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Abstract
The movement of animals is a central component of their behavioural

strategies. Statistical tools for movement data analysis, however, have
long been limited, and in particular, unable to account for past move-
ment information except in a very simplified way. In this work, we pro-
pose MoveFormer, a new step-based model of movement capable of learn-
ing directly from full animal trajectories. While inspired by the classical
step-selection framework and previous work on the quantification of un-
certainty in movement predictions, MoveFormer also builds upon recent
developments in deep learning, such as the Transformer architecture, al-
lowing it to incorporate long temporal contexts. The model predicts an
animal’s next movement step given its past movement history, including
not only purely positional and temporal information, but also any avail-
able environmental covariates such as land cover or temperature. We ap-
ply our model to a diverse dataset made up of over 1550 trajectories from
over 100 studies, and show how it can be used to gain insights about the
importance of the provided context features, including the extent of past
movement history. Our software, along with the trained model weights,
is released as open source.
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1 Introduction
The movement of animals is a central component of their behavioural strategies
to best exploit the landscape they live in, to find a mate or to avoid preda-
tors, for instance. The role that these movements have beyond the individual,
for instance in shaping animals’ ecosystem impacts, is clear. Accordingly, and
thanks to the technological developments that are allowing to collect more de-
tailed movement data on more individuals and species each day, the study of
animal movement has become an important goal of ecology [1].

For a long time, however, statistical tools to analyze movement data were
lacking or limited. Over time, though, purely pattern-based descriptions (e.g.
home-range analyses) have been complemented by regression models allowing
to infer the effects of spatio-temporal features on movement. Step-selection
function (SSF) models, which compare actual movement steps with realistic
candidate ones, are one of such models and have de facto become the established
approach to analyse animal trajectories [2–4]. They are now routinely used to
infer and quantify the effect of environmental variables such as, for instance,
land cover or temperature.

However, an animal’s movement is likely to be driven not only by spatio-
temporal environmental features, but also by some internal knowledge and rules
that are unobservable directly. The importance of memory and of an animal’s
familiarity with places is increasingly recognized [5–7], and familiarity is usu-
ally incorporated into SSF models using a previously visited yes/no variable,
or a time-spent variable, often calculated over an arbitrary time window [8, 9].
Memory of places and their characteristics can also lead to routine movement
behaviours. Traplining, in which an individual travels to the same places in the
same order, is rare, but it is clear from visual inspection of animal trajectories
that many animals display some form of routine movement behaviours. But
for traplining, which has received a lot of interest, the study of routine move-
ment behaviour has remained extremely limited [10]. Riotte-Lambert et al. [11]
showed how conditional entropy, calculated using the information on visits to
patches, could be used as a metric of routine in movement. That metric has
not been used much since then, possibly because the need to determine sites
may render its application difficult on data collected in nature, where patches
can be difficult to determine, be diffuse, or not exist at all. Further work is
needed to describe and explain routine movements, which result from the in-
teraction between memorized knowledge, movement rules and environmental
context. Additionally, we are not aware of any work that has focused on how
to incorporate complex information about past movement and environmental
context into predictive models of animal movement, although it should, by def-
inition, improve predictions. The question: ‘To what extent past movements
inform where an animal is likely to go next?’ remains open.

The classic implementation of the SSF framework appears unsuitable to
address this difficult question. We therefore developed a new type of model that
we named MoveFormer. We conserved the conceptual attractiveness of SSF, but
built on the most recent developments in deep learning to embed the information
about current and past animal location, movement and environmental context.

Our contribution is threefold. First, we propose a model that learns to best
predict the next step of a movement trajectory based on a given context length,
i.e. a given time-window of information about the past. Second, the proposed
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approach is flexible enough to allow each step in the context to be defined not
only by the locations of the start and end points, but also by any kind of fea-
tures that could be relevant, in particular environmental variables. Third, we
show how the model can be used to gain insights about the importance of the
provided context, both in terms of the extent of the past that it is useful to
know, and in terms of what kinds of information are most ecologically relevant
to predict an animal’s movement. We demonstrate this by comparing the pre-
dictions, via information-theoretic metrics and prediction accuracy, for different
context lengths or with randomized features. Model training and analyses are
conducted on a dataset made up of over 1550 trajectories from over 100 studies,
encompassing various species within mammals, birds and reptiles.

The MoveFormer source code, including code for data pre-processing and
evaluation, as well as complete hyperparameter settings, is available online.1
We also release the weights of the trained models.2

2 Data
In this section, we describe our sources of data, specifically: movement data (tra-
jectories consisting of latitudes, longitudes and timestamps), geospatial variables
(associated with locations), and taxonomic classification information (associated
with each animal).

2.1 GPS location data
Our main source of location data is Movebank3 [12], an online repository for
animal movement data. The location data in Movebank is presented as lati-
tude/longitude pairs along with UTC timestamps and is grouped into trajecto-
ries (deployments) and associated with (occasionally missing) metadata such as
a taxon name, sex, and date of birth. We used the Movebank API to retrieve
data from GPS sensors for all 269 studies that were available4 for download
under a Creative Commons5 license (CC0, CC BY and CC BY-NC), obtain-
ing 13 577 trajectories comprising a total of 197 million observations (location
events). We subsampled the trajectories (splitting them into segments when
necessary) so that observations occur at midnight and at noon (according to lo-
cal mean time) with a tolerance of ±3 h and so that the time difference between
consecutive observations is 9 to 15 h. We discarded trajectory segments shorter
than 120 observations, leaving us with 1440 trajectories from 98 different stud-
ies [13–165]. See Table 4 in the appendix for the full list of studies and their
licenses.

We added unpublished data from 4 more studies, collected by one of us
(S.C-J). These are GPS data from plains zebras and African elephants, col-
lected in Hwange National Park (Zimbabwe), and GPS data from plains zebras
and blue wildebeest, collected in Hluhluwe-iMfolozi Park (South Africa). After
subsampling and filtering as in the case of the Movebank data, we obtained 73
trajectories.

