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ABSTRACT

One of the main goals of ribosome profiling is to
quantify the rate of protein synthesis at the level of
translation. Here, we develop a method for inferring
translation elongation kinetics from ribosome pro-
filing data using recent advances in mathematical
modelling of mRNA translation. Our method distin-
guishes between the elongation rate intrinsic to the
ribosome’s stepping cycle and the actual elongation
rate that takes into account ribosome interference.
This distinction allows us to quantify the extent of
ribosomal collisions along the transcript and iden-
tify individual codons where ribosomal collisions are
likely. When examining ribosome profiling in yeast,
we observe that translation initiation and elongation
are close to their optima and traffic is minimized at
the beginning of the transcript to favour ribosome re-
cruitment. However, we find many individual sites of
congestion along the mRNAs where the probability
of ribosome interference can reach 50%. Our work
provides new measures of translation initiation and
elongation efficiencies, emphasizing the importance
of rating these two stages of translation separately.

INTRODUCTION

Understanding the rationale behind codon usage bias and
the role of synonymous codons in regulating protein syn-
thesis are amongst the main open questions in molecular
biology. Despite the fact that mRNA translation is a piv-
otal stage of gene expression, its sequence determinants are
in fact still largely elusive (1). Recent advances in sequenc-
ing, such as ribosome profiling (2), have made it possible to
probe translation dynamics at codon resolution, allowing
for quantitative studies of translational efficiency.
Ribosome profiling (Ribo-seq or ribosome footprinting
as it is often called), is an experimental technique delivering
a snapshot of ribosome positions along all transcripts in the
cell at a given condition. Its archetypal version has been de-

veloped at the end of the 1960s to study translation initia-
tion (3,4), and has been extended in the 1980s to investigate
the role of slow codons and ribosome pausing (5). Recently,
Ingolia et al. (2) revamped this technique to exploit the next
generation sequencing, and since then it is considered to be
the state-of-the-art technique for studying gene expression
at the level of translation.

In short, the method consists in isolating mRNA frag-
ments (called ‘reads’) covered by a ribosome engaged in
translation (~30 nt), which are then sequenced and aligned
in order to build histograms of ribosome occupancy at
codon resolution on each transcript. This technique has
provided an unprecedented view on translation leading to
many new discoveries (6). Examples include detecting novel
translation initiation sites (7), identifying actively translated
open reading frames (8), quantifying the extent of stop
codon readthrough (9) and elucidating the translation of
long non-coding RNAs (10).

Translational activity on a given transcript is typically as-
sessed by the number of read counts per kilobase of tran-
script per million mapped reads of the sample (RPKM),
which takes into account the length of the transcript and
the size of the sample. The RPKM is proportional to the
ribosome density, which in turn is assumed to be propor-
tional to the rate of translation—the more ribosomes on a
transcript, the more efficient is protein synthesis. However,
a large body of work based on mathematical modelling of
ribosome dynamics suggests that the protein synthesis rate
is negatively affected by increased ribosome density due to
ribosome collisions (11-13). To which extent ribosome col-
lisions can be found using ribosome profiling has been an
active topic of research (14-18).

One of the goals of ribosome profiling is to understand
how the elongation rate along the transcript depends on
the choice of codons. Codon elongation rates are usually
estimated assuming that the ribosome density at codon i
is proportional to the ribosome’s dwell time on that par-
ticular codon (15-16,19-24); this assumption follows from
the conservation of the ribosome current assuming no ribo-
some drop-off. Our estimate of the drop-off rate of ~10~3
s~! (obtained from the probability of premature termina-
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tion estimated to 10~* per codon (25,26) and the elonga-
tion rate of the order of magnitude of ~10 codon/s) justi-
fies the hypothesis. The inferred elongation rates are then
checked against mRNA codon sequence features, such as
codon usage bias, tRNA availability and mRNA secondary
structures.

