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Abstract: The characteristics of foulant in the cake layer and bulk suspended solids of a 10 L
submerged anaerobic membrane bioreactor (AnMBR) used for treatment of palm oil mill effluent
(POME) were investigated in this study. Three different organic loading rates (OLRs) were applied
with prolonged sludge retention time throughout a long operation time (270 days). The organic
foulant was characterized by biomass concentration and concentration of extracellular polymeric
substances (EPS). The thicknesses of the cake layer and foulant were analyzed by confocal laser
scanning microscopy and Fourier transform infrared spectroscopy. The membrane morphology
and inorganic elements were analyzed by field emission scanning electron microscope coupled
with energy dispersive X-ray spectrometer. Roughness of membrane was analyzed by atomic
force microscopy. The results showed that the formation and accumulation of protein EPS in the
cake layer was the key contributor to most of the fouling. The transmembrane pressure evolution
showed that attachment, adsorption, and entrapment of protein EPS occurred in the membrane
pores. In addition, the hydrophilic charge of proteins and polysaccharides influenced the adsorption
mechanism. The composition of the feed (including hydroxyl group and fatty acid compounds)
and microbial metabolic products (protein) significantly affected membrane fouling in the high-
rate operation.

Keywords: anaerobic membrane bioreactor (AnMBR); wastewater; biofouling; protein; EPS

1. Introduction

Alternative energy sources are widely promoted for sustainable development, in-
cluding in wastewater treatment. The palm oil industry is one of the industries that can
practice effective energy recovery from its waste and wastewater [1,2]. Palm oil mill ef-
fluent (POME) has a high potential for energy recovery due to its high chemical oxygen
demand (COD), which can be converted to biogas by anaerobic digestion [3–5]. POME has
high organic content, high organic loading rate (OLR), and high sludge concentration, all
of which enhance the potential for methane (CH4) production. To produce biogas from
POME, anaerobic membrane bioreactors (AnMBRs) have been proposed for their high
capacity and small footprint; however, membrane fouling, which causes permeate flux
decline, is a substantial limitation of the technique [6–8]. An understanding of fouling
mechanisms and foulant composition is important to effectively control high-rate AnMBR
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operation. Many researchers have studied fouling prevention strategies, such as air sparg-
ing [9] and filtration mode (relaxation) [10,11], among others. Fouling in a membrane
reactor unit can be categorized as either reversible or irreversible. Reversible foulants
include biomass, suspended solids, and inorganic precipitates, which form a cake layer
attached at the membrane surface. Reversible fouling can be prevented by controlling
hydrodynamic conditions or it can be removed by physical cleaning [11,12]. Irreversible
foulants, on the other hand, are produced by microbial products, such as extracellular
polymeric substances (EPS) forming a gel layer, and soluble microbial products (SMP) ac-
cumulating on the cake layer or in the membrane pores [12,13]. Irreversible fouling can be
removed by chemical cleaning [11]. A substantial amount of research has evaluated fouling
behavior in AnMBR, with different operational conditions affecting cake layer formation,
EPS and SMP, and inorganic precipitates [13–18]. The operational conditions, especially
the OLR, can affect microbial production, biomass concentration, and EPS concentration.
The fouling of AnMBR in low-strength wastewater and/or at low-rate loading has been
observed in many studies. For example, when an AnMBR was operated for a long term
in a low-rate condition, the EPS concentration significantly increased with the increase in
OLR [15]. High OLR also induced cake layer formation, which increased transmembrane
pressure (TMP) due to high filtration resistance. The addition of biochar to reduce fouling
propensity has been proposed as a solution. The addition of biochar resulted in less cake
layer formation, as confirmed by confocal laser scanning microscopy (CLSM) and energy
diffusive X-ray (EDX) analysis [18]. Under medium to high OLR, EPS accumulation in the
cake layer has been shown to contribute most to system fouling, as confirmed by scanning
electron microscopy (SEM), EDX, Fourier transform infrared (FTIR) spectroscopy, CLSM,
zeta potential, roughness, and contact angle [13]. In addition, a higher OLR can cause
EPS to be more viscous and hydrophobic, which makes it adhere easily to the membrane
surface [14]. The effects of OLR on fouling have also been confirmed when using a ceramic
membrane in AnMBR. During high-loading leachate wastewater treatment, fouling was
affected by OLR > mixed liquor suspended solids (MLSS) > EPS > SMP [17].

