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ABSTRACT. We study the evolution of the growing volume of a droplet formed out of a 

capillary tube driven at a constant applied pressure by optical volume detection. A particular 

application aims at modeling the dynamic of the drop in the case of the injection of drugs in 

the middle-ear cavity using a small target drug delivery system. Various dispense tips such as 

a steel needle or silicone catheters and different t-BuOH aqueous solutions were used. A 

physical model based on the simplified Laplace–Young equation for a spherical droplet was 

developed to interpret the experimental results and model the observed deviation of the mean 

flow rate from the Poiseuille law when the drop radius is smaller than the capillary length. We 

emphasize the large influence of the surface tension which introduces a highly nonlinear 

effect at low applied pressure just above the capillary threshold pressure. The model fits well 

the evolution of the growing volume at various applied pressure up to a maximum diameter 

corresponding to the drop size close to the capillary length of the fluid, 𝑙𝑐 = √𝛾 𝜌𝑔⁄ , based on 

the liquid density , gravity g and surface tension . We demonstrate that the model can also 

be applied to non spherical pendant droplets providing the apex elongation over the drop 

height of a spherical cap of the same volume is kept in a 30% range. 

 

 

KEYWORDS. Drip, Flow rate model, Capillary tube, Pendant drop, Drug delivery, Surface 

tension. 
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1. Introduction    

 

The growth of liquid drops in air from the tip of a capillary tube has received considerable 

attention over the last past century [1–5]. In recent years, interest has raised for targeted drug 

delivery devices to improve the efficiency of therapeutic treatments by injecting the drug 

directly on the targeted tissues thereby overcoming physical barriers. The injection of drugs in 

the human body is a challenge relevant to biomedical application such as the treatment of 

inner ear disorders (or diseases) by local application of drugs [6–9]. We investigated the 

formation of droplets in air to provide a reliable dosing method for a delivery system 

implantable in the middle ear to deliver medications by filling a small niche at the entrance of 

the inner ear [10]. The safe and standardized surgical procedure for implantation and fixation 

of catheter consists in anchoring the catheter to bone [11] in the middle ear near the round 

window membrane (RWM) used as a main route for the transfer of potential substances to the 

inner ear [6,7,12]. The drops are deposited precisely within the RWM niche. The drugs are 

then selectively absorbed by the tissue and gently delivered to the perilymph of the inner ear. 

The key parameters for designing such a catheter tip for a long term implantation are the 

rheology of the drug formulation, the physical shape and the physicochemical surface 

properties of the tip [13] and the mechanism of drop growing. 

In this study we aim to control the volume and the flow rate of drops containing drug 

solution in the air cavity of the middle ear. One challenge is the accurate placement of a drop 

containing the medication in the middle-ear cavity with the catheter tips at a distance of the 

order of 1 mm of the niche of the RWM in order to minimize the influence of gravity. Then, 

the growth could be stopped for a critical drop height less than 1 mm by contacting the RWM 

tissue. The drop would finally be absorbed by the tissue at the desired drug concentration. The 
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contact effect and following absorption mechanism is not considered here. The paper 

concentrates on the growing mechanism of the drop. 

Regarding the miniaturization of pump devices, it is important to measure flow 

characteristics at the length scale of the implanted catheter according to the specification of 

pumps of small size such as MEMS pumps [14,15]. Two main characteristics of the fluidic 

circuit are to be characterized in relation with the design of the pumps, the threshold capillary 

pressure and its hydraulic resistance. We have investigated in vitro experiments of forming a 

droplet with dedicated catheters. A prototype of droplet delivery for R&D investigations has 

been designed (Fig. 1) to work at a constant pressure based on a gravity-driven liquid 

reservoir. The setup allowed us characterizing the evolution of the drop volume with time and 

the mean flow rate as a function of the applied pressure in dripping mode by using optical 

volume detection.  

The experimental flow analysis developed method is relevant to accurately characterize the 

catheter system prior to using it in vivo. Several experiments of liquid dropping at controlled 

pressures have been designed to make it possible to measure both the hydraulic conductance 

and the flow rate behavior of typical implantable catheters. The measured characteristics of 

the capillary system can then be used to predict the fluidic behavior of any pump systems 

under a constant pressure or at a constant flow rate, though the characteristics of the drop 

detachment threshold may differ. Nevertheless, the miniaturization of implantable pumps for 

application in the middle ear remains a challenge. 

As liquid is driven out of a capillary tube, a drop forms and grows. The growth stage can be 

divided into two phases depending on whether gravity can be neglected or not. The capillary 

length 𝑙𝑐 = √𝛾 𝜌𝑔⁄   can be compared to the drop height h in order to estimate the relative 

importance of the capillary pressure to the hydrostatic pressure drop over the drop height h. 
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At early stages h is smaller than lc and the drop is quasi-spherical. As the drop grows, its 

shape elongates (h  lc) until the drop falls. 

