SB stored in various conditions and in different vessels. 

 

 

Figure 10. Percentage of articles dealing with the different aspects related to hydrolysis of SB, knowing that 
a total of 523 articles (for the period 2015-2022) were analyzed. 

 

Perhaps, one may consider that the end user prepares a fresh aqueous alkaline solution of 

SB when it is required. But, is this conceivable? Perhaps the answer is yet for professionals. 

However, the normal end user should not have to handle chemicals like solid SB and NaOH 

because this could poses significant constraints and safety concerns. In fact, the question 

does not have a definite answer, but it is unquestionable that a SB-based technology must 

be easy and safe to operate.  

 

Another, less critical, question raises from the discussion above. Which water should we 

use for preparing a fresh SB solution? Actually, we cannot answer the question from the 

point of view of the performance. There are only two studies dealing with the nature of water. 

This fact reflects how the aspects other than catalysts or accelerators have been little 

investigated or neglected. In any case, tap water or seawater for example would be 

preferable, at least because they are cheaper and more accessible than distilled water. More 
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studies on water quality (including also rainwater, bottled water, etc.) could lead to a better 

understanding of the impact of the species present in water on the overall performance of 

the hydrolysis reaction and of the catalyst. We however have to keep in mind that any 

species in water will complicate the already complex issue related to recycling of the 

hydrolysis by-product.   

 

The articles dealing with prototypes represent a mine of information. Three types of issues 

can be identified. The first type of issues are those that have been identified a long time ago: 

need of active cooling of the system because of the exothermic nature of the hydrolysis 

reaction; deactivation of the catalyst requiring its reactivation or replacement; and, 

precipitation of the by-product resulting in clogging the system and/or requiring water 

flushing after each operation. Each of these issues have to be well managed, otherwise they 

have a greater or lesser impact on the system as a whole (including the PEMFC). It should 

be noted that, though these issues are known, they remain unexplored for a use of SB at 

the kilogram scale. The second type of issues was less known and documented: need of 

reactor pressurization for constant H2 production rates; leakage of H2; and, risk of corrosion 

of stainless steel implying coating with inert material. All of these issues are related to the 

system and on its operation, and further development should allow further improvements. 

The third type of issues is typical of a specific type of reactor (e.g. gumming of SB) or of a 

specific application (e.g. risk of disrupting the aircraft center of gravity because of depletion 

of the tank containing the SB fuel). Other issues will obviously pop up as new prototypes will 

be constructed, tested and presented. Thus, the only conclusion to be drawn from this is 

that, we must expand our efforts to address each of these issues. 

 

Even now SB is very often presented as being technologically much promising thanks to the 

10.8 wt% of hydrogen atoms of which it is formed. This is both true and untrue. SB has 

indeed a gravimetric hydrogen density of 10.8 wt%, however this is far from the net 

gravimetric hydrogen storage capacities that could be reached with a H2 production system 

integrated to a fuel cell-powered device. Net gravimetric hydrogen storage capacity takes 

into account the weight of each component of the system taken as whole and that of SB and 

water, and only a net value can give the real performance of the couple SB-water as 

hydrogen carriers. The only measure available is 1.3 wt% as discussed in section 4, and 

this illustrates how low is the net capacity in comparison to the gravimetric hydrogen density 

of SB. There is still room for improvement because there are few levers. For example, every 
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components of a H2 production system (e.g. reactor) may be lightened by exploring and 

using light materials instead of heavy ones (e.g. steel). Further optimization with respect to 

the hydrolysis reaction may allow using an aqueous solution of highly concentrated SB; in 

doing so, less water would be embarked, positively affecting the net capacity. A last example 

is of using SB in solid state as the energy density of a H2 production system using solid SB 

would be 1.3 times higher than a system using an aqueous alkaline solution of SB. In any 

case, we have to keep in mind the following values: SB and four equivalents of water have 

a gravimetric hydrogen density of 7.3 wt%; for a system where the weights of SB and water 

(both embarked) represent 50% of the system weight, the highest gravimetric hydrogen 

storage capacity would be about 3.7 wt%; and, for a system where the weights of SB and 

water is 31% (as in Figure 7), the highest capacity would be 2.3 wt%. 

 

Last but not least, SB must be produced back from its by-products. Since 2015, significant 

progress has been made. It is now possible to produce SB by ball milling NaB(OH)4 and 

MgH2 at room temperature, and one of the highest yield reported so far is 90%. This 

presupposes that half of an initial amount of SB would not be ‘lost’ after 7 regeneration 

cycles. Improvement is thus still necessary, and the yield of 100% should be the target. We 

could also take inspiration from what is being done with electrochemical conversion of CO2 

in order to explore other possibilities. Improvement is all the more necessary in that the cost 

of H2 from SB is still too high. With relation to that, another noteworthy observation is that 

energy, exergy and economic analyses are needed to better evaluate the overall cost of H2 

from SB. 

 

After more than 20 years of research and innovation, many obstacles (as listed above) 

remain to be overcome before hydrolysis of SB can be a commercial solution for carrying 

and producing H2. In my view, our aim should be to answer the following question: does SB 

really offer prospects in terms of technological implementation and commercial deployment? 

We do not have the insight necessary to answer this question yet. But we have to answer it. 

To do so, we should overcome the obstacles at first, which means more efforts dedicated to 

construct, operate and optimize H2 production systems, as well as more efforts to make 

production of SB from its by-product more efficient and cheaper. That is the only way to 

reach technological maturity. Next, other questions about the technology deployment will 

come (how will SB be distributed, how will SB be stored at the end user’s home, how will 

the by-products be stored at home, how will the by-products will be recovered, how many 
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recycling sites will be available, what will be the transportation and distribution cost, and so 

forth?).  
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