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Abstract

Population and community ecology traditionally has a very strong theoretical

foundation with well-known dynamical models, such as the logistic and

its variations, and many modifications of the classical Lotka–Volterra

predator–prey and interspecific competition models. More and more, these

classical models are being confronted with data via fitting to empirical time

series for purposes of projections or for estimating model parameters of

interest. However, using statistical models to fit theoretical models to data is

far from trivial, especially for time series data where subsequent measure-

ments are not independent. This raises the question of whether statistical

inferences using pure observation error models, such as simple (non-)linear

regressions, are biased, and whether more elaborate process error models or

state-space models have to be used to address this complexity. In order to help

empiricists, especially researchers working with experimental laboratory

populations in micro- and mesocosms, make informed decisions about the sta-

tistical formalism to use, we here compare different error structures one could

use when fitting classical deterministic ordinary differential equation (ODE)

models to empirical data. We consider a large range of biological scenarios

and theoretical models, from single species to community dynamics and tro-

phic interactions. In order to compare the performance of different error struc-

ture models, we use both realistically simulated data and empirical data from

microcosms in a Bayesian framework. We find that many model parameters

can be estimated precisely with an appropriate choice of error structure using

pure observation error or state-space models, if observation errors are not too

high. However, Allee effect models are typically hard to identify and

state-space models should be preferred when model complexity increases. Our

work shows that, at least in the context of low environmental stochasticity and

high quality observations, deterministic models can be used to describe sto-

chastic population dynamics that include process variability and observation

error. We discuss when more complex state-space model formulations may be
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required for obtaining accurate parameter estimates. Finally, we provide a

comprehensive tutorial for fitting these models in R.

K E Y W O R D S
Bayesian inference, logistic population growth, Lotka–Volterra, microcosms
predator–prey dynamics, time series

INTRODUCTION

Studying biotic interactions and measuring their strength
in order to understand how ecological systems work is at
the heart of scientific ecology. Biotic interactions are at
the center of classical questions in population ecology,
such as density regulation (e.g., Sibly et al.,2005), but
also in community ecology, including modern coexis-
tence theory (Chesson,2000; Godwin et al., 2020) and
beyond, such as host–parasite (epidemiological parame-
ters) and trophic interactions. Importantly, interaction
strengths also provide a bridge between ecology and evo-
lution as biotic interactions directly or indirectly influ-
ence fitness. Biotic interactions are therefore components
of eco-evolutionary dynamics and feedbacks (Hiltunen
et al.,2014; Yoshida et al.,2003).

As a consequence, correct and unbiased estimations
of biotic interaction strengths are of great importance, be
it using times series from the field (e.g., Sibly et al.,2005)
or from laboratory systems (Rosenbaum et al.,2019). The
strength of ecology in this context is its important and
solid body of theory and the availability of mechanistic
models. As a consequence, researchers would like to fit
these models to time series data to extract the relevant
parameters (e.g., Godwin et al.,2020). This exercise is
not always straightforward as models often consist of
(coupled) ordinary differential equations (ODEs), such as
classical models including logistic or other limited local
population growth, Lotka–Volterra-type models for inter-
specific competition and consumer-resource dynamics, or
SI-type (susceptible-infected) epidemiological models.

Fitting such models to data is possible via multiple
approaches, ranging from “naive” trajectory matching
(e.g., Fronhofer & Altermatt, 2015) using nonlinear least-
squares or Bayesian approaches (e.g., Nørgaard et al.,2021)
to state-space models that allow to explicitly take into
account observation and process errors (for a recent over-
view, see Auger-Méthé et al.,2021). Ecologists and evolu-
tionary biologists faced with these choices may often wonder
what the pros and cons of these different approaches are,
especially given the varying degrees of complexity of these
approaches and technical skills they may require.

Importantly, these choices are not mere technical
details since they can impact scientific results and

conclusions. For instance, Sibly et al. (2005) used a rather
simple likelihood approach to fit the � -logistic model to
population census data. The authors concluded that a large
array of taxa exhibit similarly shaped density-regulation
functions that have important applied consequences for
conservation and management. However, Clark et al.
(2010) could show that these results are likely flawed due
to likelihood ridges (parameter combinations of similar
likelihood), a problem that could have been mitigated, for
instance, using a Bayesian approach with informed priors.

Making a decision regarding the correct statistical for-
malism to use is not made easier by the fact that the ques-
tion includes multiple dimensions of complexity, such as
frequentist versus Bayesian approaches, discrete-time ver-
sus continuous-time models, stochastic versus determinis-
tic models, and, finally, multiple error structures.

Of course, we cannot treat all these dimensions com-
prehensively here. Regarding the first, we will rely on
Bayesian inference because Bayesian models are capable
of quantifying uncertainty of estimated parameters exactly,
even for nonlinear problems, and they perform well with
complex models (Clark et al.,2010). Nevertheless, de
Valpine and Hastings (2002) compare state-space models
to observation and process error models using a likelihood
framework and show that state-space models outperform
other options.