Various physical models of the drop growing process have been previously published [1–

5,16–28] regarding the case of the measurement of dynamic surface tension [29–31] or the 

case of constant volumetric flow rate or for passive pumping [32,33], in which the applied 

pressure is not constant. Indeed, in many cases, the pumping methods are well described by 

analytical models of expanding liquid drops where a constant flow rate is adjusted for 

example, by displacing at constant speed the piston of a high-precision syringe [1,18–

20,23,26,29–31]. Thus it has been often proposed to treat the growing of droplets at constant 

flow rate in most applications. We present here for the first time an analytical model for 

droplet delivery apparatus in which, by contrast with previous models, the applied pressure is 

constant. The proposed model is based on the simplified Young-Laplace equation [5,29,30] 

for drop height h smaller than the capillary length lc (h ≲ lc). The model incorporates design 

parameters such as surface tension, fluid viscosity and density, inner and outer radii of blunt 

tip (flat face tip) capillary tube permitting efficient use of our testing method by changing the 

geometry of the tip and the surface tension of the fluid. Drop on demand technology [34] is 

widely used and we offer that the proposed analytical model could easily be introduced in 

monitoring and production process control tools. This model has mainly been evaluated for 

drop size below the capillary length produced at pressure just above the capillary threshold 

pressure. 

In this paper, the physical model was validated by comparing with the experimental 

observations of growing of drops from their initiation until they break up due to gravity. 

Surprisingly, the analysis domain can also be extended to elongated drops with a good 

correspondance.  
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2. Material and methods 

Four liquids were used as test fluids with surface tensions  ranging from 72 to 24 mN/m: 

deionized (Millipore) water and aqueous solutions of t-BuOH of mole fractions (x) = 0.1, 1.7 

and 10% (mol%), (x) = [t-BuOH]/ ([t-BuOH] + [H2O]) where [t-BuOH] and [H2O] stand for 

the concentrations of t-BuOH and H2O, respectively. The aqueous t-BuOH mixtures were  

prepared by weighting from 2-methyl-2-propanol (tert-butyl alcohol) of 99.7% purity 

(Aldrich) as received. The surface tension values at 22 °C (Accuracy 0.5%)  were measured 

by the Wilhelmy method, using a standard precision 3S tensiometer supplied by GBX 

(Romans, France), and summarized in Table 1. They were found in agreement with reported 

data [35,36]. The density (ρ) and viscosity (η) of liquids used for numerical calculations are 

extrapolated from reported data [37,38] (Table 1). 

 Liquid Surface Tension a Density  b  Dynamic Viscosity b 

mol% mN/m kg/L mPa.s 

H2O 72.2 0.9978 0.955 

t-BuOH 0.17% 60.1 0.9958 0.9192 

t-BuOH 1.7% 40.1 0.9866 1.2475 

t-BuOH 10% 23.6 0.9421 3.243 

aMeasured at 22 °C. bExtrapolated at 22 °C for water [37] and at 25 °C for water/t-BuOH 

mixtures data from ref. [38]. 

Table 1. Physical data for water and the water/t-BuOH system. 

The experimental setup was designed to visually analyze the evolution of the volume of 

drops emerging from a capillary tip in air in a drop by drop mode as seen in Fig. 1a. This 
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figure includes a schematic of the system used to extract the drop volume from image 

analysis. All experiments were performed in normal ambient air at 23 ± 1 °C. The system was 

secured against unwanted gas bubbles in order to ensure accurate pressure measurement. 

Silicone and stainless steel capillaries were used to analyze the influence of the wettability 

of the flat tip faces. Various tip sizes were also compared with outer diameters 2Re ranging 

from 0.7 to 1.3 mm and inner diameter 2Ri ranging from 0.4 to 0.8 mm. Silicone tubes are 

referenced sil1.3 (2Re = 1.348 ; 2Ri = 0.846) and sil1.2 (2Re = 1.260 ; 2Ri = 0.630). Steel 

needles are referenced steel0.7 (2Re = 0.720 ; 2Ri = 0.414) and steel0.8 (2Re = 0.820 ; 2Ri = 

0.552). Silicone tube lengths were carefully measured close to the 0.1 m specified for use with 

middle ear implantable systems. Steel0.7 tip is blunt end precision needle supplied by 

Hamilton of length 0.051 m. The tips of silicone tubes were cut flat and perpendicular to the 

axis of the tube and then cleaned with isopropyl alcohol and rinsed with water. The external 

radii Re and inner radii Ri of the tips were measured using a microscope. The length of the 

silicone tubes L was systematically measured and L ranges between 0.050 and 0.200 m. 

The drop growing process was captured using the video recording system of a GBX 

Digidrop (Contact Angle Meter) which provided a dimmable back-light and a standard CCD 

video camera system (Pixelink) of resolution 752  480 operating at a normal 40 ms frame 

rate. The GBX Visiodrop image analysis software set to axisymmetric drop shape analysis 

[39] was used to measure the drop growing volume 𝑣(𝑡) versus time.  