If ribosome collisions are not rare, then the elongation
rates proxied by the inverse ribosome densities do not de-
pend only on the molecular details of the elongation cycle,
but also on the extent of slowing down due to ribosome
traffic. The crux of the matter is that it is difficult to dis-
tinguish from the ribosome density alone whether the ribo-
some spent long time on a particular codon because of the
long decoding time or because it had to wait for the down-
stream ribosome to move away. This distinction between
the actual elongation rates that account for ribosome traffic
and the intrinsic ones in the absence of other ribosomes has
been well accounted for in the standard model for mRNA
translation known as the totally asymmetric simple exclu-
sion process (TASEP), which considers ribosomes moving
along the transcript in a stochastic manner (11). Yet, very
few of the existing studies use the TASEP to infer elonga-
tion rates from Ribo-seq; ones that do either do not infer the
intrinsic rates (24) or use time consuming stochastic simu-
lations to fit the Ribo-seq data (16,22).

In this work we develop an efficient method for inferring
both actual and intrinsic codon-specific elongation rates
from the ribosome profiling data based on the mathematical
solution of the TASEP that we recently developed (12,27).
Using the TASEP, we argue that the ribosome density alone
is not sufficient to estimate the absolute elongation rates
from the ribosome profiling data. Instead, our method in-
fers elongation rates of an mRNA relative to the initiation
rate of that transcript. Moreover, we propose new measures
of translation efficiency that quantify the amount of ribo-
some traffic around the START codon and along the tran-
script. We apply our method to several Ribo-seq datasets in
Saccharomyces cerevisiae and show evidence of local queu-
ing in vivo.

MATERIALS AND METHODS
Ribosome profiling data

We have analysed publicly available ribosome profiling
data of S. cerevisiae from Guydosh et al. (14), Pop et al.
(20) and Weinberg et al (23): NCBI GEO accession
numbers GSM 1279568, GSM 1557447 and GSE75897 re-
spectively. We downloaded the HDFS files from Riboviz
(https://riboviz.org) (28) and mapped to A-site positions
according to Table 1 (29).

After obtaining the A-site read density profiles, our
method successfully optimized 345 of the total 346 genes
from the Guydosh dataset for which the experimental ribo-
some density necessary for normalization was known from
MacKay et al. (30). Analogously, the optimization was suc-
cessful for 1051 out 1053 genes of the Pop dataset and for all
1589 genes in the Weinberg dataset. For the omitted genes
the normalization was not possible because it resulted in ri-
bosome density larger than 1.
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Table 1. A-site locations for various footprint sizes

Fragment size Frame 0 Frame 1 Frame 2

27 15 15 18

28 15 15 18

29 15 X 18

30 15 18 18

31 15 18 18

32 X 18 18

33 18 18 18

Table 2. Summary of the symbols used and their meaning

Symbol Meaning

L length of the mRNA (in codons, including
START)

14 length of the ribosome (in codons)

a initiation rate [s~']

ki elongation rate [s~'] of codon i

ky (or B) termination rate [s~!]

{ki} speed profile (elongation) of a given transcript

Ki = ki/a relative (to initiation) elongation rate at
codon i

{ki} relative (to initiation) elongation profile

T experimental (normalized) density of codon i

{ri} experimental (normalized) density profile

mean density of a given gene
theoretical (normalized) density of codon i

r=Yron/(L-1)

i
ILA

p; theoretical (normalized) density of codon i in
the initiation-limited approximation
{pi} theoretical (normalized) density profile
f‘m simulated (normalized) density of codon i
{p;"™} simulated (normalized) density profile
Notations

In this section we summarize the notations used in the pa-
per. The main symbols for densities, rates and rates rela-
tive to initiation are given in Table 2. When the quantity is
codon-specific we use the suffix i = 2, ..., L to identify the
codon number (the first codon after the START codon is at
i =2, the STOP codon is at i = L). Brackets { - } indicate a
set of values: for instance {a;} is the set of all the values ¢;
fori=2,..., L.

We emphasize that we use normalized densities, in units
of ribosomes (A-sites) per codon. The total density is thus

the averaged ribosome profile r = Zfzz ri/(L — 1), and the
number of ribosomes translating an mRNA is N = r(L —

1).

Mathematical model for mRNA translation

We model translation by a stochastic process called the
TASEP introduced by MacDonald et al (11,31). The
TASEP describes ribosome dynamics on a discrete one-
dimensional lattice representing the coding part of the
mRNA molecule. Each lattice site corresponds to a codon,
and ribosomes cover £ = 10 sites, as the ribosome footprint
covers ~30 nt or equivalently ~10 codons. Ribosomes on
the lattice are tracked according to the position of their A-
site. A codon i that is occupied by the A-site of the ribosome
is labelled by 4; and is otherwise labelled by @;.