In terms of the second axis of complexity, we will
focus on continuous-time models. Note that Clark and
Bjørnstad (2004) study discrete-time models, including
exponential growth and the Ricker model and provide a
complementary view to the results we will present below.

Regarding the third axis, our study focuses on deter-
ministic theoretical models, which makes our work most
relevant when environmental stochasticity is low, such as
for data collected in the context of laboratory experimental
populations from microcosms or mesocosms. Applications
include, for example, plant growth (Paine et al.,2012),
Lotka–Volterra competition and predation (Mühlbauer
et al., 2020), bacteria or protist predator–prey systems
(DeLong & Lyon, 2020; Rosenbaum et al., 2019),
host–pathogen interactions (Lunn et al.,2013), and even
terrestrial mesocosm food webs (Wootton et al.,2022).
Data from the field, which may be heavily impacted by
environmental stochasticity (Shoemaker et al.,2020),

2 of 15 ROSENBAUM and FRONHOFER

 21508925, 2023, 4, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4503 by B

iu M
ontpellier, W

iley O
nline Library on [25/04/2023]. S

ee the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



are beyond the scope of our work, and are likely best
analyzed using stochastic models (see, e.g., Barraquand &
Gimenez,2019, 2021). We also do not account for detec-
tion error (see Hefley et al.,2013) or model errors
(see Xu et al.,2019).

We will here extensively study the fourth axis of com-
plexity, the choice of error structure (Figure1). This choice
seems especially important when one intends to fit dynami-
cal models to time series data since, by default, subsequent
measurements are not statistically independent. This
implies that, besides observation error, process error may
have to be taken into account. Nevertheless, researchers
often choose a trajectory-matching approach and account
for observation error only because this omission reduces
model fitting to a comparatively simple nonlinear

regression problem. By contrast, process-error-only models
are nonlinear autoregressive models, where each observa-
tion in time is predicted from the previous one. The most
complete treatment of error structure involves using
state-space models (Auger-Méthé et al.,2021), which take
both sources of error into account. Such state-space models
cannot be classified as standard regression problems, since
they require the simultaneous estimation of latent states as
parameters (estimated true population abundances).

In order to understand under which conditions obser-
vation error, process error, or both have to be modeled
when analyzing population and community dynamics
data with ODE models, we consider ecological scenarios
of increasing complexity, ranging from single-species
dynamics up to predator–prey systems. Briefly, we use

F I G U R E 1 Possible statistical approaches for fitting a population model to a time series of population densities. Panel A depicts the
underlying stochastic birth–death process (logistic growth) and the black squares show the sampled data with corresponding errors. The
simplest statistical model assumes only observation errors (obs err) and matches the calculated trajectory of the ordinary differential
equation directly to the data (B). Assuming process error (proc err;“one-step-ahead fitting” ; C) takes into account the nonindependence of
the subsequent data points in the time series. Finally, the state-space model (D) takes both sources of error (observation and process) into
account.
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stochastic individual-based models to generate observations
with known underlying processes and sampling regimes fol-
lowing a “virtual ecologist” approach (Zurell et al.,2010).
Specifically, (1) we choose an ecological model with known
parameters and (2) simulate trajectories of population abun-
dances with a stochastic algorithm (Gillespie,2007). Each
“experiment” has a duration of 14 days and is replicated
10 times. Here, process error is introduced as demographic
stochasticity via random birth and death events. We do not
include any form of environmental stochasticity in the
data-generating process. (3) We simulate realistic observa-
tions from each of the 10 replicates by sampling every
12–24 h, each measurement includes observation error.
(4) We subsequently fit the appropriate dynamical equations
in R with Markov Chain Monte Carlo (MCMC) sampling
using Stan (Stan Development Team,2018). Here, we use
three different statistical approaches by accounting for
observation-error-only (OBS), process-error-only (PROC), or
fitting state-space models (SSMs) accounting for both. For
each ecological scenario as described below, we conducted
10,000 experiments, each, while varying the levels of intro-
duced process and observation error. Finally, we comple-
ment our work with an analysis of real population dynamic
data from microbial laboratory systems using published data
(Fronhofer et al.,2020).

Overall, in our analysis, process error models fare
least well and SSMs outperform simpler approaches for
biological models as complex as predator–prey systems
when data are irregular or incomplete. Additionally, we
provide a comprehensive tutorial for fitting these models
in R in Appendix S2.

MATERIALS AND METHODS

Mathematical models

The following ecological models are used for generating
the observed data. Example time series are depicted in
Appendix S1: Figure S1, see Appendix S1: Table S1 for an
overview of the parameters.

Single-species dynamics: Logistic growth model

In this study, we used the Verhulst (1838) model, a sim-
ple single-species density-regulation model; ther � � for-
mulation of the logistic growth equation (for a detailed
discussion of the advantages of this formulation see
Mallet, 2012) is

dN
dt

¼ r0 � � Nð ÞN, ð1Þ

where N is the size of the focal population,r0 is the
intrinsic rate of increase, and� is the intraspecific compe-
tition coefficient. The equilibrium population size can be
calculated asK ¼r0=� .