To drive the different liquids through the capillary tubes, we used a gravitational-based 

reservoir system (Fig. 1a) so that the hydrostatic pressure 𝛥𝑃 = 𝜌𝑔𝛥𝐻 generated by a column 

of liquid of height 𝛥𝐻 can be approximated as a constant pressure during the delivery of a few 

drops from a given liquid level. We estimated that the liquid level decrease is less than 2010-

6 m per drop for a typical falling drop volume of 15 µL when the reservoir diameter is as large 
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as 2910-3 m. The capillaries were mounted on a holder in order to maintain the tip vertically. 

The tip position was precisely defined using a micrometer gauge. In order to vary the applied 

pressure, the height of the reservoir was moved up or down with a PC-controlled stepper 

motor dedicated for use with syringes and by precisely measuring H that separates the 

meniscus of liquid in the reservoir from the flat cut of the capillary tip. Measuring the height 

with an estimated accuracy of ±0.2510-3 m led us control the applied pressure within the 

±2.5 Pa range. 

For all tested liquids and tips, the drop growth followed the same typical image sequence as 

shown in Fig 1b. During a first short period, the fluid moves out and wets the overall surface 

of the tip. In its initial state, the drop pins to the outer edge of capillary tip of radius Re. Then a 

periodic discontinuous flow is reached with the drops growing and falling due to gravity. The 

neck formation (Fig. 1b) and detachment stage (not shown) were observed during a transient 

period of a few dozen of millisecond, while the growth phase ranges between 1 and 10 s, 

depending on the experimental conditions.  
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Fig. 1. (a) Dripping setup: the reservoir sets the pressure which is adjusted by its vertical 

position ΔH. Images of the drop are captured at the tip of the capillary tube. A close-up of the 

capillary tip is shown in inset. The drop volume 𝑣(𝑡) is extracted from the contour shape of 

the axisymmetric pendant drop. (b) A typical increasing size is shown according to time. The 

typical image sequence during drop growth was obtained using a steel0.7 tip. 𝑣𝑟 is the initial 

volume of the growing drop which is the residual volume after previous drop break-up and 

𝑣𝑚𝑎𝑥 is the maximum volume before detachment. A spherization of the drop shape is shown 

where R and h denote respectively the radius and the height of equivalent spherical cap 

(dotted line) having identical volume of the drop. Rapex and hapex are respectively the radius 

and the height measured at the apex of the drop elongated by gravity. R and h were calculated 
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from the analytical model of drop volume 𝑣(𝑡) using Eqs. (4–7,12). Rapex and hapex were 

measured from calibrated volume image at time t using ImageJ software. 

We define 𝑣𝑚𝑎𝑥 as the maximum volume reached before the drop detaches from the tip and 

𝑣𝑟 as the residual volume after the drop breakup as shown in Fig 1b. We observed that the 

production of the drops corresponds to a steady state characterized by a repeatable maximum 

volume for each solution/tip combination used among different concentrations and tip outer 

diameters (Fig. 2). The residual drop is always hemispherical and pinned to the outer edge of 

the tip. 

 

  

Fig. 2. Average (vd – vd
Tate) volume difference of the detached drops vd as a function of the 

volume vd
Tate determined by the corrected Tate’s law. See text for more details. The outer 

diameters (2Re) of the different tips used for the solutions were 0.720, 0.820, 1.260 and 1.348 

mm (water), 1.260 and 1.348 mm (t-BuOH 0.17% and 1.7%) and 1.260 mm (t-BuOH 10%). 

Fig. 2 shows the volume difference variations of the detached drops 𝑣𝑑 = 𝑣𝑚𝑎𝑥 − 𝑣𝑟 as a 

function of the corrected Tate volume [40,41]: 𝑣𝑑 = 2𝜋𝑓𝛾𝑅𝑒 𝜌𝑔⁄   where  is the surface 

tension,  is the density of the liquid, f is an empirical correction shape factor first 

experimentally determined by Harkins and Brown [24] and g = 9.81 m22s is the gravitational 

constant. The values of f were calculated for all liquid/tube pairs tested in function of the 
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aspect ratio of the different tips, 𝑥 =  𝑅𝑒 𝑣𝑑
1/3⁄  where 𝑣𝑑 is the volume of detached drop, 

from a polynomial fit of the data [40,41] as 𝑓 = 0.7688𝑥2 − 1.0496𝑥 + 0.98707. The error of 

𝑣𝑑 Tate’s volume calculations is relatively minor compared to 𝑣𝑑 measurements. The volume 

𝑣𝑑 was measured for different tube/solution pairs at a flow rate of approximately 5 µL/s so 

that evaporation effect of droplets present in alcohol-water mixtures is minimized because the 

corresponding drip periods of about 1 s were short. The good agreement with the Tate‘s law 

(Fig. 2) shows that the volume change due to the evaporation of the drop in the dripping mode 

is negligible. However, the main differences in Fig. 2 may also be due to other factors such as 

tip wettability. It is estimated that, based on Fig. 2, the accuracy of 𝑣𝑑 measurements was 

between 0.3 and 2%. 
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Fig. 3. (a) Instantaneous drop volume 𝑣(𝑡) from a capillary tip as a function of the time at 

varied imposed pressure (P) from the lower 𝑣𝑟 to the upper 𝑣𝑚𝑎𝑥 limit volumes of the drip. 