1https://github.com/cifkao/moveformer
2https://doi.org/10.5281/zenodo.7698263
3www.movebank.org
4as of 15 February 2022
5https://creativecommons.org/
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section #spec #ind #traj #obs
train 61 1383 2786 915618
val 17 53 133 50984
test 21 70 133 40334

class order #spec #ind #traj #obs
Aves 39 895 1915 640420

Accipitriformes 10 138 315 65189
Anseriformes 10 169 210 69386
Bucerotiformes 1 5 6 4448
Cathartiformes 1 12 34 8965
Charadriiformes 10 310 585 235722
Ciconiiformes 2 249 751 253541
Gruiformes 1 1 1 189
Passeriformes 1 3 3 474
Pelecaniformes 1 6 6 1764
Struthioniformes 1 1 1 221
Suliformes 1 1 3 521

Mammalia 15 439 845 290789
Artiodactyla 7 329 660 218698
Carnivora 6 41 51 12404
Perissodactyla 1 26 34 25582
Proboscidea 1 43 100 34105

Reptilia 6 58 116 40353
Testudines 6 58 116 40353

Table 1: Number of species, individuals, trajectories, and observations in each
section of the dataset, and a breakdown by taxa.

The final dataset contains about 1 million observations from 1506 individu-
als, grouped into 1513 trajectories with a median length of 408. We performed a
train/validation/test split, making sure that 1) the validation and test sections
contain only frequent species (with at least 10 members in the full dataset), and
2) each individual appears in exactly one split. Table 1 details the amounts of
data by section and by taxonomic classification and Fig. 1 shows the geograph-
ical distribution.

During training and evaluation, we additionally split each trajectory into
segments of lengthNmax = 500 and subsequently consider each of these segments
as a separate trajectory.

2.2 Taxon vectors
Each trajectory in our data is associated with a taxon name (most commonly
the animal’s species). To obtain a dense vector representation of the taxon,
we look up its Wikipedia article and retrieve the associated 100-dimensional
embedding vector from Wikipedia2Vec [166].

A property of Wikipedia2Vec is that embeddings of semantically similar
entities are placed close together in the embedding space. To illustrate that this
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Figure 1: The geographical distribution of the observations in the dataset.
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Figure 2: A PCA projection of Wikipedia2Vec embeddings of species, labeled
by class (left) and order (right).

extends, to some degree, to similarity between species, we display in Fig. 2 the
PCA (principal component analysis) projections of species embeddings, labeled
by higher taxonomic ranks. We also measured the cosine similarity between all
pairs of embeddings and found it to be correlated with the number of common
ancestors of the two species in the taxonomic hierarchy (Spearman ρ = 0.68).

Overall, the Wikipedia2Vec embeddings appear to meaningfully encode a
species’ position in the phylogeny. Hence, we speculate (though we do not test
this in the present work) that their inclusion in the model should help this model
to generalize to species that are not present in the training data, at least as long
as they are sufficiently similar to those that are.

2.3 Geospatial variables
The proposed model is powerful enough to account not only for each trajectory
intrinsic dynamics but also for any third-party additional information that may
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be available as covariates. In order to illustrate this, we augment each trajectory
data point with exogenous information. For each location, we retrieve the fol-
lowing geospatial variables, which could be ecologically relevant, from publicly
available raster data:

• 2009 Human Footprint, 2018 Release [167, 168] (resolution: ∼1 km); we
normalize the values between 0 and 1 and sample them with bilinear in-
terpolation;

• 19 bioclimatic variables from WorldClim 2.1 [169] (resolution: ∼1 km); we
standardize the values (zero mean, unit variance) and use nearest neighbor
interpolation;

• land cover classification (23 classes) from Copernicus Global Land Service,
version 3.0.1, epoch 2015 [170] (resolution: ∼100 m); we use a one-hot
encoding and nearest neighbor interpolation.

3 Model
Formally, we consider the dataset as composed of trajectories, where a trajec-
tory6 ξ1...N of length N consists of locations x1...N , corresponding to timestamps
t1...N , and any associated variables z1...N , i.e. ξn = (xn, zn, tn) as described
above. Our main goal is to estimate a model for the next-step prediction task,
i.e. for any given n ∈ {1, . . . , N}, predict the next location xn+1 from the tra-
jectory prefix ξ1...n and the next timestamp tn+1.

As a fundamental use case, we are interested in analyzing the effect of avail-
able past context on the prediction of xn+1. Specifically, for a varying context
length c ∈ {1, . . . , cmax} (where cmax is an arbitrary constant), we wish to study
the behavior of the prediction of xn+1 given ξn−c+1...n and tn+1. Hence, we are
in fact interested in a model accepting as input any trajectory segment of length
at most cmax, and predicting the next location.

We adopt a step-selection function modelling approach [2, 4], based on se-
lecting the end-point location of a step from a set of candidates. Specifically, for
a position n+1 within a trajectory, given an associated timestamp tn+1, a set of
candidate locations x(1...K)

n+1 and associated variables z(1...K)
n+1 , we are interested

in estimating a probability distribution over the candidates:

P
(
yn+1 = i

∣∣∣ ξ1...n, tn+1, x
(1...K)
n+1 , z

(1...K)
n+1

)
, (1)

where i ∈ {1, . . . ,K}.
We propose to model this distribution using a deep neural network, consist-

ing of a Transformer [171] encoder and a candidate selection module, as depicted
in Fig. 3. The role of the Transformer is to encode the trajectory up until posi-
tion n, i.e. ξ1...n along with the timestamp for the next observation, tn+1. The
candidate selection module then encodes each candidate x(i)

n+1 and employs an
attention mechanism to compute a probability distribution over the candidates.
The model is described in detail in Section 3.1, followed by our choice of input
representation in Section 3.2.

6We use ξ1...N as shorthand notation for the sequence ξ1, ξ2, . . . , ξN . Note that N may be
different for each trajectory in the dataset.
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ϕin
1 ϕin

2 ϕin
N−1· · ·

trajectory encoder
causally masked Transformer

h1 h2 hN−1

candidate selection module
softmaxi

(
q⊤

n k
(i)
n /

√
dsel

)
ϕ

cand,(i)
1 ϕ

cand,(i)
2 ϕ
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N−1

k
(i)
1 k

(i)
2 k

(i)
N−1

q1 q2 qN−1

Figure 3: The high-level architecture of MoveFormer. The input to the trajec-
tory encoder is a sequence of embedding vectors ϕin

1...N−1, each corresponding to
a different data point (location-timestamp pair) in the trajectory. The encoder
outputs a sequence of vectors h1...N−1; the causal masking in the encoder causes
each hn to encode only the inputs up to position n, i.e. ϕin

1...n. This representa-
tion is then fed to the candidate selection module, which uses it as queries in an
attention mechanism that assigns probabilities to different candidate locations.
Both the input embeddings ϕin

1...N−1 and the candidate embeddings ϕcand,(i)
n are

computed through embedding layers which are not displayed here but described
in Section 3.1.1.