We extend this model to include an Allee effect by
adding a density-dependent mortality term as described
in Thieme (2003), which can be derived mechanistically,
for example, for mate-finding Allee effects or satiating
generalist predators:

dN
dt

¼ r0 � � N �
�

1 + � N

� �
N, ð2Þ

where � is the amount by which growth is reduced
at N ¼0 and � controls the consequences of the
Allee effect for higher densities. Calculations for the
two equilibrium population densitiesA and K (dN=dt < 0
for N < A and for N > K) are given in Appendix S1.

Single-species dynamics: Beverton–Holt model

As a more mechanistic single-species density-regulation
function (Fronhofer et al., 2020; Thieme, 2003), we
explore the continuous-time Beverton–Holt model, which
follows

dN
dt

¼
b

1 + � N
� d

� �
N, ð3Þ

where b is the birth rate and d is the mortality rate. The
intrinsic rate of increase can be calculated asr0 ¼b� d.
The equilibrium population size isK ¼r0= � dð Þ.

In analogy to Equation (2), we can expand the
Beverton–Holt model to include an Allee effect by adding
a mortality term (Thieme,2003), which yields

dN
dt

¼
b

1 + � N
� d �

�
1 + � N

� �
N: ð4Þ

Again we refer to Appendix S1 for the calculation of the
equilibrium population densitiesA and K.

Interspecific competition:n-species
Lotka–Volterra competition model

To capture interspecific competition and the dynamics of
a horizontal community, we will first use an expansion of
the logistic model (Equation1):

dNi

dt
¼ r0,i �

Xn

j¼1

� i,jNj

 !

Ni, ð5Þ
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where� i,j represents the inter- and intraspecific competition
coefficients and form the community matrix. We investigate
two separate two-species scenarios, which are different in
their interspecific competition coefficients. In the first sce-
nario, the system reaches a stable equilibrium (coexistence),
while in the second one, species is outcompeted by the other
and goes extinct (competitive exclusion).

Predator–prey interactions

For predator–prey interactions, we use the following gen-
eral model

dR
dt

¼g Rð Þ� f Rð ÞN, ð6aÞ

dN
dt

¼ef Rð ÞN � dN, ð6bÞ

where g(R) is the growth of the resources, which can fol-
low any of the above introduced single-species popula-
tion growth functions (Equations1–4). For simplicity, we
will assume that g(R) follows Equation (1). f (R) is the
consumer’s functional response, which can be linear, sat-
urating, or sigmoid. e captures the conversion factor,
which includes consumer-resource body-size ratio as well
as assimilation efficiency. In our analyses, we will focus
on a Holling type II (Holling, 1959), that is, saturating
functional response of the formaR= 1+ ahRð Þwith a as
the predator’s search efficiency andh as the handling
time. This combination of growth and functional
response is also known as the Rosenzweig–MacArthur
model and we investigate scenarios that feature a limit
cycle (Rosenzweig & MacArthur,1963).

Individual-based simulations

In order to simulate data from the ecological models
introduced above, we use an individual-based modeling
approach that relies on a modified Gillespie algorithm. The
main difference to a classical Gillespie algorithm (exact sto-
chastic simulation algorithm; Gillespie,2007) consists in
calculating maximum rate constants, which speeds up the
simulation as updating occurs less frequently, as detailed in
Allen and Dytham (2009). More generally, our approach
assumes that birth and death events happen stochastically.
By increasing or decreasing birth and death rates but keep-
ing the resulting intrinsic rate of increase constant
(d � 0,1½ �, b¼r0 + d, r0 ¼0:1 ½h � 1�), we can simulate bio-
logically relevant increases or decreases in demographic
stochasticity and therefore process error� proc. This
approach has the advantage that we do not need to

assume any scaling of demographic stochasticity with
population size a priori. The correct scaling emerges from
our model. For predator–prey dynamics, we treat the
resource’s intrinsic growth rate as above. The predator’s
rate of change (i.e., conversion factore and mortality
rate d) is simultaneously varied. Stochasticity here
increases the system’s frequency, but keeps equilibria
(dN=dt ¼dR=dt ¼0) intact.

We initially verified computationally that a stochastic
time series’ variation � 2 around its deterministic counter-
part’s equilibrium K scales with� �

������
Kd

p
(Appendix S1:

Figure S15). Hence we identify� proc with
���
d

p
for fixed K.

For example, using the logistic growth model, we observed
on average� proc ¼3:072

����
K

p
for d ¼1:0.

Finally, we sample from the generated time series at
varying time intervals to include observation error
(Figure 1). Concretely, for the first 3 days, sampling occurs
every 12 h, then every 24 h until 14 days. We count abun-
dancesNcount in a fixed fraction p of the space monitored
or the faction of volume sampled. Assuming a random
distribution of individuals in space, this is described by a
binomial sampling processNcount � Binomial N,pð Þ. This
implies that the estimated abundanceNcount=p in the
total volume has a mean ofpN=p¼N and a standard
deviation of

��������������������
p 1� pð ÞN

p
=p¼

�������������������
1 � pð Þ=p

p
×

����
N

p
. Hence

we identify � obs with
�������������������
1 � pð Þ=p

p
for fixed N. For exam-

ple, any population at its carrying capacityN ¼K features
an expected observation error � obs¼9:950

����
K

p
for

p¼0:01, which is approximately three times higher than
the process error as described above.