The experimental curves are adjusted to the model in black solid lines using the liquid surface 

tension parameter of 60.8 mN/m determined by curve-fitting of the whole 𝑣(𝑡) curves (see 

Section 4.2). For clarity, not all data collected were shown on the plateau. (b) Flow rate Q(t) 

calculated from the time derivative of the drop volume data, plotted at varied imposed 

pressure (P) as a function of the normalized height  = h/Re. Black solid lines are the model 

curves Q() calculated with the fit parameters found by curve-fitting the volume curves. The 

dimension of the capillary silicon tip (sil1.2) was Re = 0.63010-3 m (𝑣ℎ = 0.52 µL). The 

measured hydraulic resistance was determined by fitting line plots of flow rate versus 

pressure and averaging (see Section 4.1): Rh = 29.2 Pa.s/µL with an aqueous solution of t-

BuOH 0.17% (mol%) used in the drip. 

For each couple liquid-capillary tip, a series of experiments were performed where the 

pressure was varied in the 100 to 400 Pa range. The kinetics of the growth volume was 

measured over time as shown in Fig. 3. In each case, a pressure threshold is observed below 

which no dripping occurs. A theoretical model is developed below to account for these 

observations.  

3. Description of the model 

In the following, we suppose that the drop shapes remain approximately spherical and can 

thus be described by a radius of curvature R(t) which increases over time. This assumption is 

valid at the early stages of the growth as confirmed by the observations (Fig. 1b). It is 

theoretically expected to hold as long as the drop height h compares with the capillary length 

lc. It will be shown that its validity domain can be extended until the drop detachment.  
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The liquid surface tension γ induces a capillary pressure in the drop 𝑃𝑐𝑎𝑝(𝑡) = 2𝛾 𝑅(𝑡)⁄  

where R(t) is the radius of the drop. When this pressure is higher or equal to the applied 

pressure from the reservoir, no flow occurs. When it is lower, liquid flows. The flow rate is 

related to the pressure difference by the well-known model of Poiseuille in circular tubes of 

inner radius Ri: 

𝛥𝑃 − 𝑃𝑐𝑎𝑝(𝑡) = 𝑅ℎ𝑄(𝑡)      (1)  

where 𝑅ℎ is the corresponding hydraulic resistance. In our experiment, the pairing of the 

capillary tube to the reservoir was designed so that the source of hydrodynamic pressure loss 

within the connections between the capillary and the reservoir systems are negligible yielding: 

𝑅ℎ = 8 𝜂𝐿 𝜋⁄ 𝑅𝑖
4       (2) 

where is the viscosity of the fluid, L is the length of tube. We denote  =  2𝛾 (𝑅𝑒∆𝑃)⁄  the 

ratio of the residual drop capillary pressure to the applied external pressure. If 𝜆 > 1 the 

residual drop does not grow. In the dripping mode, the experimental pressure ratio was 0.4 ≲

𝜆 ≲ 0.998. Using Eq. (1), the flow rate Q that feeds the drop writes:  

𝑄(𝑡) =
𝛥𝑃

𝑅ℎ
(1 − 𝜆

𝑅𝑒

𝑅𝜆(𝑡)
)     (3) 

On the other hand, the volume of the drop 𝑣(𝑡) is given by: 𝑣(𝑡) =
𝜋

2
ℎ(𝑅𝑒

2 +
ℎ2

3
) while h, Re 

and R are linked by the geometrical relation for spheres: 𝑅𝜆
2 = (ℎ − 𝑅𝜆)2 + 𝑅𝑒

2 where Rλ(t) 

is the calculated radius of curvature of the drop and the subscript  refers to the dimensionless 

pressure applied to the drop. This indicates in Eq. (3) that the drop radius will also change 

with the applied pressure (or the value of ) Introducing the dimensionless parameters: 

𝜉 = ℎ 𝑅𝑒 ⁄       (4) 

𝑉 = 𝑣 𝑣ℎ⁄        (5) 
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where 𝑣ℎ = 2𝜋𝑅𝑒
3 3⁄  is the volume of the hemispherical cap of radius 𝑅𝑒,  the normalized drop 

volume 𝑉 and its radius of curvature R write: 

𝑉 =
3

4
𝜉 (1 +

𝜉2

3
)      (6) 

𝑅𝜆

𝑅𝑒
=

𝜉2+1

2𝜉
       (7) 

Hence, the flow rate can be derived from Eq. (6) and (7): 

𝑄 =
𝑑𝑣

𝑑𝜉

𝑑𝜉

𝑑𝑡
=

3

4
𝑣ℎ(𝜉2 + 1)

𝑑𝜉

𝑑𝑡
      (8) 

The flow rate given by Eq. (3) can also be recast using the dimensionless parameters. 

