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Abstract: Reversible imine- and metal-coordination reactions are dynamic enough to produce com-
plex libraries of macrocycles, cages, and supramolecular polymers in solution, from which am-
plification effects have been identified in solution or during crystallization in response to ligand-
and metal-driven selection modes. Crystallization-driven selection can lead to the amplification of
unexpected metallosupramolecular architectures. The addition of Ag+ triggered the change of the
optimal components, so that the crystallization process showed different ligand preferences than
in solution. The most packed constituents are amplified in the solid state, taking into account the
optimal coordination of metal ions together with non-specific non-covalent interactions between the
macrocycle packed in dimers or trimers in the solid state.

Keywords: supramolecular chemistry; macrocycles; cages; dynamic chemistry; crystallization

Constitutional dynamic chemistry (CDC) [1–4] has emerged as a new adaptive approach
for the generation of emergent dynamic materials [2–9], molecular machines [10,11], bioactive
compounds [12,13], cages [14–16], knots [17], rotaxanes [18], metallodendrimers [19], and
macrocyclic [20] structures. Moreover, such dynamic systems can adapt under the influence
of internal or external stimuli such as pH (Figure 2c,d), temperature [21], light [22,23],
precipitation [24,25], and host enzyme [26,27] when optimal constituents can be selectively
formed and amplified as the best/fittest constituents from the multicomponent dynamic
library [28,29].

Among the different internal effectors, crystallization-driven selection can lead to out
of phase amplification of the most stabilized constituents in solid state [30–32]. However,
the out of equilibrium crystallization strategy has not been widely studied, probably due to
the facility of obtaining high quality single crystals or other solid-state species that can be
used for accurate structure determination.

Previously, we have reported the metal-driven single/double dynamic 3D cages
from imine-connected systems [33]. The discovery of the “Ag+-driven” selection of crys-
talline interlocked cages showed the artwork of unexpected topologically complex metallo-
supramolecular architectures from very simple starting components. Herein, we present
new results in the exploration of the crystallization-driven selection from dynamic libraries
with expanded components, from the combination of single imine/carbonyl-amine and
coordination bonds to dynamic covalent networks. More importantly, a comparison study
of the constituent selection between solution and crystal states and between the pres-
ence and absence of metal coordination phenomena has been carried out, leading to a
stimuli-induced switch of amplifications.

In order to establish dynamic systems for the purpose of crystallization-driven selec-
tion, different aldehydes A–C and amine 1–4 compounds (Scheme 1) were first screened for
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the possibility of forming single-crystals. from the solution of simple methanolic mixtures
of amine-aldehyde components.
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in methanol. When 2-(2-aminoethoxy)-ethylamine (1) was added in a ratio of 1:1 to react 
with A, a crystalline macrocycle A2·12 was formed (Figure 1a) with the absence of a metal 
cation. Meanwhile, with the presence of silver triflate (AgOTf), two types of crystals were 
simultaneously formed: a cage A6·16·Ag4 with three-layered macrocycles connected by 
four Ag+ metal ions (Figure 1b) and a metal-coordinated supramolecular polymer of exo-
coordinated macrocycles (A2·12·Ag2)n (Figure 1c). The unexpected formation of crystalline 
multi-layer and polymeric macrocyclic superstructures instead of simple metallo-macro-
cyclic monomeric structures can probably be attributed to the preferred four coordination 
numbers and to the adaptive chelating bonds for Ag+ with no Ag+-Ag+ contacts within the 
frameworks. In particular, the rarely seen metallosupramolecular polymeric macrocycles 
(A2·12·Ag2)n demonstrated the high structural diversity that can be discovered and pro-
vided by dynamic covalent chemistry.  

  

Figure 1. Crystal structures of macrocyclic (a) A2·12, metallosupramolecular macrocycles and cages 
(b) A6·16·Ag4, (c) (A2·12·Ag2)n, (d) A4·24·Ag2, (e) A3·32·Ag2, and (f) B2·42·Ag2. 

Scheme 1. Approaches to forming dynamic imine macrocycle or cage crystals from different dialde-
hyde A–C and amine 1–4 compounds with or without the presence of Ag+ metal ions.