In this study, a fabricated polysulfone (PSf) hollow fiber membrane was used for
POME treatment by AnMBR. The cake layer and bulk suspension were characterized by
FTIR, CLSM, roughness, and field emission scanning electron microscopy (FESEM) coupled
with energy dispersive X-ray spectrometer (EDS) to observe and evaluate the fouling under
high-rate conditions to understand the fouling composition and mechanisms over a long
operation period.

2. Materials and Methods
2.1. Materials

POME and sludge samples were collected from a palm oil factory in Surat Thani,
Thailand. The characteristics of POME, including pH, temperature, total COD (TCOD),
soluble COD (SCOD), total solids (TS), volatile solids (VS), suspended solids (SS), and
volatile suspended solids (VSS), were analyzed after acid fermentation to remove fat, oil,
and grease (FOG) and large particles in wastewater (Table 1). The POME had high organic
strength with TCOD and SCOD of 242 and 107 g/L, respectively. The TS was 18.5 g/L,
while VS was 10.3 g/L. Thus, a large fraction of the solids was volatile. The SS and VSS
were 8.9 and 3.2 g/L, respectively.

Table 1. Characteristics of palm oil mill effluent (POME) after pretreatment.

Parameter pH Temp. TCOD SCOD TS VS SS VSS
(◦C) (g/L) (g/L) (g/L) (g/L) (g/L) (g/L)

Pretreated POME 5.11 35 242 107 18.5 10.3 8.9 3.2
Note: total chemical oxygen demand (TCOD), soluble COD (SCOD), total solids (TS), volatile solids (VS),
suspended solids (SS), and volatile suspended solids (VSS).
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The inoculum sludge was analyzed following standard methods [19]. The initial
concentrations of MLSS and mixed liquor volatile suspended solids (MLVSS) were 32.57
and 26.10 g/L, respectively.

2.2. Membrane Production and Characteristics

Polysulfone resin (19 wt%), polyvinylpyrrolidone K30 (2 wt%), and propylene glycol
(PEG, 4 wt%) were dissolved in N-Methyl-2-pyrrolidone (NMP) at approximately 70 ◦C for
about 5 h to form a homogeneous dope solution. Then, the dope solution was transferred
into a polymer dope tank and kept overnight at 40 ◦C to eliminate the air bubbles formed
during stirring and pouring. The degassed dope solution was used to fabricate polysulfone
hollow fiber membranes (PSf) through a dry–wet spinning process. Distilled water and
tap water at room temperature were used as bore fluid and coagulant, respectively. The
dope solution and bore fluid (water) were pressurized by nitrogen gas through a spinneret,
with an outer tube diameter of 1.06 mm and inner tube diameter of 0.66 mm, to from
a coagulation bath of water. After separation and solidification, the membranes were
collected by a roller. The obtained membranes were immersed in water over 3 days to
completely remove the NMP used in the membrane fabrication. Next, the membranes
were immersed in 10% aqueous glycerine solution for 1 h to preserve the pore structure
during drying. The fabricated membrane had a molecular weight cut-off (MWCO) of
67 kDa. The virgin membranes were characterized for morphology, chemical composi-
tion, and roughness by FESEM with EDS (FEI/Apreo, Eindhoven, Netherlands), FTIR
(Vertex 70, Bruker, Germany), and atomic force microscope (AFM; Flex Axiom, Nanosurf,
Switzerland), respectively.