In order to train and evaluate this model, we also need a way to generate
suitable candidate locations x(i)

n+1. We use a simple but general method em-
ploying quantile-based modelling of turning angles and movement distances, as
detailed in Section 3.3.

3.1 Step-selection model
3.1.1 Input embeddings

We build two sets of embeddings ϕin
n , ϕ

cand,(i)
n ∈ Rdemb , n ∈ {1, . . . , N − 1},

i ∈ {1, . . . ,K} such that:

• ϕin
n , input for the trajectory encoder, depends on xn−1, xn, tn, tn+1, zn;

• ϕ
cand,(i)
n , input for the candidate selection module, depends on xn, x

(i)
n+1, z

(i)
n+1.

The inputs are represented as collections of carefully engineered continuous and
discrete features that we will describe later (see Section 3.2). Missing (NaN)
values are replaced with a special embedding vector learned as an additional
parameter. In each case, we project each feature vector to a common embedding
space Rdemb , then linearly combine them (with different learnable coefficients in
each of the two cases).
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More precisely, for ϕin:

ϕin
n =

F∑
j=1

win,(j)
(
W (j)f (j)

n + b(j)
)
, (2)

where f (j)
n is the j-th out of all F feature vectors at step n, and the learnable

parameters are coefficients win,(j) ∈ R (we set win,(j) = 0 for features we do
not wish to consider), biases b(j) ∈ Rdemb and weight matrices W (j) ∈ Rdemb×dj .
The formula for ϕcand,(i)

n is analogous. As can be seen from Eq. (2), the chosen
method for constructing input embeddings allows features to have different di-
mensions and automatically projects them to the desired embedding dimension
(via W (j) and b(j)) before applying scaling through win,(j).

3.1.2 Trajectory encoder

The trajectory encoder is a Transformer encoder with causally masked attention.
It receives the embedding sequence ϕin

1...N−1 and outputs a sequence of vectors
h1...N−1 where hn is a representation of ξ1...n. The encoder does not use any
positional encoding in the conventional sense (encoding the indices 1, . . . , N−1,
as is commonly done in Transformers), but position information is conveyed by
the feature representations of the timestamps t1...N−1.

3.1.3 Candidate selection

The candidate selection module is used to select the next location out of a list of
candidates. We build upon the common approach that models the probability of
an individual being present at a given candidate location via conditional logistic
regression [3]; expressed in our notation:

exp
(
β⊤ϕ

cand,(i)
n

)
∑K

i′=1 exp
(
β⊤ϕ

cand,(i′)
n

) , (3)

where β is a parameter vector.
In this work, in order to incorporate the context representation computed

by the trajectory encoder, we replace the global parameter vector β with a
context-dependent query vector qn ∈ Rdsel , which is a linear projection of the
trajectory encoder output hn. We also do not use the raw candidate features
ϕ

cand,(i)
n but replace them with a key vector k

(i)
n ∈ Rdsel , which is computed

by concatenating the feature vector with the corresponding encoder output hn

and passing the result through a candidate encoder (a fully-connected network):
k

(i)
n = Ecand([ϕcand,(i)

n , hn]). Thus, we arrive at a dot-product attention mecha-
nism; scaling the dot products by 1/

√
dsel as in Transformer attention [171], we

have:

P
(
yn+1 = i

∣∣∣ ξ1...n, tn+1, x
(1...K)
n+1 , z

(1...K)
n+1

)
=

exp
(
q⊤

n k
(i)
n /
√
dsel

)
∑K

i′=1 exp
(
q⊤

n k
(i′)
n /
√
dsel

) . (4)
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During training, the first candidate location x
(1)
n+1 is taken as the true next

location xn+1; the rest of the candidates are randomly sampled around the
current location xn (we detail this process below). This allows us to define a
cross entropy loss, which we minimize through stochastic gradient descent using
the Adam optimizer:

L = − 1
N − 1

N−1∑
n=1

logK P
(
yn+1 = 1

∣∣∣ ξ1...n, tn+1, x
(1...K)
n+1 , z

(1...K)
n+1

)
(5)

3.1.4 Variable receptive field training

As mentioned above, we aim to evaluate our model on arbitrary trajectory
segments up to some maximum length cmax (this procedure is detailed below
in Section 4.1). As can be seen from Eq. (5), our model is effectively being
simultaneously trained on all prefixes of the trajectory ξ1...N . Hence, the model
is able to accept segments of variable length as desired, but being only trained on
trajectory prefixes may bias it, leading to incorrect predictions on segments that
are not prefixes. To alleviate this, we propose a training scheme that intervenes
on the attention weights to randomly vary the past context available for each
prediction.

In each training batch, we sample a random integer B uniformly from
{1, . . . , Nmax} and apply a block-diagonal attention mask to the attention ma-
trix (on top of the causal mask) with blocks of size B (with the last block trun-
cated if B ∤ N). As a result, the ranges of positions {1, . . . , B}, {B+1, . . . , 2B},
etc. are prevented from attending to each other, and the corresponding segments
are therefore effectively considered as separate trajectories.

3.2 Data representation
Let us now describe the feature mappings used for location and time, as well as
associated features.

3.2.1 Location

In the raw data, each location xn is represented as a GPS coordinate pair
(latitude, longitude). We represent it as a geodetic normal vector (n-vector)
ν(xn) ∈ R3.

Additionally, we encode the position relative to the previous location xn−1
as a movement vector µ(xn−1, xn) ∈ R2, obtained by computing the bearing
and distance from xn−1 to xn and converting them to cartesian coordinates.
We apply scaling to make the overall root-mean-square (RMS) of the norms of
movement vectors computed on the training dataset equal to 1.

Analogously, we encode each candidate location x(i)
n+1 as an n-vector ν(x(i)

n+1)
and as a movement vector µ(xn, x

(i)
n+1).