Introducing the characteristic growth time 𝜏:  

𝜏 =
𝜋

2

𝑅ℎ𝑅𝑒
3

∆𝑃
       (9) 

the two different equations for the flow rate Q in Eqs. (3) and (8) lead to the differential 

equation for the evolution of the normalized height of the drop 𝜉(𝑡): 

(1+𝜉2)
2

1−2𝜆𝜉+𝜉2 𝑑𝜉 =
𝑑𝑡

𝜏
       (10) 

This yields:  

Q(𝜉) =
3

4
(1+𝜉2)

3

1−2𝜆𝜉+𝜉2

𝑣ℎ

𝜏
      (11) 

The characteristic time  is the time at which the capillary term no longer impairs the drop 

growth as seen from Eq. (3). Solving the differential equation Eq. (10) leads to a parametric 

representation of the volume as a function of time: V = V() is given by Eq. (6) and 𝑡 =

𝜏𝜑𝜆(𝜉)  with: 

𝜑𝜆(𝜉) =
𝜉3

3
+ 𝜆𝜉2 + (1 + 4𝜆2)𝜉 + 4𝜆3 ln(𝜉2 − 2𝜆𝜉 + 1) 

+4𝜆2 1−2𝜆2

√1−𝜆2
[tan−1 𝜆−𝜉

√1−𝜆2
− tan−1 𝜆

√1−𝜆2
]     (12) 
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Solutions to this equation exist for  < 1 only, as expected, because drop growth imposes 

the condition 𝑑𝜉 𝑑𝑡⁄  > 0. We therefore define a pressure threshold Pth = 2𝛾 𝑅𝑒⁄ : the applied 

pressure P must be larger than Pth for the dripping to occur. 

4. Discussion 

4.1. Kinetics 

The overall evolution curves of the instantaneous drop volume 𝑣(t) are presented in Fig. 3a 

for a typical series of experiments at varied imposed pressure. In order to compare the 

experimental data to the model, it can be noticed that while the drop volume 𝑣 is directly 

obtained from image analysis, its theoretical variations over time requires the resolution of the 

differential equation Eq. (10). The instantaneous flow rate Q(t) was determined from  a 

sufficiently fast recording of images by time derivation of the drop volume data extracted 

from the images and was plotted against the normalized height  = h/Re. On the other hand, 

the flow rate Q is readily obtained from the model as a function of the reduced height from 

Eq. (11) while both Q and  are deduced from the data by time derivation of the volume and 

solving Eq. (6) respectively. As a result, both comparisons are presented in Fig. 3, namely 

𝑣(𝑡) and Q(). Note that  is the height of the equivalent spherical cap having volume 𝑣 as 

depicted in Fig. 1b. It may differ from the actual drop height if the drop is elongated by 

gravity as will be discussed later. 

 The comparison between experiments and theoretical model was done in two steps. First, for 

each tube, the hydraulic resistance Rh was measured from the flow rate curves Q() at varied 

pressure P by plotting Q(P) at constant drop volumes to determine the slope as seen from 

Eq. (3) and in the inset graph of Fig. 4a. We then calibrated the hydraulic Rh resistance by 

averaging values determined at varied drop volume (Fig. 4b). The experimental time-volume 

curves were finally adjusted to the model curves by finely tuning the fitting-parameter fit in 
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both Eqs. (6) and (12) and by adjusting an offset to the experimental time so that the drop 

volume extrapolates to zero at time t = 0. An example is shown in Fig. 3 for an experiment 

performed with an aqueous solution of t-BuOH 0.17%. 

First, we find a good agreement between the model and experiments for both Q() and 𝑣(𝑡) 

curves, even for elongated drops for which the spherical cap hypothesis no longer holds. We 

will discuss later the limits of this hypothesis. The experimental instantaneous flow rate 

curves Q(t) in Fig. 3b agree with the model when  > 1. The proposed model shows V-shaped 

Q() curves (Fig. 3b) with minimum flow at  = 1 when the capillary forces become relatively 

large compared to gravity for a drop of radius close to the tip radius, see Eq. (3). When  < 1, 

the drop radius R(t) and Q(t) decrease until R(t) = Re due to the increase in Young-Laplace 

forces. 

 

Fig. 4. Measurement of hydraulic resistance Rh using dripping for a single liquid/tube pair 

from the slopes of the instantaneous flow rate Q(t) versus pressure P determined at constant 
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drop volume. (a) The whole linear plots Q(P) at different drop volumes are shown. (b) Mean 

value of Rh = 65.8 Pa.s/µL (red line) by calculating the average of nine slope measurements at 

constant drop volume. The capillary tube dimensions (steel0.7) and properties of water used 

for the drip are given in Section 2.  