2.3. Experimental Setup and Operation of Anaerobic Membrane Bioreactor (AnMBR)

A schematic diagram of the AnMBR setup is presented in Figure 1. The AnMBR
consisted of a hollow fiber membrane module with total surface area of 0.025 m2 in a 10 L
reactor. The module was comprised of 65 membrane fibers, each 24 cm in length, and a
fiber outside diameter of 0.1 mm. The fibers were potted in a PVC module with epoxy resin,
and the module had a diameter of 0.6 cm. The PSf hollow fibers were fixed only at the
bottom. The module was operated in an outside-in flow regime under a vacuum pressure
in the range of 0.15–0.25 bar, which was supplied by a peristaltic pump (Masterflex, L/S,
Cole-Parmer, Chicago, IL, USA). The TMP at the head of the module was measured by
the vacuum pressure gauge, which had a similar set-up to a typical membrane bioreactor
operation [7,20]. The reactor was operated under a high OLR for 270 days. The overall
operation was broken into three 90-day periods, named periods I, II, and III, during which
the OLR was modified. The POME feed rate was controlled with a peristatic pump at 3, 4,
and 6.7 L/d for periods I, II, and III, respectively, which was equivalent to an OLR of 43,
57, and 99 kg COD/m3/d, respectively. At the end of each period, the membrane module
was removed and chemically cleaned before the next period. After sludge removal, the
fouled membrane from each period was collected for foulant characterization. The physical
backwash was set up under 0.5 bar for 1 h followed by the chemical cleaning [11]. The
chemical cleaning was achieved by soaking the physically cleaned membrane module in
1% acetic acid solution for 2 h, 1% NaOH for 2 h, and then 10% sodium hypochlorite for 2 h,
respectively. The prolonged sludge retention time (SRT) was operated without extraction.
However, small samplings were carried out for the purpose of this study.
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Figure 1. A diagram of the lab-scale submerged anaerobic membrane bioreactor (AnMBR).

2.4. Biomass Analysis

The biomass sample from the AnMBR system was measured for its MLSS, MLVSS,
and EPS concentrations. MLSS and MLVSS in the reactor were measured twice a week
using standard methods [19]. EPS solution was extracted from the bulk sludge suspension
according to Li et al. [21]. EPS samples were analyzed for protein concentration through a
modified Lowry method using a BSA standard [22] and for polysaccharide concentration
through the phenol sulfuric acid method with glucose as a standard [23].

2.5. Membrane Fouling and Characterization

The membrane filtration was operated under subcritical flux in the TMP constant
mode. The permeate flux and permeability rate were measured daily. To minimize physical
fouling, gas sparging was added at 1.25 ± 0.25 L/hr through a gas recirculation from the
AnMBR tank and internal liquid recirculation. At the end of each period, the foulants in
the reactor and at the membrane surfaces were analyzed and characterized, as follows.

• Organic fouling

The hollow fiber membranes in the AnMBR were cut into small pieces of 1 cm length,
and the biofilms (attached cells) were dyed with SYTO 9 for 30 min in the dark at room
temperature, in order to analyze the distribution of the bacterial cells [24]. Then, the
pieces of membrane sample were rinsed with 1 × phosphate buffer saline (PBS) solution
to remove excess dye and were incubated for 30 min in the dark, with a mixture of Sypro
Orange (green) and Con A Alexa (red). The green represents the total proteins and the
red represents polysaccharides, respectively [25]. After that, the membrane samples were
rinsed by 1 × PBS solution to remove excess dye from the membrane. The small membrane
pieces in the transverse direction (20 mm thick slices) at −20 ◦C were examined immediately
using CLSM (Fluoview FV300/Olympus, Tokyo, Japan). The functional groups of foulants
on the membrane surface and the freeze-dried EPS were analyzed with FTIR.

• Inorganic fouling

The membrane preparation was conducted following a procedure reported by Kaya
et al. [13]. The membrane morphology and inorganic foulants were characterized by
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FESEM (FEI/Apreo) coupled with EDS (Oxford). The roughness of virgin and fouled
membranes were analyzed by AFM (Flex Axiom, Nanosurf, Switzerland).