For each scenario, that is, each population or commu-
nity model, we simulated 10,000 microcosm experiments.
Each experiment was assigned a fixed process error and a
fixed observation error (death rated � 0:0,1:0½ �and sam-
pling fraction p � 0:01,1:0½ �, random draws from a uni-
form distribution, for p on log scale). In each experiment
we simulated 10 time series replicates with identical
parameterization. In the two-species scenarios, five
additional replicates for thetwo single-species dynam-
ics were added. These additional single-species data, in
conjunction with the 10 two-species time series,
inform intra-specific model parameters like r0,i

and � i,i i¼1,2ð Þ.

Empirical data example

In order to confront our statistical approach with empiri-
cal data, we complemented the above described simula-
tions by using population time series data from a
microbial laboratory system.

This dataset represents an empirical example that
matches our single-species model examples introduced
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above (Equations1 and 3). Furthermore, it fulfills the
prerequisites of low environmental stochasticity discussed in
the introduction. Nevertheless, it provides room for testing
whether and how the different statistical models can pick up
nonlinearities in density regulation (Fronhofer et al.,2020).

More precisely, we used the data collected by
Fronhofer et al. (2020) from microcosms of the freshwa-
ter protist Tetrahymena thermophila. These cultures were
grown from low density in volumes of 20 mL. Data were
collected using a computer-vision and video-analysis
pipeline on sample volumes of 31� L. For details, see
Fronhofer et al. (2020).

Statistical approach

Here, we describe the statistical approaches for analyzing
our simulated and empirical data. In summary, we
combine a deterministic prediction modelU tð Þwith a
statistical model to fit it to an observed time seriesYi at
times tiði ¼1,…,nÞand to estimate model parameters� .
Our three proposed statistical models vary in their treat-
ment of observation and process error, that is, their vari-
ance structure. Mathematically, they differ in the way
Ui ¼U tið Þis predicted from information at the previous
time point ti � 1: either from the previous predictionUi � 1

(OBS), the previous observationYi � 1 (PROC), or a previ-
ous latent state variableZi � 1 (SSM). Each model is
presented in a separate section below.

More specifically, letYi denote untransformed obser-
vations (counted abundances in sampling fractionp) of a
single time series. Estimated abundances in the total
volume are given byYi=p. Each observation is univariate
for single-species systems (Yi � � ), or bivariate for
two-species systems (Yi � � 2). Generally, we usem ¼10
nonaggregated time series replicates denoted by
Yijði ¼1,…,n, j ¼1,…,mÞ. In the following, we describe
the model fitting of single time series for simplicity and
briefly explain extensions to multiple replicates where
needed. U tð Þis a deterministic prediction, or process
model, for the population time series in the total volume
Y=p. Here we use U tð Þ ¼U tjt1,U1,�ð Þ, the numerical
solution of the continuous-time ODEdU=dt ¼f U tð Þ,�ð Þ
with initial value U t1ð Þ¼U1 and model parameters� .
A discrete-time process modelU tð Þ would work
analogously.

We use a Bayesian approach for parameter estimation,
but the models can generally be fitted with maximum like-
lihood estimation as well (e.g., DeLong & Lyon,2020;
Xu et al.,2019). Both methodologies require the evaluation
of the likelihood function L �ð Þ ¼P Yj�ð Þ ¼

Q n
i¼1P Yij�ð Þ,

where P Yj�ð Þdenotes the probability density function of
the observed dataY given the model parameters� .

Observation error model

When ignoring process error, the whole trajectory

U tjt1,U1,�ð Þ, t � t1,tn½ � ð7Þ

is computed, yielding predictionsU1,…,Un. The initial
abundanceU t1ð Þ¼U1 is also a free parameter to be esti-
mated. Equation (7) is identical to

Ui ¼U ti jti � 1,Ui � 1,�ð Þ, i ¼2,…,n, ð8Þ

and predictionsUi are (iteratively) defined by initial state
U1 and model parameters� (Figure 1b). The predictions
p× Ui for the sampled fractionp are confronted with the
data Yi by evaluating the likelihood L � ,U1ð Þ. For the
likelihood, we chose a negative binomial distribution

Yi � NB p× Ui,	ð Þ, i ¼1,…,n, ð9Þ

which has mean � ¼p× Ui and variance � 2 ¼� + � 2=	 .
Parameter	 > 0 describes the amount of overdispersion
that makes the negative binomial a flexible choice, both
for error variances scaling with� (large 	 ) or with � 2

(small 	 ). Also, it is suited for the integer- and potentially
zero-valued observationsYi (O’Hara & Kotze, 2010). For
time series that did not include any zeros as our empiri-
cal data example, we found that a lognormal distribution
works as well. By neglecting process error and assuming
that the process is sufficiently described by a determinis-
tic trajectory, parameter estimation reduces to a
nonlinear regression problem, fittingU tð Þ(Equation 7) to
observationsYi with independent residuals (Equation9).