Fig. 5 shows the variations of the hydraulic resistance difference as a function of the value 

expected from the Poiseuille model Eq. (2): 𝑅ℎ = 8 𝜂𝐿 𝜋⁄ 𝑅𝑖
4 for all pairs liquid/tube we 

tested. A relatively low resistance difference is observed for the steel/water capillary tube 

couple (Accuracy 6%) whereas the difference seems to increase with the value of 𝑅ℎ in the 

case of silicone material. Thus, the hydraulic resistance should be measured whenever 

possible to include it in the model. This is especially useful in cases where the inner radius of 

the capillary tube is not homogeneous or poorly accurate. We indeed found it was often the 

case for silicone capillaries.  

  

 

Fig. 5. Average hydraulic resistance difference (Rh – 8𝜂𝐿 𝜋𝑅𝑖
4⁄ ) determined by dripping for 

different liquid/tube pairs as a function of the values expected from the Poiseuille model for 

circular tubes of inner radius Ri and length L (See dimensions in Section 2). The viscosity  of 

the different liquids used for the calculations are the same as those listed in Table 1. 

4.2. Measurement of liquid surface tension 
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Next, the fitting parameter lambda can be used to measure the surface tension of the liquid 

through  =  2𝛾 (𝑅𝑒∆𝑃)⁄ : as lambda is fitted to the whole 𝑣(𝑡) curve, it yields a measurement 

of surface tension of great accuracy. In Fig. 6, lambda is plotted as a function of 

 2 (𝑅𝑒∆𝑃⁄ ) for a single liquid/tube pair and the slope gives a measure of the liquid surface 

tension as indicated by a good correlation coefficient (R = 1.0000) with an accuracy of 0.3% 

for water, as side result of the work. Fig. 7 shows the results obtained for all liquid tested as a 

function of the surface tension determined by the Wilhelmy method (Table 1). The latter 

method was used as a reference standard with an accuracy of 0.5%. We find a very good 

agreement between the two methods for liquid/tube pairs with pure water and a 0.17% t-

BuOH solution. By testing the reproducibility of measurement results with the water/steel0.7 

couple (Fig. 7), the accuracy of the proposed drop method was estimated at 1.5%. This shows 

that the dripping from a capillary tube at imposed pressure can be used as a simple set up to 

measure liquids surface tension. Only a camera, a reservoir and a capillary tip are necessary. 

Nevertheless, in the case of t-BuOH solutions of increasing concentrations (1.7% to 10%), the 

surface tensions measured by the drop method are overestimated because of the evaporation 

of alcohol-water mixtures. 

 

Fig. 6. Measurement of liquid surface tension  using dripping of a single liquid/tube pair at 

varied pressure (  0.85), by plotting fit used to adjust the whole 𝑣(𝑡) curves as a function 
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of 2 (𝑅𝑒∆𝑃⁄ ). A greater emphasis on linear fitting of the data is shown (see inset). The 

external radius of capillary tube (steel0.7) and hydraulic resistance used for the fitting process 

were: Re = 0.3610-3 m and Rh = 65.8 Pa.s/µL (Fig. 4b) with water. 

 

Fig. 7. Liquid surface tension difference Drop method – Wilhelmy measured at 23 ± 1 °C 

determined by the drop method for all liquids tested by dripping by using different liquid/tube 

pairs in function of the surface tension Wilhelmy determined by the Wilhelmy method. 

4.3. Formation of the plateau 

We emphasize in Fig. 8 the large influence of the surface tension which introduces a highly 

nonlinear effect at low applied pressure just above the capillary threshold pressure Pth. A 

plateau is observed at the hemispherical stage R ~ Re of the drop growing when the pressure is 

close to the internal capillary drop pressure term  ~ 1 as seen in Eq. (3). From the pre-

hemispherical period of the drop (R > Re), the delay time to reach the hemispherical stage at R 

= Re increases and diverges as the applied pressure approaches Pth according to Eq. (12) for 

 = 1 and  ~ 1. Experimentally, a delay time of few seconds could be measured (Fig. 8) 

before the expansion of the droplet occurs in the final stage in very good agreement with the 

model prediction. The theoretical curve starts with a jump at t = 0 with flow rate Q(t = 0) = 
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∆𝑃 𝑅ℎ⁄  before reaching the plateau following a Poiseuille type law because the capillary 

pressure (2/R ~ 0) is negligible at the beginning. The time to jump at 
3

4
𝑣ℎ is equal to ~ 6 

where  is the characteristic growing time determined from Eq. (9). Then, the flow rate 

decreases drastically on the plateau because the delay time diverges (see above). As a drop 

grows from a capillary for an applied pressure greater than the threshold pressure (𝜆 <  1), 

the capillary pressure in the drop 𝑃𝑐𝑎𝑝(𝑡) = 2𝛾 𝑅(𝑡)⁄  increases until to a maximum which is 

obtained when the drop has the shape of a perfect hemispherical cap, with a diameter equal to 

the tip size of the dispensing capillary (2𝑅(𝑡) = 2𝑅𝑒). As the drop further grows, the 

capillary pressure decreases because its radius increases. An inflexion of the flow rate is thus 

observed for  𝑅(𝑡) = 𝑅𝑒. When the pressure increases, the plateau disappears but the 

inflexion on the flow rate is clearly shown on Fig. 8 (curve at higher pressure) in very good 

agreement with the model simulation. 