Terephthaldehyde (A), for its good reactivity and linear structural geometry, was
chosen to interact with different diamine derivatives through imine formation reactions
in methanol. When 2-(2-aminoethoxy)-ethylamine (1) was added in a ratio of 1:1 to re-
act with A, a crystalline macrocycle A2·12 was formed (Figure 1a) with the absence of
a metal cation. Meanwhile, with the presence of silver triflate (AgOTf), two types of
crystals were simultaneously formed: a cage A6·16·Ag4 with three-layered macrocycles
connected by four Ag+ metal ions (Figure 1b) and a metal-coordinated supramolecular
polymer of exo-coordinated macrocycles (A2·12·Ag2)n (Figure 1c). The unexpected forma-
tion of crystalline multi-layer and polymeric macrocyclic superstructures instead of simple
metallo-macrocyclic monomeric structures can probably be attributed to the preferred
four coordination numbers and to the adaptive chelating bonds for Ag+ with no Ag+-Ag+

contacts within the frameworks. In particular, the rarely seen metallosupramolecular poly-
meric macrocycles (A2·12·Ag2)n demonstrated the high structural diversity that can be
discovered and provided by dynamic covalent chemistry.
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Figure 1. Crystal structures of macrocyclic (a) A2·12, metallosupramolecular macrocycles and cages
(b) A6·16·Ag4, (c) (A2·12·Ag2)n, (d) A4·24·Ag2, (e) A3·32·Ag2, and (f) B2·42·Ag2.

When the compound diethylenetriamine (2) was mixed with dialdehyde A in a ratio
of 1:1, no crystal was detected without the presence of the metal cation, leaving only
a cyclic imine product formed in solution. With the addition of Ag+, interestingly, the
formed crystal A4·24·Ag2 was a cage (Figure 1d) constructed of double-layer macrocyclic
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dimers instead of a polymeric-layered one. The Ag+ metal ions are four-coordinated by
diethylenetriamine arms from two neighboring macrocycles.

By expanding the structure of the amine part from 2D to 3D, tris(2-aminoethyl)-amine
(TREN) 3 was chosen to react with dialdehyde A and AgOTf, in a ratio of 3:2:2 and the
crystal structure of cryptand A3·32·Ag2 was obtained (Figure 1e), with four nitrogen atoms
in each TREN molecule to coordinate with Ag+ metal ions. The narrow-shaped structure
with high atom density on each end and three aromatic rings in the middle gave very little
space inside the cage. As a result, this very compact monomeric structure is the only one
amplified in the solid state and no other polymeric crystal packing structures with a higher
degree of complexity were detected during the crystallization process.

Efforts to increase the chain length by using 2,2′-(ethylenedioxy)-bis(ethylamine) 4 as
the diamine to react with dialdehyde A did not result in the formation of any exploitable
single-crystal formation, with or without the presence of Ag+. On the other hand, isoph-
thalaldehyde (B) led to macrocycle crystals B2·42·Ag2 upon interaction with diamine 4,
together with AgOTf (Figure 1f). The reason for the unique formation of the macrocycle
between B and 4 can be attributed to the asymmetrically distributed aldehyde groups in B,
which provided the possibility for the long-chain diamine 4 to naturally expand between
the twisted two aromatic rings and the formation of two O2N2 macrocycles coordinating
the Ag+ metal ions on two inner coordinating sites. However, no crystals were further
obtained by mixing dialdehyde B with amine compounds 1, 2, or 3, even with the coordi-
nation possibilities with Ag+, probably due to the steric hindrances from meta-positioned
dialdehyde when mixed with short-chain amines.

So far, by one-to-one mixing of each aldehyde and amine compound, distinct crystal
structures have been obtained and amplified through the out-of-phase crystallization-
driven selection. Within this type of dynamic systems possessing the possibility of forming
various formats of the products, including macrocycles, cages, and polymers, the obtained
results have already demonstrated the high selectivity and screening efficiency of the
crystallization-driven process. Furthermore, we would like to push the dynamic adaptive
selection to a library scale by expanding the system with the addition of more starting
components, for example, other aldehyde or amine compounds, together in one pot.
However, due to the requirement for a certain degree of purity during the crystallization
procedure, the size of the dynamic libraries has been limited.