3. Results
3.1. The Relationship of Biomass and EPS

The average of MLSS concentrations during periods I, II, and III were 39.51 ± 2.49,
38.04 ± 1.12, and 36.71 ± 1.17 g/L, respectively. As the OLR in each subsequent period
was increased by increasing the feed flow rate, higher concentrations of biomass in the
reactor were achieved. In this experiment, a small fraction of biomass was lost as the
membrane module was removed from the reactor for chemical cleaning between each
period of the experiment. The average EPS concentration was around 166.02, 177.27, and
193.15 mg/L for periods I, II, and III, respectively. Protein made up a large fraction of EPS
(77–79%), as shown in Figure 2a. The EPS concentration was not correlated to the biomass
concentration, but EPS content increased with the increase in OLR in the reactor. The
increase in OLR may have promoted sludge aggregation [26,27]. As shown in Figure 2a,
high concentrations of protein were produced rather than polysaccharide. Consistent
with this result, a previous study reported that protein had a low first-order kinetics
constant (k) compared to polysaccharide. Thus, the increase in SRT can promote greater
protein concentration in the biomass, rather than polysaccharide [28]. Biomass-associated
product (BAP) formation in the EPS was shown [14,29]. From Table 2 and Figure 2b,
the specific EPS was correlated to the average HRT, which agreed well with the results
obtained by Santos et al. [29]. The increase in HRT enhanced the degradation of persistent
organic substances in high OLR. The ratio of polysaccharine/protein (C/P) ratio was
between 0.26–0.28, which was in a similar range to previous studies [21,29]. In addition,
the specific protein concentration in EPS increased exponentially, while the polysaccharide
increased linearly. A previous study has observed this trend [14]. Increasing feed rate
and microorganism concentration caused an increase in C/P. The F/M ratio was higher
than 2.5 for high OLR—a finding also confirmed in previous research [30], in which the
EPS concentration decreased as F/M decreased. The production of EPS from biological
metabolism was conclusively dependent on feed condition, F/M ratio, and HRT.
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Figure 2. EPS characteristic: (a) composition and (b) specific EPS content as a function of HRT.

3.2. Membrane Filtration Performance

The filtration performance was assessed at different OLRs. Meanwhile, the internal
recirculation rate with gas sparging was used to inhibit particle accumulation. According
to the operational conditions, the average flux was 2.00, 2.04, and 2.02 L/m2/h during
periods I, II, and III, respectively (Figure 3a). The obtained flux slightly fluctuated at
the beginning of the experiment with the controlled TMP lower than 0.3 bar to prevent
membrane deformation. Then, the TMP and permeability slightly increased in the middle
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period and gradually increased until 0.25 bar was reached. The operation of each period
was stopped when the final permeate flux was as low as 1.85 L/m2/h. Critical flux control
and internal recirculation were used to induce shear stresse on the membrane surface
to minimize particulate fouling. An accumulation of suspended solids in the reactor
increased the viscosity of the supernatant. The high rate of recirculation was intended
to avoid clogging and accumulation of solids. The control of hydrodynamic conditions
by internal recirculation and the critical flux control can prolong the membrane filtration
period, resulting in less frequent cleaning [15,31,32].

Table 2. EPS substances and fouling parameters evaluated for each OLR.

Period
OLR

(kgCOD/m3 × d) HRT (d)
EPS (mg/g MLVSS) CLSM Thickness (µm) TMP Rate

(bar/d)Polysaccharide Protein C/P Polysaccharide Protein

I 43 13 3.26 ± 0.13 11.91 ± 0.77 0.27 10.16 ± 2.33 10.74 ± 2.91 0.191 ± 0.017

II 57 10 2.41 ± 0.25 8.57 ± 0.94 0.28 15.34 ± 2.97 17.52 ± 3.99 0.195 ± 0.017

III 99 6 1.58 ± 0.17 5.99 ± 0.66 0.26 16.24 ± 2.74 157.56 ± 81.46 0.192 ± 0.016
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OLR increased and HRT decreased from period to period, while TMP rate (dP/dt)
was nearly equal (Table 2). Within each period, the TMP increased due to the increase in the
resistance of membrane (Figure 3). As TMP increased, the concentration polarization and
the number of collisions between particles increased. The increasing pressure also forced the
particles to approach the membrane pores, thus inducing pore blocking after cake formation.
Also, the EPS accumulation in the cake layer could have been released into the pore, causing
pore blocking. High EPS concentration is an indication of biopolymers attached to the
membrane surfaces, which also increases membrane resistance [29], especially in period
II (Figure 3).

The higher OLR induced an increase in F/M ratio (Figure 3b) and a decrease in
specific EPS in the system (Figure 3c). The average F/M ratio was 2.0, 3.2, and 5.5 g COD/g
MLVSS/d. The MLSS concentration varied similarly to the F/M ratio and TMP. Once MLSS
reached the critical concentration of 40 g/L, it caused TMP to rise rapidly. This jump in
TMP was caused by a strongly attached cake layer on the membrane surfaces. On the other
hand, for period II, the MLSS concentration did not change, but the TMP jumped at day
159. This result indicated that, not only was TMP affected by MLSS, but also affected by the
composition of the colloid or supernatant in the reactor. The TMP result agreed with EPS
characterization results (Figure 2), in which the concentration of polysaccharide remained
unchanged but proteins increased with time. There is a possibility that the increment of
cake layer was related to increasing EPS. The greater protein concentration in the EPS
resulted in greater fouling behavior in AnMBR. Many studies have reported that protein,
rather that polysaccharide, was the main contributor to membrane fouling [17,18]. In
addition, the increase in OLR rather than EPS production significantly affected fouling
and was associated with other operational parameters in AnMBR [17]. It should be noted,
though, that this study refers to a lab-scale implementation and, therefore, the critical
numerical values of MLSS must be verified in pilot- or field-scale plants.