A ribosome initiates translation at rate o, whereby its A-
site is positioned at codon 2; this happens only if the codons
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2, ..., £+ 1 are not occupied by another ribosome’s A-site.
The ribosome then advances from codon 7 to codon i + 1
at rate k;, provided that codon i + £ is not covered by the
downstream ribosome (see top right drawing of the model
in Figure 1). We refer to k; as the intrinsic elongation rate
at which the ribosome advances in the absence of other ri-
bosomes. Eventually, when the A-site of the ribosome is at
the STOP codon (the L-th site), the ribosome detaches the
mRNA at rate k; = 8. Each transcript in the model is then
characterized by a set of L rates: initiation rate «, and elon-
gation and termination rates {k;} = {ka, ..., k.}.

The process is described by the probability density P(C,
t) to find a configuration C of ribosomes on an mRNA at
a particular time ¢. By configuration we mean a particular
arrangement of ribosomes described by the positions {4;}
of their A-sites. The time evolution of P(C, ¢) is governed by

the master equation:
dP(C, 1)
— = WecP(C't)— Weo.o P(C, 1)|, (1

& Y [WereP(C 1) = W P(C )], (1)

C£C

where Wy_, ¢ is the rate of transition from C to C'. We as-
sume that translation takes place in the stationary limit in
which case Equation (1) becomes a system of linear equa-
tions,

0= [WewcP(C) = Weeoo PHO]. ()
C'#£C

The three main quantities of interest are the rate of
translation J, which measures the amount of proteins pro-
duced per unit time, the local ribosome densities p;, which
measures the probability of detecting a ribosome at codon
i and total ribosome density p, which measures the average
number of ribosomes per unit length of the transcript (in
codons). In the stationary TASEP, J, p; and p are defined
as:

| L
J=kp{tr), pi= (1), P=m§ﬂn (3)

where averaging is performed with respect to the steady-
state probability P*(C) and 7, is an occupation number
whose value is equal to 1 if codon i is occupied by the A-site
of the ribosome and is 0 otherwise. If we ignore premature
termination due to ribosome drop-off, then J is constant
across the transcript and is equal to the actual rate at which
ribosomes initiate translation,

+1
J = o P*(first £ codons free) = « (1 - Z ,0i> )

i=2

where P"(first £ codons free) is the steady-state probability
that codons 2, ..., £ + 1 are not occupied by an A-site.

Computing these quantities requires an exact knowledge
of P*(C), which is known only in the biologically unrealistic
case of £ = 1 and uniform elongation rates (32). Instead, we
compute J, p; and p using two approximation methods: the
mean-field approximation developed in MacDonald ez al.
(11,31) and initiation-limited approximation (ILA) devel-
oped in Szavits-Nossan et al. (12,27). Details of these meth-
ods are presented in Supplementary Data.

Computer program

Computer program (NEAR) for inferring elongation rates
from ribosome profiling data is available under GNU
General Public License v3.0 at https://github.com/jszavits/
NEAR.

RESULTS

We base our method on a well-established stochastic model
for mRNA translation, the TASEP, which we describe in de-
tail in the ‘Materials and Methods’ section. Over the years,
the model has been improved in many ways to better match
real translation (33,34) and has been repeatedly used to in-
terpret experimental data (16,18,24,35-38).

In principle, the knowledge of initiation, elongation and
termination rates allows one to compute simulated ribo-
some density profiles and protein production rates that can
be compared to experimental outcomes. However, there is
an open debate regarding the estimates of these rates, and
no direct experimental method to measure them exists. For
example, codon-specific translation elongation rates k; are
often assumed to be proportional to the tRNA gene copy
number (GCN) or to the local tRNA adaptation index
(tAl) (39-41).