In case of multiple time series replicates (observations
Yij ), we fitted m trajectoriesU tjt1,U1j,�

� �
using a single

set of model parameters (e.g.,� ¼ r0,Kð Þ, logistic
growth scenario), but allowing individual initial values
U1jðj ¼1,…,mÞin one statistical model, that is, using a
joint likelihood function L � ,	 ,U11,…,U1mð Þ.

Process error model

When observation error is ignored, we assume that the obser-
vations for the total volumeYi=p are sufficiently close to
the true abundances. Predictions are generated one step
ahead

Ui ¼U ti jti � 1,
Yi � 1

p
,�

� �
, i ¼2,…,n, ð10Þ

that is, predicting Ui from the previous observationYi � 1

only (Figure 1c). The observations’ deviation from this
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piecewise deterministic process is modeled again with a
negative binomial distribution

Yi � NB p× Ui,	ð Þ, i ¼2,…,n ð11Þ

for reasons stated above, but here it accounts for process
error. Thus, by neglecting observation error, parameter
estimation reduces to a nonlinear autoregressive problem
with independent residuals.

For multiple time series replicates, we straightforwardly
iterate Equations (10) and (11) for Yij and Uijðj ¼1,…,mÞ
with a single set of model parameters� , to evaluate the
joint likelihood L � ,	ð Þin one statistical model.

State-space model

This approach assumes both observation error and pro-
cess error are present. It requires explicitly modeling the
time series of estimates of true abundancesZiði ¼1,…,nÞ
as latent states. These are unknown a priori, but can be
estimated together with the model parameters� from the
data during the model fitting process. For each“guess” of
Z and � , predictions are generated one step ahead

Ui ¼U ti jti � 1,Zi � 1,�ð Þ, i ¼2,…,n ð12Þ

from the previous statesZi � 1 (Figure 1d). The process
error in these predictions is modeled with a lognormal
distribution

Zi � lognormal log Uið Þ,�ð Þ, i ¼2,…,n ð13Þ

with a scale parameter� . Hence, logZið Þfollows a normal
distribution with mean log Uið Þand standard deviation� .
A continuous distribution is required here forUi,Zi � � .
Additionally, the state parametersZi are confronted with
the integer-valued observationsYi with a negative bino-
mial distribution as in the previous models

Yi � NB p× Zi,	ð Þ, i ¼1,…,n ð14Þ

accounting for observation error. Equations (13) and (14)
define the likelihood function L � ,� ,	 ,Z1,…,Znð Þ.

When dealing with multiple time series replicates
Yijðj ¼1,…,mÞ, we fit m individual time series of true
statesZ1j,…,Znj with a joint set of � , using the likelihood
function L � ,� ,	 ,Z11,…,Znmð Þin one statistical model.

Parameter estimation

We used MCMC to sample from the posterior probability
distribution of the model parameters given the observations

P � jYð Þ � P Yj�ð Þ× P �ð Þ, where P Yj�ð Þ ¼ L�ð Þ is the
likelihood function and P �ð Þdenotes some prior distribu-
tion for the model parameters� . We coded the models
using the “rstan” package (Stan Development Team,
2018) and used the built-in Runge–Kutta method for
numerical solutions of ODE predictionsU tð Þ, and the
no-u-turn sampler for computing the posterior. Vague or
uninformative prior distributions P �ð Þwere chosen for
all model parameters to guarantee that the measured
model performance was not confounded with prior infor-
mation (Appendix S1: Table S1).

Each model fit was computed by 2000 warmup steps
and 2000 samples in three chains, adding up to 6000 pos-
terior samples. We discarded every dataset from subse-
quent analysis if either of the three fitting methods did
not converge (more than 100 divergent iterations).

Evaluation

For each of the 10,000 model fits per scenario, we computed
bias and root mean squared error (RMSE) for every parame-
ter � i from the posterior distribution Pðb� jYÞto evaluate
accuracy, whereb� ¼ ðb� 1,…,b� kÞ and � ¼ � 1,…,� kð Þdenote
the k estimated and true model parameters, respectively
(e.g.,� 1 ¼r0, � 2 ¼K for logistic growth). Relative bias

Biasðb� iÞ ¼
Eðb� iÞ� � i

� i
ð15Þ

is a measure of the point estimate (posterior meanEðb� iÞ),
while the relative RMSE

RMSEðb� iÞ ¼

����������������������������������������������

Eðb� iÞ� � i

� � 2
+ Varðb� iÞ

r

� i
ð16Þ

also accounts for the uncertainty of the estimation
(by including the posterior variance Varðb� iÞ).