3.3. Organic Foulant

CLSM
As seen in Figure 4, CLSM images illustrated the increasing spatial distribution of a

thick cake layer and the accumulation of microorganisms and EPS (in the form of protein
and polysaccharide). Moreover, as the OLR of the AnMBR reactor increased, the thickness
and the specific EPS also increased (Table 2). The thickness of proteins was higher than that
of polysaccharides. The spatial distribution of the protein showed that protein more easily
attached on the membrane surface than polysaccharide, due to the charge of the membrane
surface [17]. At the beginning, our study observed the attachment of a polysaccharide layer
followed by the deposition of protein on the cake layer. Matar et al. [25] observed similar
results that indicated that protein is a major biofoulant in EPS, as analyzed by CLSM. The
distribution of microbial flocs, mainly protein (green color in Figure 4), was clearly found
at the bottom of the membrane fibers. It can be concluded that fouling was caused by
adsorption of proteins, followed by a deposition of proteins on the membrane surface that
leads to the entrapment of proteins in the pores (as can be called pore blockages). The
accumulation of protein EPS in the biomass granule and at the membrane surface can occur
even under shear force at the surface due to increased gas sparging, demonstrating the
accumulation and attachment was caused by the surface charge interaction [33,34]. The
presence of proteins and polysaccharides in the hydrophilic fractions of organic substances
resulted in irreversible fouling of different membranes.
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FTIR
Summary of FTIR spectra peak assigned for the samples is showed in Table 3. The

FTIR spectra of the virgin membrane showed peaks at 3288 cm−1, 2964 cm−1,1584 cm−1,
1244 cm−1, 1115 cm−1, 832 cm−1, and 558 cm−1 (Figure 5a). These peaks were attributed
to aliphatic amide, O-S-O stretching, C-O-C stretching, C-C aromatic, and C-H stretching
of aromatic ring of PSf from the reaction of polymer chain [35]. The fouled membranes
had peaks at 1638 cm−1 and 1400 cm−1 that corresponded to protein EPS in amide I
functional group (peak 2) and amide II functional group (peak 3) (Figure 5a), which was
also observable in zone B of the EPS (Figure 5b). These peaks were caused by the formation
and release of biomass products on membrane surfaces [13]. Strong and high spectra were
observed in period II, which correlated to the higher concentration of biomass in the reactor.
On the contrary, the high OLR caused a high F/M ratio and induced the excretion of SMP to
be higher than EPS, which led to membrane fouling [30]. In addition, the polysaccharides,
which contain carbohydrates, presented a peak at 1040 cm−1 on fouled membranes. This
peak disappeared in EPS but clearly presented in the permeate, suggesting that a fraction
of polysaccharides can pass through the membrane. Once the biomass was attached to the
membrane surfaces, the cake layer and gel layer were formed, causing biofouling, especially
by proteins [25]. The FTIR spectra showed peaks at 3246 cm−1, 1597 cm−1, 1408 cm−1,
1255 cm−1, 1036 cm−1, and 610–870 cm−1 (Figure 5b). These peaks corresponded to
hydroxyl ions (O-H stretching), fatty acid and lipids (C-H linkage stretching), aliphatic
methylene groups [36], nitrogen compound (C=N stretching), lignin [37], C-O stretching of
polysaccharides, phosphorus compounds (P=O stretching), short C chains (humic acids),
and inorganics (Si-O complex), respectively [36–38]. Moreover, the peak at 1231 cm−1 that
was assigned to the stretching vibration of P=O in POME disappeared in EPS, but it was
observed at low intensity on the fouled membrane surfaces. The absence of a P=O peak
has previously been attributed to mineral complexes and phosphorus precipitation on
membrane surfaces [39]. The presence of inorganic peaks, silica complexes, and humic
acid formation [36] were found at the membrane surfaces, which will be discussed in the
inorganic foulant section. Moreover, the peak at 864 cm−1 (peak 7), which was related to
the stretching vibration of C–O–C from glycosidic bonds, was found in fouled membranes
and Zone C of the EPS.
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Table 3. Summary of FTIR spectra peak assigned for the samples.