Thus, we established two small dynamic libraries that were examined with or with-
out the presence of Ag+. The reactivity of different diamines or aldehydes in solution
and the competitive crystallization ability in each dynamic library can be screened with
proper references:

- L1: dialdehyde A with diamines 1 and 2;
- L2: diamine 1 with aldehydes A and C.

The first library, L1, was generated by mixing A, 1, and 2 in a molar ratio of 1:1:1. For
analysis, the reaction in solution was followed by 1H-NMR while the crystals were collected
and compared to the parameters of each possible crystal, respectively. In the absence of Ag+,
an excess of complex A·2 was found in solution slowly exchanging with low-concentrated
homocomplex A·1 and heterocomplex A·1·2 (Figure 2b), while no crystal formation was
detected from these mixtures. After the addition of Ag+, complex peak patterns could be
identified from the NMR spectra, reminiscent of fast and low exchange species present in
solution. Interestingly, homocomplex A·1·Ag+ species could be easily identified in solution,
although with a low conversion, while the A6·16·Ag4 cage was selectively formed in a solid
crystalline state.
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Figure 2. (a) Schematic presentation of a selection from the dynamic library L1 containing dialdehyde
A and amines 1 and 2. 1H-NMR spectra of L1 (b) with the absence and (c) with the presence of Ag+.

Then, a second library L2 containing dialdehyde A, 1,3,5-positioned trialdehyde C, and
diamine 1, in a ratio of 3:2:3, was established. The same analytical methods as 1H-NMR and
X-ray crystallography were adopted to monitor the dynamic systematic screening processes.
We previously reported that trialdehyde C reacting with diamine 1 generates a cage of
C2·13 or an interconnected cage metallosupramolecular Ag+ polymer (C2·13·Ag2)n. [16].
As a result, in the absence of Ag+, the A·1 complex was preferred to be formed in the
mixture, with a lower amount of C·1 shown in the 1H-NMR spectra (Figure 3b); meanwhile,
crystal C·1 was detected out of solution as well. On the other hand, with the presence of
Ag+ to coordinate and stabilize the imine products, the C·1·Ag complex was selectively
produced in solution, while only the A6·16·Ag4 cage crystal was collected in solid state.
These are very interesting results, since not only did the addition of Ag+ trigger the change
of the optimal components, but also the crystallization process showed different ligand
preferences than in solution (More detailed data see in supplementary materials).
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Figure 3. (a) Schematic presentation of selection from a dynamic library containing dialdehyde A,
trialdehyde C, and amine 1. 1H-NMR spectra of L2 (b) with the absence and (c) with the presence
of Ag+.

In conclusion, we discovered new Ag+ coordinated imine crystals from simple dialde-
hyde and amine compounds, which led to macrocycle crystal structures, cages of two- or
three-layer macrocycles, and even supramolecular polymers. Among the various complex
possibilities, the out-of-phase amplification has again proved the amplification effect of
imine-connected systems. Furthermore, the dynamic libraries have been generated by
mixing more than one aldehyde or amine compound in one system. The resulted change
of constituent selection upon addition of Ag+, or by comparing chemical distribution in
solution and solid states, has fully exemplified the adaptivity of dynamic systems towards
different internal structural constraints.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemistry4040084/s1, Figure S1: 1H NMR spectrum of
crystal A2·12. Figure S2: 1H NMR spectrum of crystal A6·16·Ag4. Figure S3: 1H NMR spectrum of
crystal A4·24·Ag2. Figure S4: 1H NMR spectrum of crystal A3·32·Ag2. Figure S5: 1H NMR spectrum
of crystal B2·42·Ag2. Figure S6: Full 1H NMR spectra comparison for dynamic library 1, containing
dialdehyde A and amine 1 and 2, with or without the presence of Ag+. Figure S7: Full 1H NMR
spectra comparison for dynamic library 2, containing dialdehyde A, trialdehyde C, and amine 1, with
or without the presence of Ag+. Table S1: Crystallographic data. References [34–38] are cited in the
supplementary materials
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