Here we take a different approach and use the model to
quantitatively determine codon elongation rates from ribo-
some profiling data. This is an inverse problem, since we need
to optimize the inputs (parameters « and {k;}) in order to
match the outputs (Ribo-seq data). There are three main
difficulties in solving this problem, which we discuss below.

i. The parameter space is extremely vast. A typical protein
consists of a several hundreds of amino acids, meaning
that one generally needs to optimize a comparable num-
ber of parameters.

ii. There is a complex non-linear relation between the set
of rates {k;} and the ribosome density profile. A change
in a single k; may affect a large part of the density profile.

iii. Ribosome density profile predicted by the stochastic
model depends only on the ratios between the elonga-
tion rates and the initiation rate, meaning that it is not
possible to estimate absolute rates without integrating
more information.

We now explain how our method tackles these problems
and how it compares to existing methods that have been
proposed to infer ribosome dynamics from ribosome pro-
filing data (16,20,22,24).

Our method searches for optimal elongation rates at each
codon position and separately for every transcript, i.e. we do
not reduce the parameter space by assuming equal elonga-
tion rates for every instance of the same codon (20,22). Im-
portantly, we use an analytic expression for the ribosome
density profile that we recently derived in the initiation-
limited regime (12,27). This relationship allows for a quick
computation of the ribosome density profile instead of run-
ning costly stochastic simulations for every iteration of the
optimization process (16,22). Furthermore, we emphasize
that our method infers intrinsic elongation rates (relative to
the initiation rate) related to the ribosomal elongation cy-
cle, which may differ from the actual elongation rates that
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Figure 1. Sketch of the NEAR workflow for an individual gene (YAL007C). Experimental Ribo-seq profiles are first normalized and then analysed using
the stochastic model. The normalized ribosome density profile {r;} is represented in the bottom left panel. The model is shown in the top right box:
ribosomes covering ¢ sites are added to the lattice with an initiation rate «, provided that the first ¢ sites are not occupied by the A-site of another ribosome.
Ribosomes then move from site i to site i + 1 at rate k; provided that the A-site of the neighbouring ribosome downstream is at least ¢ sites away. Eventually,
ribosomes leave the lattice at rate B (k;, = B) when their A-site is on the last site. In this drawing ¢ = 3 for clarity, whilst in our analysis we used ¢ = 10.
NEAR searches for the optimal elongation rates k; (relative to initiation rate o) for which the stochastic model reproduces the experimental ribosome
profile. Once we find the optimal rates, we examine the extent of ribosome traffic using the translation initiation and elongation efficiencies (TIE and TEE),
analyse the context dependence of elongation rates and identify problematic transcript regions in which Ribo-seq data are not consistent with the model.

also take into account slowing down due to ribosome traffic
(24). Thus, we are able to detect separately the mean decod-
ing time for a particular codon and the mean time that the
ribosome spends waiting for a ribosome downstream of it
to move away. This distinction is central to our method.

Before we present further details of our method, we first
discuss the problem of estimating absolute elongation rates,
which limits the amount of information that can be inferred
from ribosome profiling data alone.

Ribosome profiles alone cannot estimate absolute elongation
rates

We remind that the ribosome density p; measures the prob-
ability of detecting a ribosome’s A-site at codon position
i (see ‘Materials and Methods’ for further details). In the
Supplementary Data, we show that p; depends only on the
ratios between the elongation/termination rates {k;} and
the initiation rate a—we will refer to these ratios as {k;}.
Thus given the ribosome densities {p;}, one can only in-
fer the ratios {k;}, but not the absolute rates {k;} and a.
Since the initiation rate « is highly gene-dependent, it is
not possible to compare the elongation-to-initiation ratios
{k;} from different genes without the knowledge of « for
each gene. We demonstrate this point in Figure 2A, which
shows the outcome of simulations of translation having

different absolute rates {k;} but the same relative speed
profile {k;}.