Sample Wavelength (cm−1)

POME 3246, 1597, 1408, 1255, 1036, 610–870

Virgin membrane 3288, 2964, 1584, 1244, 1115, 832, 558

Fouled membrane 1638, 1400, 1231, 1040, 864

EPS 3285, 1638, 1400, 1231, 1040, 864
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3.4. Inorganic Foulant

FESEM
FESEM images of the top surface (Figure 6a) and cross-section (Figure 6b) of the

formed cake layer in the ultrafiltration hollow fibers in AnMBR showed that the top
surface of the virgin membrane was smooth and uniform, which indicated good fouling
resistance of the membrane [25,40]. The elemental composition of the virgin membrane
according to EDX was primarily C, O, N, and S (Figure 6c). Differences in the elemental
composition of the virgin and fouled ultrafiltration membranes collected from period I
(Figure 6f), period II (Figure 6i), and period III (Figure 6l) were observed. The elements
Na, Mg, and Si were present in the fouled membranes. The increase in C and O in the
fouled membrane implied that the bio-foulant (EPS) covered and interacted with organic
compounds on the membrane surfaces [25]. In addition, inorganic scaling on the fouled
membranes showed an increasing signal at Mg and Si peaks caused by the increasing
OLR. The increased signal at inorganic peaks can be attributed to the evidence presented
in FTIR (Figure 5). In addition to bio-foulants, inorganic scaling also induced fouling
behavior in the long-term operation of this lab-scale AnMBR used for POME treatment
under high OLR. The thickness of the cake layer formed on the membrane surfaces, which
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was calculated using the constant flux rate, differed according to the OLR. The thickness
of the cake layer was 1.067 ± 0.231 µm (Figure 6e), 8.431 ± 0.855 µm (Figure 6h), and
8.366 ± 0.599 µm (Figure 6k), respectively, for the three periods. The cake layer seemed
to be caused by the accumulation of microorganisms and their products. Microorganism
products, especially the inorganic compounds, interacted with increasing biomass on PSf
membrane surfaces. With a MLSS of 40 g/L, the morphology signified the most compact
cake layer at the highest OLR in period III (Figure 6k). The foulant layer was comprised
of both organic and inorganic substances and a dense and compressed sludge deposition.
The morphology and thickness of the foulant layer on the membrane surfaces impacted
the filtration performance, as a sudden increase in TMP was observed at the end of each
period (Figure 3).
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Figure 6. FESEM of the virgin membrane (a): top surface, (b): cross section, (c): EDX element), fouled membrane in period
I (d): top surface, (e): cross section, (f): EDX element), fouled membrane in period II (g): top surface, (h): cross section,
(i): EDX element), and fouled membrane in period III (j): top surface, (k): cross section, (l): EDX element).

Roughness of the Membrane
The surface probe micrograph (AFM) results indicated a typical morphology (hills and

valleys) for membranes (Figure 7). The top surface of the virgin membrane was smooth,
which minimized the possibility of solute molecules adhering on the membrane surface and
induced less fouling. The average roughness values of the virgin and fouled membranes
from period I, II, and III were 44.77, 50.08, 60.58, and 75.80 nm, respectively. The increase
in roughness indicated the propensity of pore plugging or fouling of membrane surfaces.
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The surface of the fouled membranes after the cake layer was removed showed an increase
in roughness with the increase in OLR. The EPS components filled the membrane pores
as a result of the increase in OLR [41]. The EPS indicated the release of microorganism
products that adhered in the membrane pores even though the cake layer was removed.
Furthermore, the hydrophilic property of the membrane surface gave it a tendency to
interact and form chemical bonds with EPS [7,14]. The membranes with smoothed surfaces
were less prone to fouling; therefore, flux decline over time was not observed in this study.
Previous studies [7,21,26,41] also reported that the loosely bound EPS had a large effect on
the membrane pores for adsorption and deposition of organic and inorganic compounds.
In addition, the EPS formation around the biomass granule induced the surface roughness
increase, especially at a high loading rate [33,34].
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4. Discussion