 

Fig. 8. Zoom of drop volume 𝑣(𝑡) curves by dripping showing formation of a plateau at 

imposed pressure P close to the calculated threshold pressure Pth = 352 Pa and fitted model 

curves for the stainless steel (steel0.8) capillary tube/water pair. Two cases are shown at high 

pressure of 394 Pa and at 353 Pa for which the plateau is observed in good agreement with the 

model. The volume of the residual drop 𝑣𝑟 formed an instant after the breakup is assumed 

hemispherical in form. 
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4.4. Limit of validity and accuracy of the model  

A good agreement between experiments and analytical model could be reached up to an 

upper limit volume given approximately by the capillary length. Next we analyze the range of 

acceptable elongation of the drops for which the model, which assume drops are spherical 

caps, holds. The shape of the drop were quantified through the Bond number Bo = 

𝜌𝑔𝑅𝑎𝑝𝑒𝑥
2 𝛾⁄  which measures the importance of gravitational forces relative to surface tension 

forces, while the size of the drop is determined by Rapex or hapex (Fig. 1b). Chesters [16]  

showed that the profile of small pendant drop symmetrical about a vertical axis deviates from 

the spherical case (zero gravity) from the apex by increasing the shape factor (Bo) due to the 

effect of gravity. An analytical solution of the profil of the lower part of a pendant drop was 

found by perturbation methods with a small deviation of the profile from the circle. The 

profile, the height and the maximum volume of a pendant drop were then calculated for low 

Bo values less than about 0.1 for which the model of Chesters holds. 

The profile of small drop is spherical at the apex [16] and Rapex can be easily measured 

using ImageJ software. Hence, the drop elongation can be expressed in dimensionless variable 

by y = hapex/Rapex. Fig. 9 shows examples of evolution of y versus Bo during the growing 

process for three liquid/tube pairs at constant pressure for which the model applies until 

detachment of the drop occurs. The first stage of the curves starts when meniscus first 

appeared out of the capillary while Rapex dramatically decreases. During the second stage, y 

increases smoothly due to the shape variation of the drop from spherical to elongated profile. 

The final stage corresponds to the instant just before the neck formation. It is observed 

experimentally that the model applies well to all catheters with a tip radius to capillary length 

ratio Re/lc between 0.13 to 0.39 with 𝑙𝑐 = √𝛾 𝜌𝑔⁄ . The spherical cap model fits the drop 

volume of elongated drop even for high bond numbers of 0.35 giving drop elongation y up to 

~ 3.25 at the maximum volume that is reached before part of the drop breaks off. The 
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maximum volume, at which the model predictions are consistent with the experimental 

volume before detachment, corresponds to radius at the apex close to the capillary length of 

the fluid (Fig. 9). This shows that the model can be applied to many capillary tubes tips 

typically used in the field of biomedical application. We find that our model fits to the volume 

curves with good agreement and offers an accuracy of 3% estimated for 3 to 4 pressure values 

(ex. Fig. 3 with Re/lc = 0.25) during the whole history of the drop, for an elongation of drop 

compared to the height of the equivalent spherical drop of the order of 30%. For the case of t-

BuOH 10%/sil1.2 tube pair (Re/lc = 0.39), the accuracy has been reduced to about 5% for an 

acceptable fit of the curves because the drop volume is small (see also Section 4.5). 

 

 

Fig. 9. Analysis of the elongation of a pendant drop hapex /Rapex versus the shape factor Bo 

(Bond number) during the drop growing at constant pressure (4 to 5 values of pressure), for 

three liquid/tube pairs, water/steel0.7, t-BuOH 0.17%/sil1.2 and t-BuOH 10%/sil1.2, by 

varying the Re/lc ratio from 0.13 to 0.39 for which the spherical cap model for a pendant drop 

attached to a tube holds until the maximum volume was reached. 

4.5. Dripping flow rate at constant applied pressure 
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In this section, we evaluate the validity of the model for calculating the mean flow rate 𝑄𝑡𝑜𝑡 

of the drip delivery system at a controlled applied pressure 𝛥𝑃 for applications in order to 

predict the flow rate of drop delivery systems before use in vivo. One can calculate the 

experimental flow rate of the dripping flow define as:  

Q𝑡𝑜𝑡 =
𝑣𝑚𝑎𝑥−𝑣𝑟

𝑡𝑚𝑎𝑥
=

𝑣𝑑

𝑡𝑚𝑎𝑥
      (13) 

where 𝑡𝑚𝑎𝑥 is the time interval between detachment and initial time. For pressure higher 

than the threshold pressure Pth, the periods of the drip between 𝑣𝑟 and 𝑣𝑚𝑎𝑥 are constant for 

about 3 consecutive drops delivered at constant P with a difference less than 40 ms. As 

shown in Fig. 2, the detachment volume is well described by the modified Tate’s law: 𝑣𝑑 =

2𝜋𝑓𝛾𝑅𝑒 𝜌𝑔⁄  and the residual volume not detaching from the capillary is well described by a 

hemisphere of radius Re, with volume vh (See Fig. 8). Note that in cases when the residual 

volume may be smaller than that of the hemisphere, the time needed to grow up to the 

hemisphere vh is small compare to the total drop growth time. Hence, the initial time can be 

taken equal to the time when the drop is a hemisphere, corresponding to  = 1 in our model. 