We now examine two approaches that have been pro-
posed to deal with this problem. The first approach is to fix
a unique timescale shared by all mRNAs, for instance the
average ribosome speed (42) or the average codon decoding
time (24), which in turn allows one to estimate the initiation
rate for each gene. The second approach is to normalize p;
by the average ribosome density p for that gene. This is a
common practice in the analysis of Ribo-seq data, whereby
the ribosome footprint read densities on individual codons
are normalized by the average ribosome footprint density
for that gene. The scaled read density is then assumed to
be independent of the initiation rate, allowing for differ-
ent genes to be compared. We argue that both of these ap-
proaches are problematic. In the first approach, the average
elongation rate or the average decoding time could be highly
variable from transcript to transcript, which in turn would
introduce a bias when comparing absolute elongation rates
between different genes. In the second approach, the nor-
malization of p; by p does not necessarily mean that genes
with different initiation rates can be directly compared. We
show that explicitly by computing p;/p in our model for dif-
ferent initiation rates but keeping the elongation speed pro-
file {k;} fixed. As shown in Figure 2B, we find qualitatively
different profiles for different initiation rates. This observa-
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Figure 2. in silico density profiles. In panel (A), the black line shows the density profile obtained from the stochastic simulation of a transcript with a speed
profile {k;} and initiation rate « = 0.1/s. The shadowed region corresponds to the profile of a transcript simulated with a 10-fold larger initiation rate, but
keeping {k;} constant (i.e. also increasing the elongation rates by a factor 10). This shows that densities obtained with the same elongation-to-initiation
ratios {k;} are indistinguishable. In panel (B), we fix the speed profile {k;} for three different values of the initiation rate o and we plot the rescaled profiles
pi/p. As expected, by increasing the initiation rate we obtain different profiles with increasing density and traffic effects.

tion is further supported by the analytic expression for p;,
which predicts a non-linear a-dependent correction to the
linear expression p; &~ a/k; (see Supplementary Data).

Instead, our approach is to scale k; by the termination-to-
initiation ratio k; which removes dependence on the initia-
tion rate since k;/k; = k;/k; . Later we show that the values
of k; inferred from ribosome profiling data in S. cerevisiae
have amongst the least variation of all codons, which sup-
ports our choice for k. as the scaling factor. In addition,
we introduce new measures of translation efficiency and ri-
bosome traffic that take values between 0 and 1 and can be
compared between different genes.

Non-equilibrium analysis of Ribo-seq (NEAR)

After we have shown that the ribosome density profile alone
can inform us only on the ratios {k;} between the elonga-
tion rates and the initiation rate, we now turn to the method
for inferring {k;} from Ribo-seq. We call the method non-
equilibrium analysis of Ribo-seq data (NEAR) because the
model (the TASEP) that we use is borrowed from non-
equilibrium statistical mechanics.

NEAR infers {k;} with an optimization procedure that
aims to find a model-predicted density profile {p,;} which
is a close match to the experimental one {r;} (see Figure 1).
This is possible since we have recently found a mathematical
expression for the ribosome density profile in terms of trans-
lation initiation, elongation and termination rates. This ex-
pression was obtained under the assumption of a limiting
initiation rate « (12,27), which is supposed to hold for most
of the mRNAs under physiological conditions (see Supple-
mentary Data). However, we emphasize that the ILA does
not assume that ribosome collisions are absent. Instead, our
analytic solution takes ribosome collisions into account and

is applicable to a wide range of initiation rates as long as
they are smaller than the elongation and termination rates
(see Supplementary Data).

We have applied our method to ribosome profiling data
of S. cerevisiae obtained by Guydosh et al. (14), Pop et al.
(20) and Weinberg et al. (23). These datasets were selected
for their lack of using cycloheximide to inhibit translation
elongation, which is known to distort ribosome coverage
profiles (43,44). The raw data was processed by the Riboviz
software (28) and mapped to A-site positions following the
table provided in Ahmed etz al. (29). After obtaining the A-
site read density profiles the method proceeded in four steps,
which we summarize below.

i. We first normalized the number of A-site reads on each
codon by the total number of reads mapped to the tran-
script. This number was then multiplied by the absolute
ribosome density for that particular gene obtained by
polysome profiling experiments in MacKay et al. (30).
The end result is a normalized ribosome density pro-
file {r;} that reveals how likely is to find a ribosome at
codon i.

il. Next, we solved a least-squares optimization problem
which consisted in finding {k;} that minimize the ob-
jective function:

L
S=3" [ ) —ri]’ )
=2

1

Here p/™ is the model-predicted ribosome density in
the ILA. The starting point for optimization were {k;}
obtained from the mean-field solution of the exclusion
process. Details of p!'* and the mean-field solution are

presented in Supplementary Data.
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iii. Once we found the best estimate of {k;}, we then com-
puted the exact density profile from stochastic simula-
tions using the estimated {k;}. We note that the simu-
lated density may be different from the analytic density
if the initiation rate is too high, which we checked in the
next step.

iv. In the last step we performed two quality checks on each
K; obtained by least-squares optimization:

(a) We first verified that the ILA was applicable by
comparing the analytic density with the simulated
one. This step is necessary because our solution of
the model is approximate and may not be valid if the
initiation rate is too high, see Refs. (12,27) and also
the Supplementary Data. We accepted «; if the rel-
ative error between the analytic and simulated den-
sity was smaller than 10 %. If not, we repeated the
check using the value of k; obtained in the mean-
field approximation.