Additionally, we investigated the effects of process
and observation error on model accuracy to test, for
example, if the statistical approaches OBS, PROC, and
SSM are affected differently by the amount of both error
sources in the data. First, for each fit, we computed
overall measures of accuracy as geometric means
Bias¼

Q k
i¼1jBias � ið Þj1=k and RMSE¼

Q k
i¼1RMSE � ið Þ1=k

over absolute Bias and RMSE of all model parameters� i ,
respectively. Then, we fitted generalized additive models
(GAMs) to these measures using observation error and
process error as predictors and visualized the response
surfaces, see Appendix S1: Figures S2–S13. We used the
“mgcv” package (Wood, 2011) with model formulas
“Bias� s � proc,� obs

� �
” and “RMSE� s � proc,� obs

� �
.”
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RESULTS

Fitting simulated data

When analyzing time series with OBS and PROC, almost all
fits converged properly and only less than 1% of all experi-
ments had problems with divergent iterations. For SSM,
around 5% of all fits did not converge, with a maximum of
9% for our most complex model (predator–prey system).

There are generic strategies when encountering convergence
issues, like employing more informative priors, using a
longer warmup phase for the MCMC sampler, or increas-
ing the sampler’s accuracy at the cost of computation
speed (Stan Development Team,2022), which we did not
further investigate case by case given the amount of
involved experiments.

In most scenarios, OBS and SSM performed best in
terms of the model parameters’ bias (Figure 2) and

F I G U R E 2 Distribution of relative bias, model parameters versus statistical models for all population dynamics models
(10,000 experiments per scenario). Dots are mean, thin lines are 95%, and bold lines are 66% quantiles. For Allee models,A is computed from
other model parameters and not a free parameter itself. OBS, observation error model; PROC, process error model; SSM, state-space model.
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RMSE (Figure3). In cases where models were identifi-
able via SSM, OBS performed comparably or just slightly
less accurately, while PROC mostly produced the least
accurate parameter estimates.

For the logistic growth model (Equation1), all models
produced unbiased estimates. PROC estimates of the
growth rate r were slightly less precise, especially for high
observation error (Appendix S1: Figure S2).

In the Beverton–Holt model (Equation 3), parameter
d defines the mortality rate as well as the level of process
error in the individual-based simulations (� proc �

������������
N × d

p
).

Further, with increasing d, the density-regulation func-
tion converges to the linear version of logistic growth and
time series resemble those of the logistic growth model.
In our parameterization, a nonlinear effect in the
density-regulation function on the stochastic time series

F I G U R E 3 Distribution of relative root mean squared error (RMSE), model parameters versus statistical models for all population
dynamics models (10,000 experiments per scenario). Dots are mean, thin lines are 95%, and bold lines are 66% quantiles. For Allee models,
A is computed from other model parameters and not a free parameter itself. OBS, observation error model; PROC, process error model;
SSM, state-space model.
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was only visible for d < 0:4 (approximately). Therefore,
the exact values of larged were not identifiable, which
caused high variation in the estimates and their uncer-
tainty. But if the data provided evidence for the
Beverton–Holt model versus logistic growth (d small),
then all three statistical models provided accurate esti-
mates (Appendix S1: Figure S3).

The parameter estimates of the logistic growth with
Allee effect model (Equation2) were mostly biased. OBS
and SSM still produced more accurate estimates than
PROC. Its estimates were heavily biased unless both pro-
cess error and observation error were low (Appendix S1:
Figure S4). The inaccuracy was most pronounced for
high observation error. All statistical models suffered
from highly correlated parametersr, � , and � in the pos-
terior distribution (of a single fit). We emphasize that this
is not a problem with MCMC convergence, but rather a
problem with practical identifiability (Raue et al.,2009).
Information on this nonlinear, four-parameter popula-
tion growth rate is lost due to process and observational
noise, and cannot be recovered accurately by statistical
inference. However, the critical population density
A r,K,� ,�ð Þ(see Appendix S1), which separates positive
and negative population growth, was estimated compara-
bly accurately by OBS and SSM.

With one additional parameter d for mortality, the
Beverton–Holt with Allee effect model (Equation 4) fea-
tured problems similar to the Beverton–Holt model and
the logistic Allee effect model. Interestingly, model per-
formance suffered for lowd, which is associated with low
process error and strong Beverton–Holt density regula-
tion (Appendix S1: Figure S5). We assume that the two
nonlinear density effects cannot be distinguished accu-
rately by any of the statistical models, and that this
five-parameter model is practically not identifiable.

We tested a two-species Lotka–Volterra competition
(Equation 5) model in a coexistence scenario (both spe-
cies reached a positive steady state) using additional con-
trol data (single-species time series, each growing to their
carrying capacity). The accuracy level was generally high
(Appendix S1: Figure S6). Without control data, results
were similar albeit slightly less accurate. Especially
PROC performed worse under the presence of observa-
tion error (Appendix S1: Figure S9).

In a competitive exclusion scenario (one species was
outcompeted and went extinct, while the other one grew
to its carrying capacity) using additional control data,
accuracy levels generally were high and just slightly
lower than in the coexistence scenario. OBS and SSM
produced marginally better estimates than the PROC
approach. Estimation errors grew with observation error
(Appendix S1: Figure S7), especially for interspecific com-
petition coefficient � 21 of the first outcompeted species.