3.2.2 Time

We encode a timestamp tn as:
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• a 10-dimensional vector of sines and cosines with a period of 1 second, 1
minute, 1 hour, 1 day, and 1 tropical (solar) year, respectively, such that
their phase synchronizes on January 1st, 2000, at 00:00:00 UTC;

• sin(LMT/24 · 2π) and cos(LMT/24 · 2π), where LMT is the local mean
time (i.e. UTC adjusted by longitude) in (fractional) hours;

• 3 integer values (one-hot-encoded) representing the calendar month (0–
11), the day of the month (0–30), and the day of the week (0–6) in UTC.

We also encode the time difference w.r.t. the next timestamp tn+1 as a 12-
dimensional vector of sines and cosines with the same periods as above, plus
a period of 25 years. While this multi-scale encoding may not be necessary in
our case (where the time differences are between 9 and 15 h), we propose it as
a generic representation suitable for any time scale from seconds to years (and
hence for virtually all existing animal movement data).

3.2.3 Associated variables

For each input and candidate location, we retrieve and pre-process geospatial
variables as described in Section 2.3. We also include the taxon vectors (as de-
scribed in Section 2.2) as an additional encoder feature vector for every element
of the input sequence.

3.3 Candidate sampling
We sample each candidate location x

(i)
n+1 as follows:

• we estimate the current bearing β of the animal from the positions xn and
xn−1;

• we independently sample a turning angle θ ∼ P̂ (θ) and a log-distance
log d ∼ P̂ (log d); β′ ← β + θ;

• we compute x(i)
n+1 by moving xn according to β′ and d.

P̂ (θ) and p̂(log d) are estimated on the training set as follows:

• We collect all turning angles from the training set and compute the quan-
tiles (estimated using linear interpolation) at 101 equally spaced points
0 = q0, q1, . . . , q100 = 1. We use them to construct the quantile function
of P̂ (θ) as a piecewise linear function with knots at q0, q1, . . . , q100.

• We collect the natural logarithms of all non-zero distances between consec-
utive points in the dataset; we construct the quantile function of P̂ (log d)
analogously.

We sample from each distribution by drawing a sample from U [0, 1] and
passing it through the estimated quantile function; this is sometimes called the
increasing rearrangement [172].

In our experiments, we condition the distributions on the taxon, i.e. we
estimate a separate pair of distributions on the section of the training dataset
corresponding to each taxon.

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.05.531080doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.05.531080
http://creativecommons.org/licenses/by/4.0/


3.4 Implementation details and hyperparameters
Our implementation of MoveFormer, available as open source software,7 is writ-
ten in Python using the PyTorch framework8 and the x-transformers9 pack-
age. The code for efficient geospatial variable loading relies on the rasterio10

library and is released as a separate package, gps2var.11

The trajectory encoder is a 6-layer Transformer with 8 attention heads per
layer and a feature dimension of 128. The candidate encoder is a fully-connected
neural network with one hidden layer of size 256 and a GELU activation [173].
The candidate selection module has dsel = 128. The total number of param-
eters of the model is around 2.6 million – several orders of magnitude smaller
than current state-of-the-art Transformer language models, for instance, but
appropriate for the limited-size dataset that we are working with.

The Adam optimizer uses a learning rate of 5 × 10−5 with linear warm-up
and exponential decay. We train for 180 epochs with a batch size of 24, taking
7.5 h on a Tesla V100 GPU (note that GPU utilization was only about 20 % and
the performance bottleneck appeared to be the geospatial variable loading). We
validate on the validation set twice per epoch and use the checkpoint with the
lowest validation loss.

The complete hyperparameter settings are included with the source code.

4 Analysis methods
4.1 Context length analysis
Riotte-Lambert et al. [11] propose to use conditional entropy as a measure of
uncertainty in predicting the next location given the c previous locations. Specif-
ically, given a distribution P over sequences of locations, conditional entropy of
order c can be written as

Hc = −EP (s1,...,sc)[logP (sc+1 | s1, . . . , sc)], (6)

where P (s1, . . . , sc) is understood as the probability of c consecutive locations in
a sequence being equal to s1, . . . , sc, and P (sc+1 | s1, . . . , sc) as the conditional
probability of sc+1 immediately following the sequence s1, . . . , sc. Considering
this uncertainty measure as a function of the context length c, it may be used
to study routine movement behavior.

Riotte-Lambert et al. [11] work with a finite set of discrete locations, allowing
them to evaluate the expression (6) empirically on a given trajectory. However,
the probability estimates quickly become unreliable with increasing c due to
data sparsity. Moreover, the method is inapplicable when locations are unique,
as in our case.

We propose an alternative way, which is to approximate logP using a suit-
able machine learning model (e.g. our proposed step selection model), so that

7https://github.com/cifkao/moveformer
8https://pytorch.org/
9https://github.com/lucidrains/x-transformers

10https://github.com/rasterio/rasterio
11https://github.com/cifkao/gps2var
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Eq. (6) becomes cross entropy computed on trajectory segments of appropriate
length. In our case:12

Hc ≈ −
1

N − 1

N−1∑
n=1

logK P
(
yn+1 = 1

∣∣∣ ξn−c+1...n, tn+1, x
(1...K)
n+1 , z

(1...K)
n+1

)
= − 1

N − 1

N−1∑
n=1

logK P (yn+1 = 1 | ψn,c),

(7)

where we collapse all the conditioning variables to ψn,c for brevity. For more fine-
grained analysis, we may be interested not in the sequence-level cross entropy,
but rather in the “pointwise” values, i.e. − logK P (yn+1 = 1 | ψn,c).

More generally, we may alternatively choose to examine any metric that can
be computed from the probabilities. We adopt the relative entropy (also known
as the Kullback-Leibler divergence) of the prediction with the maximum context
length cmax with respect to the one at context length c (as proposed by Cífka
and Liutkus [174] in the context of causal language models for text):

DKL
[
P (yn+1 | ψn,cmax)

∥∥ P (yn+1 | ψn,c)
]

=
K∑

i=1
P (yn+1 = i | ψn,cmax) log P (yn+1 = i | ψn,cmax)

P (yn+1 = i | ψn,c) . (8)

Note that this metric does not depend on the ground truth location, but mea-
sures the amount of information gained by considering the maximal context
instead of the limited one.