This study focused on evaluating fouling mechanisms and characterizing the foulants
that occurred on a lab-scale AnMBR used to treat POME. We found that the predominant
foulant was protein-EPS, which attached on the membrane surfaces through cake layer
formation. The FTIR spectra of the cake layer on the fouled membranes showed peaks at
1638 cm−1 and 1400 cm−1. The layer had a compact structure and was high in thickness of
the protein portion. The increase of surface roughness reduced the membrane hydrophilic-
ity (O-H stretching). The membrane hydrophobicity caused adhesion of protein molecules,
adsorption at the membrane surface, and entrapment within membrane pores, respectively.
The pore blocking mechanism occurred because of biofouling accumulation. The accumu-
lation of microorganisms and cake layer increased but EPS products decreased due to the
lower HRT. On the other hand, polysaccharides easily detached from the membrane as
a result of their hydrophilic properties and the control of hydrodynamic conditions with
internal recirculation. In addition, on the membrane surfaces, the cake layer was firmly
attached, as was scaling by silica complexes combined with humic acid. The scaling on the
fouled membrane was confirmed by EDX and FTIR results. These fouling mechanisms and
the behavior of foulants can be considered as a progression (Figure 8). The correlation of
fouling phenomena with TMP rising occurred over a 90-day period and could be broken
into three stages as follows:

(1) Stage I: initial fouling. The TMP slightly decreased over a short period during days
1 to 20, then a rapid increase of TMP occurred. During the initial decrease of TMP,
the flux increased and approached the critical flux (2.8 L/m2/h). After that, the cake
layer materialized. The flux decreased and reached the local flux instead, causing the
TMP to increase from 0.15 bar to 0.18 bar. The organic substances in the bulk feed
were the major foulants on membrane surfaces. During this stage, the effect of foulant
accumulation in the membrane pores (pore blocking) was minor.

(2) Stage II: intermediate adsorption fouling. From day 20 to 70, the TMP remained
constant at 0.20 bar. The cake layer was attached to the membrane surfaces, for
which EPS, especially proteins, was adsorbed on the surfaces. A fraction of EPS
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was accumulated in the membrane pores and was entrapped there by the charge
adsorption process.

(3) Stage III: cake and pore blocking. Day 71 onwards, the TMP had risen to 0.25 bar. A
dense cake layer accumulated at the surface, and pore blocking occurred simultane-
ously. In addition, adjacent to the cake layer, the bound EPS released and attached to
the membrane.
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Figure 8. Behavior of foulants in AnMBR for high-rate POME treatment.

Overall, this study presented insight into the effect of operational parameters on
fouling behavior in the lab-scale AnMBR during long-term operation. However, in order
to commercialize AnMBR for POME treatment in a full-scale operation, the reported
design and management results obtained need to be verified on larger-scale systems, and
pre-treatment to remove suspended solid may be needed to mitigate membrane fouling.

5. Conclusions

A high organic loading rate anaerobic membrane bioreactor was operated for 270 days
(considered a long operation period). Fouling mechanisms were investigated, providing
the following conclusion:

• The growing cake layer, which resulted from high OLR and high MLSS, initiated
biofilm formation on the membrane surfaces. The biofilm, in turn, bridged across the
pores, resulting in increased TMP.

• EPS accumulated on the cake layer and, thus, plugged the membrane pores. The foul-
ing from polysaccharide EPS can be mitigated by control of hydrodynamic conditions
using internal recirculation. Due to the charge on the surfaces and the interaction
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between proteins and the membrane surface, the removal of protein EPS fouling was
more difficult.

• The precipitation of inorganic compounds, silica, and phosphorus, also occurred in the
AnMBR system. These compounds were then attached to the cake layer and caused
membrane fouling.

Hence, in order for the lab-scale AnMBR to extend its operation time with high OLR,
the two following conditions must occur: MLSS must be lower than 40 g/L and the
internal recirculation must be higher than 1.25 L/d. High internal recirculation is needed
to create violent hydrodynamic turbulence and minimize fouling. Furthermore, to improve
the surface charge of the membrane (i.e., for fouling mitigation), future research should
focus on the modification of membrane surface properties to reduce the charge interaction
between foulants and membrane surfaces.
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