Without control data however, estimation accuracy
decreased in total (Appendix S1: Figure S10), partially
leading to biased estimates for all three fitting approaches.
Without data on the carrying capacityK1 ¼r1=� 11 of the
outcompeted species, model identifiability suffered, and
most strikingly for PROC.

We tested a predator–prey model (Equations 6a
and 6b) with cyclic dynamics. The parameters were cho-
sen such that the system experienced approximately two
to three full cycles in the observed time (depending on
the level of process error). First, we used additional
single-species control time series (resource growing to its
carrying capacity, consumer going extinct). SSM and OBS
provided mostly unbiased estimates, with slight underes-
timation of predator’s model parameters for SSM. Here,
the posterior distributions of the individual fittings
showed correlations in these parameters. PROC generally
featured biased estimates and was highly sensitive to
observation error (Appendix S1: Figure S8). Second, we
fitted the model without any control data (Appendix S1:
Figure S11). While accuracy decreased for parameters
estimated with OBS and PROC, SSM results still were
comparable to the estimates with control data when
observation error was not too high.

Additional scenarios

The OBS and the SSM fitting approach performed quite
well in some two-species scenarios, even under the pres-
ence of process and observation error. We repeated the
analysis of the Lotka–Volterra competition model and
the predator–prey model to validate the methods under
more challenging conditions.

We fitted the Lotka–Volterra competition model
using fewer replicates, that is, only 2 instead of 10 time
series replicates of the two-species mixtures, and only
1 instead of 5 single-species control time series each. Our
assumption was that, even though process error can
speed up or slow down dynamics, these effects would
average out over 10 replicates and would inform parame-
ters (e.g., the joint average growth rate) correctly. We
found that this generally holds even with fewer repli-
cates, but results were slightly less accurate regarding
bias (Appendix S1: Figure S12). However, fewer observa-
tions also meant higher posterior uncertainty and there-
fore higher RMSE, especially for� 21, PROC performed
worst here. In particular, OBS estimates were as accurate
as SSM estimates across all levels of observation and pro-
cess error.

We also fitted predator–prey models to longer time
series over 35 days instead of 14 days, such that the sys-
tem featured approximately five to seven full cycles.
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Additional single-species control time series were used as
before. Our assumptions were that process error did not affect
the estimation quality significantly in the shorter time series,
since the regularity of the process (constant cyclic frequency)
was not seriously disturbed, and that it would only decrease
with longer time series, leadingto less accurate results, espe-
cially for the OBS model. When fitting longer time series
(Appendix S1: Figure S13), it was observed that the precision
of OBS results was slightly less than the shorter time series,
whereas there was no change in SSM results. We conclude
that, while OBS is still quite robust against the level of process
variation and the resulting irregularity tested here, SSM
should be used for longer time series with irregular cycles.

Finally, we simulated experiments for logistic growth
with a lower carrying capacity (K = 103 instead ofK = 104).

Generally, process and observation error scale with square
root of population abundance as verified above (� �

����
N

p
),

therefore relative errors decrease with abundance
(� =N � 1=

����
N

p
). As expected, the accuracy of estimated

parameters decreased in experiments with lower abun-
dances (Appendix S1: Figure S14), but PROC suffered most.

Fitting an empirical data set

We fitted the Beverton–Holt model (Equation 3) with all
three statistical approaches to seven empirical datasets,
comprised of six time series replicates each (Figure4; see
Appendix S1: Figure S16 for full dataset and Appendix S1:
Figures S17–S23 for posterior predictive checks).

F I G U R E 4 Two out of seven empirical datasets and posterior distributions of fitted Beverton–Holt models, including model parameters
r, K, and d. For parameterK, x-axis labels showK/105. Top:d unidentifiable, indicating logistic growth, bottom: smalld, identifiable.
OBS, observation error model; PROC, process error model; SSM, state-space model.
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Since all observed densities were positive and
noninteger, we used lognormally distributed residuals for
process and observation errors. Note that densities are
noninteger here because the data were collected using
video recording and analysis and densities are calculated
as averages over the observation time of one video.
Nonlinear effects on the density-regulation function were
detected in datasets 4, 6, and 7 by all three statistical
models, indicated by low values of mortality rated. For
the remaining datasets, larger values ofd were estimated
with a high uncertainty in the posterior distributions,
which suggested no clear evidence for the Beverton–Holt
model over the logistic growth model. Estimates of the
three model parametersr, K, and d were similar across
the three statistical approaches, but posterior uncertainty
was generally higher in the PROC estimates.

DISCUSSION

Our work shows that using deterministic ODEs and
Bayesian inference, it is possible to accurately estimate
parameters from time series data of stochastic IBMs includ-
ing process and observation error. Practical identifiability,
which is based both on the model and data quality (Raue
et al., 2009), was validated for several widely used popula-
tion models with respect to the different statistical models
used here. Importantly, our work covers multiple dimen-
sions of complexity, both in terms of population ecology
and statistical models, from simple single-species
models, such as the logistic model, to multispecies com-
munity models, and, in terms of statistical models, from
pure observation (OBS), via process error (PROC) to
SSMs. Overall, we can show that OBS and SSM can be
generally preferred over PROC in the context of deter-
ministic prediction models. It is important to keep in
mind that our work is motivated by data from experi-
mental laboratory systems,that is, systems where envi-
ronmental stochasticity is typically low.