4.1.1 Relevant context length

We may expect that there would be a critical context length C after which
the above metrics stop improving, as further extending the context does not
result in significant information gain. Similarly to Riotte-Lambert et al. [11],
we define the relevant context length Cm – for a given metric m – as the smallest
context length for which the metric reaches its optimum, with a 5% tolerance
for robustness to noise:

Cm = min
{
c : m(c)−minc′ m(c′)

maxc′ m(c′)−minc′ m(c′) ≤ 0.05
}
. (9)

4.1.2 Efficient evaluation

We now discuss how to efficiently compute the probabilities needed to calculate
the above metrics, following the procedure proposed for causal language models
by Cífka and Liutkus [174]. We may collect all the probabilities in a tensor
P ∈ RN×cmax×K such that

Pn,c,i = P (yn+1 = i | ψn,c). (10)

Observe that by running the model on a segment of the trajectory corresponding
to indices n, . . . , n+cmax−1 for a given n, we obtain all the values Pn+c−1,c,∗ for

12We use the number of candidates K as the base of the logarithm for consistency with
Eq. (5) and noting that this amounts to a multiplicative constant (1/ log K).
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c ∈ {1, . . . , cmax}. We may also notice that Pn,n,∗ = Pn,n+1,∗ = . . . = Pn,cmax,∗
for any n < cmax. Hence, we can efficiently fill in the tensor P using N runs of
the model on segments of length at most cmax.

4.2 Candidate feature importance
While the parameters of step-selection models fitted by conditional logistic re-
gressions or point-process models are directly interpretable [4], deep learning
models are known as “black boxes” that require special techniques to be inter-
preted post-hoc. A simple but popular technique [175, 176] is based on testing
the model on a dataset with the values of a given feature randomly permuted.
While aware of the caveats related to using this technique with correlated fea-
tures [177], we employ it here to demonstrate the possibility of interpretation,
and leave more advanced techniques for future work.

Specifically, we study how individual candidate features (components of
ϕ

cand,(i)
n ) influence the selection of candidates. We pick a feature (or a group

of features), and for every observation in the dataset, we randomly shuffle the
feature’s values among the K candidates (in contrast to Fisher et al. [176], who
shuffle values across the entire dataset). The aim is to make the feature com-
pletely uninformative while maintaining its values plausible in the given context.
We evaluate the model on both the permuted and the original dataset, and use
the difference in performance as a measure of the importance of the selected
feature.

5 Results
5.1 Validation
We evaluate the proposed model (here dubbed VarCtx) against variants to
serve as baselines:

• FullCtx is a variant without the variable receptive field training (see
Section 3.1.4);

• NoAtt is a model where all the attention layers are removed from the
Transformer encoder, so that information is not allowed to flow between
different positions in the sequence;

• NoEnc is a model where the Tranformer encoder is removed, i.e. we have
hn = ϕin

n .

Note that the last two variants have a receptive field of 1 (i.e. only the features
at position n are available for predicting the location at n + 1). To simulate
this for VarCtx and FullCtx in a comparable way, we test these in a regime
(denoted by +diag) where the attention matrices are restricted to an identity
matrix, i.e. each position can only attend to itself.

After running each of the above models on the test set, we compute the
following metrics:

• xent@16: cross entropy (Eq. (5)) computed with 16 candidates;

• xent@100: cross entropy computed with 100 candidates;
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model xent@16 ↓ xent@100 ↓ acc 1/16 ↑ acc 10/100 ↑
FullCtx 0.869 0.909 0.198 0.293
FullCtx+diag 0.990 0.998 0.102 0.157
VarCtx 0.847 0.894 0.221 0.323
VarCtx+diag 0.932 0.954 0.136 0.204
NoAtt 0.919 0.945 0.157 0.231
NoEnc 0.928 0.950 0.148 0.217

Table 2: Results for different variants of the model. FullCtx: trained on full
trajectories (max. length 500); VarCtx: trained with variable receptive field;
NoAtt: no attention layers; NoEnc: no encoder; diag: attention restricted
to diagonal matrix during inference. Xent: cross entropy (lower is better), acc:
accuracy (higher is better).

• acc 1/16: accuracy (i.e. how often the top scoring candidate is the ground
truth) with 16 candidates,

• acc 10/100: top-10 accuracy (i.e. how often the ground truth is among the
10 top scoring candidates) with 100 candidates.

The results, averaged over all trajectories, are presented in Table 2. We note
that the results are very consistent across all metrics, and we found all pairs of
metrics to be strongly correlated (Pearson ρ > 0.87, computed over all models
and trajectories).

Both FullCtx and VarCtx outperform the rest of the models, which
have a receptive field length of 1. This is evidence that providing past move-
ment as context is beneficial. Interestingly, VarCtx yields better results than
FullCtx, possibly because the variable receptive field training scheme effec-
tively makes the training data more diverse, alleviating overfitting.

We can also observe that the results of VarCtx+diag are closest to those
of the models trained with minimum context (NoAtt, NoEnc). This sug-
gests that the performance of VarCtx is not strongly degraded by limiting its
receptive field at test time (unlike that of FullCtx), validating our variable
receptive field training approach.

Finally, we noticed large performance differences between species. For the
VarCtx model, we calculated the average cross entropy for each taxonomic
order (see Table 3) and found that it tends to be lower (i.e. better) for orders
with a higher number of observations in the training set (Pearson ρ = −0.71).

5.2 Context length analysis
In this section, we demonstrate the ability to use the VarCtx to study the
dependence of the predictions on the length c of the available past context, as
described in Section 4.1. We set cmax = 200 and K = 16.

First, we display in Fig. 5 the average cross entropy and relative entropy as
a function of context length and by taxonomic order, and in Fig. 5 examples
for concrete observations, with the relevant context length C highlighted. We
observe that the best predictions tend to be achieved around context lengths
10–50, which corresponds to 5–25 days.
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class order xent@16 #train
Aves Accipitriformes 0.815 58 994

Anseriformes 0.827 64 008
Cathartiformes 1.057 8653
Charadriiformes 0.815 205 602
Ciconiiformes 0.697 237 304

Mammalia Artiodactyla 0.928 201 464
Carnivora 0.986 12 282
Proboscidea 0.980 24 870

Reptilia Testudines 0.998 34 577

Table 3: VarCtx validation cross entropies by taxonomic order, along with
numbers of observations in the training data.
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Figure 4: Metric value averages by context length and taxonomic order, com-
puted on the test set (only positions n > cmax = 200).