The mean flow rate of the dripping system can therefore be estimated from the theoretical 

model using Eq. 12 applied to the drop that detaches, that is for  = d where d  verifies: 

𝑣ℎ + 𝑣𝑑 =
3

4
𝜉𝑑 (1 +

𝜉𝑑
2

3
) 𝑣ℎ    (14) 

and 

Q𝑡𝑜𝑡(𝜆) =
2𝜋𝑓𝛾𝑅𝑒 𝜌𝑔⁄

𝜏(𝜑𝜆(𝜉𝑑)−𝜑𝜆(1))
       (15) 

The total flow rate was measured for various applied pressures P (or equivalently ) and 

the result is plotted in Fig. 10. The model (Solid lines) is based on numerical calculation with 

Eq. (15). The model fits the experimental flow rate Qtot with good accuracy between 0.5% to 

2% in the linear region at different pressures. The estimated model accuracy of 10% at the 

start of the plateau may be improved by more accurately measuring the hydrostatic pressure. 
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We can simplified the mean flow curve model in the linear part of the Q𝑡𝑜𝑡(Δ𝑃) curves for 

volume interval 𝑣𝑑 by writing 𝑄𝑡𝑜𝑡 (𝑣𝑑) =  Q(𝑣𝑚) as follows:  

𝑄𝑡𝑜𝑡 ~ 
1

𝑅ℎ
(ΔP −

2𝛾

𝑅(𝜉𝑚)
)     (16) 

where 𝓋𝑚 is  a mean drop volume included in the 𝑣𝑑  interval and R(m) is determined from 

Eq. (7). This linear relationship can be seen as a Poiseuille type law with a threshold pressure 

so that the mean flow rate of the drip system is always lower than a closed tube owing to a 

constant threshold shift (ΔP −
2𝛾

𝑅(𝜉𝑚)
) due to the capillary pressure term generated by the drip. 

 

 

 

Fig. 10. Variation of mean flow rate Qtot of the dripping system with pressure P for different 

liquid/tube pairs. Simulated (black line) and experimentally measured (symbol) values are 

compared.  

 

 

 

 

4. Conclusions 
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The simplified Young-Laplace equation was used to describe the growing drop process in 

the dripping mode. Various pairs of tubes and fluids such as water and t-BuOH mixtures were 

tested with the model by optical volume detection with a standard camera until part of the 

drop breaks off. The maximum volume 𝑣𝑚𝑎𝑥 to which the model can be applied is highlighted 

with capillary tubes typically used in biomedical applications or for capillary tubes whose 

ratio between the radius of the tip and the capillary length Re/lc is between 0.13 to 0.39 with 

𝑙𝑐 = √𝛾 𝜌𝑔⁄ . The maximum volume corresponds to the elongation of the drop compared to 

the height of the equivalent spherical drop of order 30% and to the corresponding maximum 

Bond number of 0.37. We found that the model can even be applied satisfactory with 3% 

volume accuracy during the entire history of the drop with a large capillary silicone tube. The 

nonlinear evolution of the flow rate at constant applied pressure near the capillary threshold 

pressure is characterized by a plateau and a delay time which was measured in good 

agreement with model prediction. 

We have developed a novel method to measure the surface tension of liquid by taking 

advantage of the evolution of the volume curves with time observed at controlled pressure 

near the threshold pressure. The accuracy of surface tension measurement by the drop method 

was estimated to be around 0.5% with water by fitting the entire 𝑣(𝑡) curve at different 

pressures for a single experiment and 1.5% after testing the reproducibility in air of a blunt 

end precision needle (Hamilton). The physical model was also developed in order to establish 

the evolution of the mean volumetric flow rate of the drop as a function of the applied 

pressure. As expected for drop sizes close to the capillary length, the model can predict the 

mean flow rate in perfect agreement with the experimental data and offers accuracy ranging 

from 0.5 to 2% in the linear part of curves following a Poiseuille type law. Accuracy was 

reduced to 10% in the plateau where pressure measurement accuracy was poor. To conclude, 

the analytical model facilitates the design of miniaturized drip delivery systems with water or 
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aqueous mixtures and permits the control of standard capillary systems prior to their usage in 

vivo conditions.  
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Highlights: 

• Parametric growing drop model and mean flow rate of the drip at constant pressure 

• Simplified Laplace-Young equation extended to non spherical pendant droplets 

• Measurement of liquid surface tension by dripping with a camera and a capillary tip 

• Dispense tips for drop injection in the middle-ear cavity and drug delivery systems   

• Spherical drop shape modeling by video observations applied to elongated droplets 
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