More precisely, OBS can compete with the more com-
plex SSM, especially when a true steady state >0, such as
an equilibrium density, is reached (logistic model,
Beverton–Holt model if d is small and data are not logis-
tic, Lotka–Volterra competition model) or when the bio-
logical models lead to regular cycles, such as in some
predator–prey dynamics. With additional single-species
time series as control data in the predator–prey systems,
OBS produced even better estimates than SSM, while the
opposite was found when no control data were used. For
data featuring irregular cycles (e.g., in longer time series),
we also endorse the use of SSMs. The good performance
of OBS for predator–prey models is in line with recent
studies (DeLong & Lyon,2020; Rosenbaum et al.,2019).

Also, Barraquand and Gimenez (2021) demonstrated
with a discrete-time stochastic model that parameters can
be more easily estimated from (noisy) limit cycles than
from time series converging to a steady state in general.

Therefore, OBS may be a viable alternative to SSM,
especially if SSMs suffer, for example, from extensive model
complexity or convergence problems (Bolker,2008).
Auger-Méthé et al. (2016) discuss identifiability issues with
linear SSMs, especially if measurement error is larger than
process error, or that � obs and � proc often cannot be
estimated accurately (e.g., Knape,2008). Here, we con-
sider these as nuisance parameters and focus on model
parameters. While we observe a decrease of model perfor-
mance with measurement error for all three models
(Appendix S1: Figures S2–S13), this does not generally
reach a level we would consider as unidentifiable for
SSMs. Contrary to the studies cited above, which investi-
gate stationary time series, our datasets feature transient
or cycling dynamics, containing more information on the
nonlinear process parameters.

We modeled process variation in PROC and SSM by
assuming a piecewise deterministic process between sam-
pling times ti and ti + 1 (ODE integration), where error is
introduced in ti + 1 (Auger-Méthé et al., 2021). A more
elaborate treatment of process error, which potentially
could increase estimation accuracy, requires either an
analytical expression of error propagation in the stochas-
tic population process to compute the likelihood, or sto-
chastic simulations during model fitting for a likelihood
approximation. While the former is often not available,
the latter requires computationally even more demand-
ing methods like sequential Monte Carlo (SMC) or
approximate Bayesian computing (ABC) (Hartig et al.,
2011). While we acknowledge that SSMs classically use
piecewise (log-)linear predictions models instead of
ODEs, we here aimed at comparing three ways of statisti-
cally treating error structure and used identical continuous
prediction models for each. How linearized ODEs (Euler’s
method) and temporal resolution (Clark & Bjørnstad,
2004) affect model performance was not tested here.

Our work also shows that estimating Allee effect
strengths and, more generally, fitting population growth
models with Allee effects is challenging. For these models,
the four- or even five-parameter density-regulation func-
tions may be overparameterized and nonidentifiable, espe-
cially in the presence of process and observation errors.
As a consequence, these models may only be useful for
data from highly controlled experiments in combination
with SSMs. It is important to note that these models can
be derived mechanistically (Thieme,2003), which may
allow to inform priors of one or multiple model parame-
ters, which could help make the SSM more accurate. Of
course, as an alternative, nonmechanistic formulations
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such as dN=dt ¼rN 1� N=Kð ÞN=A � 1ð Þ with less
parameters could also be used.

In the case of two-species systems, we highly recom-
mend the use of control time series from single-species
settings (Appendix S1: Figures S6–S11). If these are not
available, SSMs should be used for predator–prey sys-
tems. Biological settings that lead to the exclusion of one
species, such as some of the Lotka–Volterra competition
models we have used here, make estimates imprecise
without such control data, unless the observation error is
very small.

While we here explored model identifiability based
on time series data alone, a Bayesian approach easily
allows including additional sources of information to
improve parameter estimation. This information could
enter the model via informed priors or hierarchical models
(Kindsvater et al.,2018), or by using multiple, potentially het-
erogeneous data sources(Barraquand & Gimenez,2019). For
example, feeding experiments (Rosenbaum & Rall,2018) can
additionally inform functi onal response parameters in
predator–prey models (Barraquand & Gimenez,2021).

In conclusion, we have explored multiple dimensions
of complexity, both in terms of biological complexity as
well as in terms of statistical model complexity, in order
to pinpoint which error structure one should use when
fitting classical deterministic ODE models to empirical
data, from single-species to community dynamics and
trophic interactions. Our results show that, overall, OBS
models and SSMs outperform PROC models for data
that one may expect to be collected from experimental
laboratory populations. Importantly, our continuous-time
models allow us to include uneven sampling intervals
(and therefore missing values), because the model is not
linearized within a time step as in discrete-time models.
More generally, our work shows that under the condi-
tions specified above, deterministic models seem to be
sufficient to describe the stochastic dynamics emerging
from process and observation errors.
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