Apart from the clear inter-species differences in cross entropy already noted
in the previous section (Table 3), we also observe some differences in relative
entropy, though less marked. For example, while Ciconiiformes’ movements are
substantially easier (in terms of cross entropy) for our model to predict than
those of Anseriformes, both have a similar relative entropy profile, indicating
that the amount of information contributed by each time scale is similar for both
taxa. On the other hand, note that the flat relative entropy profile of Testudines
simply reflects a failure of our model to accurately predict their movements at
any time scale – as evidenced by the cross entropy values being close to 1 –,
which is possibly due to an insufficient amount of reptile training data.

Fig. 6 shows the distribution of the relevant context length C for each taxon
in the test set. There are apparent differences between taxa, but we also note
the large variability within each taxon that could be of interest in itself.
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Figure 5: Examples of metric values (pointwise, i.e. for a single observation
within a given trajectory) plotted as a function of context length. Top and
bottom correspond to different (random) positions within the same trajectory.
The red dot marks the relevant context length (where the metric reaches 5 % of
its min-max range).
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Figure 6: Relevant context length C by taxon, computed using cross entropy
and relative entropy (pointwise values, as shown in Fig. 5), respectively. The
black triangles indicate means.
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Figure 7: Candidate feature importances computed as differences between per-
formance (measured using negative cross entropy and accuracy with 16 candi-
dates) with and without permuted feature values. The plot shows the distri-
bution over test trajectories. The features are, from top to bottom: location
n-vector, movement vector, human footprint, land cover, and finally the 19 bio-
climatic variables (BIO1 to BIO19), first as a group and then each individually.

5.3 Candidate feature importance
We present in Fig. 7 the results of the feature importance experiment. Vector
features (location) are treated as groups; bioclimatic variables are tested both
individually and as a group.

The most important features found by this method are movement vector
and land cover, followed by human footprint. The bioclimatic variables appear
to have relatively low impact, with the most important ones being BIO2 (mean
diurnal range), BIO14 and BIO17 (both related to precipitation). Interestingly,
global location (represented as n-vectors) seems to be the least important fea-
ture, possibly because it is difficult to exploit for candidate selection compared
to the relative location information provided by the movement vectors.

Note that only candidate features ϕcand,(i)
n are tested here, and the results

do not say anything about the input (past observation) features ϕin
1...n. For

example, global location, which we found to be unimportant as a candidate
feature, may well turn out to be an important past context feature.
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6 Discussion
In this work, we propose a new model to learn from animal trajectories. Inspired
by the classical step-selection framework [2] and previous work on the quantifi-
cation of uncertainty in movement predictions [11], we designed MoveFormer,
a step-based model of movement that builds upon recent developments in deep
learning, such as the Transformer architecture. This allowed us to meet our
initial goal to endow the model with a unique ability to learn how past move-
ments influence current and future ones. Although this is an important question
in movement ecology, it has remained poorly addressed so far because classical
step-selection functions or other movements models are unable to account for
past information except in a very simplified way (e.g. by including a feature
indicating whether or not the animal has previously visited a given site).

An important contribution of this work is also to generalize the suggestion
of Riotte-Lambert et al. [11] to use conditional entropy calculated over visits to
discrete sites as a way to measure movement uncertainty. Although attractive,
the difficulty of discretizing trajectories to meaningful ‘sites’ has slowed down the
application of this idea. Here, we extend it to locations acquired in continuous
space and propose cross-entropy and relative entropy, estimated through the
movement model, as a more general approach. This allows to estimate the
relevant context length (‘relevant order of dependency’ in Riotte-Lambert et al.
[11]), i.e. the amount of the past that significantly improves the predictions
about further movements. We did so in this study, and to the best of our
knowledge, our study therefore provides the first estimation of how much of the
past one needs to know to improve predictions of animal movements.

Our results suggest that for most datasets, predictions are improved when
integrating the information from about a few days to two or three weeks before
the movement to be predicted. Why this is the case, and why these results
are broadly consistent between species, with possibly significant within-species
variability, remains to be investigated further as it was beyond the goal of this
methodological work. We note that, possibly, these results are affected by our
choice to alternate sampling at midnight and at noon and to limit the length
of trajectories to 500 locations, restricting the receptive field of our model to
about 250 days. This may have weakened or excluded the influence of migration,
which commonly leads to seasonal back-and-forth movement patterns and that,
when accounted for, could help improve predictions about future movements.

One obvious limitation of our approach is the data requirement. As with all
deep learning approaches, learning is limited by the data available in the train-
ing set, and enough data should also be available for validation and test sets.
The whole dataset we gathered here, despite being rather large (> 1500 trajec-
tories) compared to movement datasets currently analyzed in ecology, is likely
close to the minimal size required to obtain a robust model and avoid severe
overfitting issues. Currently, there are probably very few, if any, single-species
datasets large enough to fit this model. For this reason, we aggregated data from
numerous species; as a benefit, this allowed us to demonstrate that compara-
tive analyses could be conducted with the model, for instance by comparing the
distribution of relevant context lengths between species or higher-order taxa.

An important characteristic of the proposed approach is that the model not
only accounts for past movements to predict new ones, but can also account for
environmental predictors. First, this is crucial for realistic predictions, as the
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step-selection literature has well demonstrated that step selection by animals is
critically linked to habitats to be traversed or reached. Second, this allows to
evaluate the relative importance of predictors in improving predictions. Inter-
estingly, we found that purely relative positional information (movement vec-
tors) could be more important than environmental variables for future location
prediction. We tentatively suggest that this result might be linked to the fact
that most animals favor familiar places and by doing so restrict themselves to
well-established home-ranges [178]. We however also found, without surprise,
that among the environmental variables tested, land cover and human footprint
significantly affected animal movements [179].

To summarize, in the present work, we provide a new, state-of-the art model
to analyze and predict animal movement data. The novelty of the model lies in
the fact that it leverages the power of deep learning approaches and can account
for past movements in the predictions. However, we emphasize, and have shown
above, that the model is not only a tool for prediction, but can also be used to
test hypotheses about the intrinsic and extrinsic drivers of animal movements.
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A Appendix

Table 4: The list of all Movebank datasets used in this work.

446579 MPIAB Lake Constance Mallards GPS [13] CC BY
481458 Vultures Acopian Center USA GPS [14–17] CC BY
1764627 Kruger African Buffalo, GPS tracking, South Africa [18–21] CC0
2928116 Galapagos Tortoise Movement Ecology Programme [22–28] CC BY
2988333 Navigation experiments in lesser black-backed gulls (data from

Wikelski et al. 2015) [29, 30]
CC0

6770990 MPIAB PNIC hurricane frigate tracking [127] CC BY
7002955 HUJ MPIAB White Stork GSM E-Obs [128] CC BY
7431347 MPIAB Argos white stork tracking (1991-2018) [31] CC BY
8019591 Dunn Ranch Bison Tracking Project [129] CC BY
8849813 LifeTrack - Great Egrets [130] CC0
8863543 HUJ MPIAB White Stork E-Obs [131] CC BY
9493881 LifeTrack White Stork Uzbekistan [132] CC BY
9651291 Egyptian vultures in the Middle East and East Africa [32–35] CC BY
10157679 LifeTrack White Stork Tunisia [133] CC BY
10204361 Pandion haliaetus Osprey - SouthEast Michigan [134] CC0
10236270 LifeTrack White Stork Armenia [36–38] CC BY
10449318 LifeTrack White Stork Loburg [135] CC BY
10449535 LifeTrack White Stork Greece Evros Delta [36–38] CC BY
10449698 HUJ MPIAB White Stork GSM 2013 [136] CC BY
10596067 LifeTrack White Stork Moscow [36–38] CC BY
10763606 LifeTrack White Stork Poland [37] CC BY
14671003 Hooded Vulture Africa [137] CC BY
16880941 Turkey vultures in North and South America (data from Dodge

et al. 2014) [17, 39]
CC0

19411459 Movement ecology of the jaguar in the largest floodplain of the
world, the Brazilian Pantanal [40–45]

CC0

20202974 e-Obs GPRS Himalayan Griffon - Bhutan-MPIAB [46–49] CC BY
21231406 LifeTrack White Stork SW Germany [37, 38, 50, 51] CC BY
24442409 LifeTrack White Stork Bavaria [38, 50, 52] CC BY
69724677 FTZ Geese Wadden Sea [138] CC0
74496970 MPIAB white stork lifetime tracking data (2013-2014) [36, 37,

53]
CC BY

92261778 LifeTrack Whooper Swan Latvia [139] CC BY
133992043 Migration timing in white-fronted geese (data from Kölzsch et

al. 2016) [54, 55]
CC BY

173641633 LifeTrack White Stork Vorarlberg [50, 56] CC BY
178979729 Latham Alberta Wolves [57, 58] CC BY-NC
178994931 Peters Hebblewhite Alberta-BC Moose [59] CC BY
182746263 High-altitude flights of Himalayan vultures (data from Sherub

et al. 2016) [47, 49]
CC0

190490326 Movement strategies of Galapagos tortoises (data from Bastille-
Rousseau et al. 2016) [24, 26–28]

CC BY-NC

208413731 White-bearded wildebeest in Kenya [60] CC BY
209824313 Hebblewhite Alberta-BC Wolves [61, 62] CC BY
212096177 LifeTrack White Stork Oberschwaben [38, 50, 63] CC BY
217784323 Vultures Acopian Center USA 2003-2016 [16, 17, 64] CC BY
236953686 LifeTrack Ducks Lake Constance [140] CC0
329155299 Canada geese (Branta canadensis) [141] CC0
384868221 White-tailed Eagle Poland. [142] CC BY-NC
475878514 Coyote Valley Bobcat Habitat Connectivity Study [143] CC BY-NC
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Table 4: The list of all Movebank datasets used in this work. (Continued)

501787846 Aromas Hills Bobcat Habitat Connectivity Study [144] CC BY-NC
505156776 Graugans Zugverhalten Neusiedler See [145] CC BY-NC
560041066 Eastern flyway spring migration of adult white storks (data from

Rotics et al. 2018) [65, 66]
CC BY

604806671 MH_WATERLAND - Western marsh harriers (Circus aerugi-
nosus, Accipitridae) breeding near the Belgium-Netherlands bor-
der [67]

CC0

657674643 North Sea population tracks of greater white-fronted geese 2014-
2017 (data from Kölzsch et al. 2019) [68, 69]

CC BY

657965212 Pannonic population tracks of greater white-fronted geese 2013-
2017 (data from Kölzsch et al. 2019) [69, 70]

CC BY

672882373 Milvus_milvus_atlantismarcuard [146] CC BY-NC
673728219 NPS Dall Sheep in Yukon-Charley Rivers National Preserve

[147]
CC BY

736029750 ThermochronTracking Elephants Kruger 2007 [71, 72] CC BY-NC
892924356 Milvus migrans [148] CC0
897981076 Ya Ha Tinda elk project, Banff National Park, 2001-2020 (fe-

males) [61, 62, 73–78]
CC0

918219824 ECOPATH, Brown skua, Boulinier et al., Amsterdam Island
[149]

CC BY-NC

922263102 H_GRONINGEN - Western marsh harriers (Circus aeruginosus,
Accipitridae) breeding in Groningen (the Netherlands) [79]

CC0

933711994 Elk in southwestern Alberta [80–91] CC BY
938783961 MH_ANTWERPEN - Western marsh harriers (Circus aerugi-

nosus, Accipitridae) breeding near Antwerp (Belgium) [92]
CC0

985143423 LBBG_ZEEBRUGGE - Lesser black-backed gulls (Larus fuscus,
Laridae) breeding at the southern North Sea coast (Belgium and
the Netherlands) [93]

CC0

986040562 HG_OOSTENDE - Herring gulls (Larus argentatus, Laridae)
breeding at the southern North Sea coast (Belgium) [94]

CC0

1030734949 Biotelemetry of Bewick’s swans [95, 96] CC0
1049685237 Greater white-fronted goose family migration flight [97, 98] CC0
1071134107 Herring Gulls (Larus Argentatus); Ronconi; Brier Island,

Canada [99, 100]
CC0

1077731101 Eurasian Curlews [ID_PROG 1083] [150] CC BY-NC
1080341217 Herring Gulls (Larus Argentatus); Clark; Massachussets, United

States [100, 101]
CC0

1080341737 Herring Gulls (Larus Argentatus); Ronconi; Sable Island,
Canada [100, 102]

CC0

1087068449 Von der Decken’s hornbill (Jetz Kenya) [103, 104] CC0
1088836380 Carnivore movements near Black Rock Forest New York [151] CC BY
1091848505 gullSpecies_USGS_ASC_argosGPS [105] CC0
1092737859 GPS calibration data (global) [152] CC BY
1099562810 O_WESTERSCHELDE - Eurasian oystercatchers (Haemato-

pus ostralegus, Haematopodidae) breeding in East Flanders
(Belgium) [106]

CC0

1123149708 Ivory gull N Greenland 2018/19 [153] CC BY-NC
1208105916 Caspian Gulls - Poland [154] CC0
1229945587 Common Crane 2020 (Lithuanian University of Educational

Studies; LEU) [155]
CC0

1241071371 Arctic fox Bylot - GPS tracking [156] CC0
1259686571 LBBG_JUVENILE - Juvenile lesser black-backed gulls (Larus

fuscus, Laridae) hatched in Zeebrugge (Belgium) [107]
CC0

1260886163 Cheetah Pilanesberg National Park, South Africa, 2014-2015
[108, 109]

CC0

1266784970 Corvus corone [ID_PROG 883] [157] CC BY-NC
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Table 4: The list of all Movebank datasets used in this work. (Continued)

1278021460 BOP_RODENT - Rodent specialized birds of prey (Circus,
Asio, Buteo) in Flanders (Belgium) [110]

CC0

1285079529 Monitoring of Capra ibex (Bovidae) populations in the western
alps (project ALCOTRA LEMED-IBEX) [158]

CC BY

1393954358 Cathartes aura MPIAB Cuba [159] CC BY-NC
1395952585 FTZ: Migrating curlews (data from Schwemmer et al. 2021)

[111, 112]
CC0

1410035327 HUJ MPIAB White Stork E-Obs (subset for Carlson et al. 2021)
[113, 114]

CC0

1415844328 Moult migration of taiga bean geese to Novaya Zemlya [115, 116] CC BY
1448377103 Wood stork (Mycteria americana) Southeastern US 2004-2019

[117, 118]
CC0

1448409403 Lapwing NFW Vanellus Vanellus [160] CC BY-NC
1498452485 Variability of White Stork flight patterns prior to earthquakes

[161]
CC0

1562253659 LifeTrack White Stork Sarralbe [ID_PROG 1093] [162] CC0
1605798640 O_BALGZAND - Eurasian oystercatchers (Haematopus os-

tralegus, Haematopodidae) wintering on Balgzand (the Nether-
lands) [119]

CC0

1605799506 O_SCHIERMONNIKOOG - Eurasian oystercatchers
(Haematopus ostralegus, Haematopodidae) breeding on
Schiermonnikoog (the Netherlands) [120]

CC0

1605802367 O_VLIELAND - Eurasian oystercatchers (Haematopus ostrale-
gus, Haematopodidae) breeding and wintering on Vlieland (the
Netherlands) [121]

CC0

1605803389 O_AMELAND - Eurasian oystercatchers (Haematopus ostrale-
gus, Haematopodidae) breeding on Ameland (the Netherlands)
[122]

CC0

1606812667 Hawksbill/green turtles Chagos Archipelago Western Indian
Ocean [123, 124]

CC0

1671751878 Tchad Redneck Ostrich [163] CC BY-NC
1841261165 Eurasian wigeon (Mareca penelope) Netherlands Lithuania

2018-2019 [125, 126]
CC BY

1907973121 Lowland tapirs, Tapirus terrestris, in Southern Brazil [164] CC BY-NC
1907974323 Vega gull (Larus vegae) - GPS - Russia South Korea Japan [165] CC BY-NC
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#obs
class order taxon train val test
Aves Accipitriformes Cathartes aura 37609 2186 1703

Circus aeruginosus 5537 — —
Circus cyaneus 540 — —
Circus pygargus 1088 — —
Gyps himalayensis 4047 736 312
Haliaeetus albicilla 409 — —
Milvus milvus 323 — —
Necrosyrtes monachus 4337 951 126
Neophron percnopterus 2138 — —
Pandion haliaetus 2966 181 —

Anseriformes Anas penelope 8297 — —
Anas platyrhynchos 22207 1970 1484
Anser albifrons 18871 1122 558
Anser anser 3549 — —
Anser fabalis 6258 — 244
Anseriformes 1123 — —
Branta bernicla 1566 — —
Branta leucopsis 628 — —
Cygnus columbianus 602 — —
Cygnus cygnus 907 — —

Bucerotiformes Tockus deckeni 4448 — —
Cathartiformes Coragyps atratus 8653 — 312
Charadriiformes Haematopus ostralegus 44582 5439 3960

Larus 196 — —
Larus argentatus 39655 8237 909
Larus cachinnans 1021 — —
Larus fuscus 91380 8202 1534
Larus glaucescens 293 — —
Larus smithsonianus 900 — —
Larus vegae 10018 — —
Numenius arquata 14896 — 1588
Vanellus vanellus 2661 — 251

Ciconiiformes Ciconia ciconia 230170 5835 10402
Mycteria americana 7134 — —

Gruiformes Grus grus 189 — —
Passeriformes Corvus corone 474 — —
Pelecaniformes Ardea alba 1764 — —
Struthioniformes Struthio camelus 221 — —
Suliformes Fregata magnificens 521 — —

Mammalia Artiodactyla Alces alces 3061 — —
Bison bison 130 — —
Cervus elaphus 158108 6648 3849
Connochaetes taurinus 30036 755 4065
Ovis dalli 9075 934 983
Sus scrofa 556 — —
Syncerus caffer 498 — —

Carnivora Acinonyx jubatus 239 — —
Canis lupus 4811 — 122
Lynx 426 — —
Lynx rufus 4353 — —
Panthera onca 1873 — —
Vulpes lagopus 580 — —

Perissodactyla Equus quagga 24873 709 —
Proboscidea Loxodonta africana 24870 5696 3539

Reptilia Testudines Chelonoidis 546 — —
Chelonoidis donfaustoi 9386 594 251
Chelonoidis hoodensis 2251 — —
Chelonoidis porteri 12560 789 2283
Eretmochelys imbricata 1286 — —
Testudinidae 8548 — 1859

Table 5: Number of observations of each taxon in each section of the dataset.
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