(b) For those k; that passed the previous check, we ver-
ified that the simulated density reproduced the ex-
perimental density r; (within 5% tolerance).

These are the main steps of NEAR, and we provide fur-
ther mathematical details in the Supplementary Data.

We emphasize the importance of optimizing the absolute
ribosome densities {p;} (step 2), rather than the scaled ones,
{pi/p}. as in other methods that analyse ribosome profil-
ing data (16,20). The problem is that {p;/p} remains the
same if we multiply all p; by a constant factor, which in
turn means that different density profiles {p;} can result in
the same scaled profile {p;/p }. Since each p; is uniquely de-
termined by the set of elongation-to-initiation ratios {k;},
we conclude that the scaled density profile {p,/p } does not
uniquely determine {k;}, see for instance Supplementary
Figure S2. Thus, we reiterate that ribosome profiling data
are not sufficient to infer ribosome dynamics and in turn the
extent of ribosome traffic without the additional informa-
tion on the mean number of ribosomes bound per mRNA
(step 1).

Our quality check in step 4 is also able to reject codons
whose k; cannot be trusted, and identify why the inference
of elongation rates for those codons is problematic. Impor-
tantly, we are able to distinguish whether our analytic solu-
tion is satisfied or not (point 4(a)), or if the problem is due
to the model being inconsistent with the experimental data
(point 4(b)).

Before moving on to real sequences of S. cerevisiae, we
tested NEAR on a mock sequence with known {k;} (Sup-
plementary Figure S3a), and checked that it can accurately
infer the original elongation rates provided the initiation
rate is not too high (Supplementary Figure S3b and c). We
also remark that the quality check allows us to push the
analysis to relatively high initiation rates (Supplementary
Figure S3d). In those cases, however, the number of rejected
codons may become significant. For a very high initiation
rate we expect the ILA to fail in which case NEAR resorts
to the mean-field approximation, whose estimates are fur-
ther verified.

Using NEAR to study translation of individual genes. We
demonstrate our method on a particular gene (YLR301W)

Nucleic Acids Research, 2020, Vol. 48, No. 17 9483

using Ribo-seq data from the Weinberg dataset (23). We
first compute the normalized experimental density profile
{r;} using the experimental absolute density r from MacKay
et al. (30) (in units of ribosomes/codon). This profile is
then analysed following the method explained in the pre-
vious section. A set of elongation-to-initiation ratios {k;}
is obtained by optimizing the match between the model-
predicted density profile and the experimental one. Each k;
is then examined to see whether it provides a good predic-
tion for that particular codon position and to check for in-
consistencies in the method as previously explained. There
are few values of k; that do not pass this quality check,
which are rejected and are not included in the final anal-
ysis. This is a typical example, though for some genes the
fraction of rejected codons is substantial and our inference
procedure may be less reliable. We will come back to this
point later.

In Figure 3A we plot the optimized {k;} profile that
passed the quality check (blue line, triangle markers) com-
pared to the naive estimate 1/r; (orange line, round marker)
that ignores ribosome interference but it is usually judged
as a good estimator of the elongation rate. We find many
codon positions where the two profiles {k;} and {1/r;} sig-
nificantly differ from each other. Moreover, we identify val-
ues of k; that are not consistent with the model, whilst this
cannot be done when using {1/r;} as a proxy for elongation
determinants.

The result of a stochastic simulation of ribosome dynam-
ics performed with the optimized elongation ratios {k;} is
shown in Figure 3B. The agreement between the simulated
density profile {p;""} (green line) and the experimental one
(in blue) is excellent for most of the codons. The inset shows
the scatter plot between the values (for each codon) of the
simulated and experimental ribosome density.

Estimate of elongation-to-initiation ratios at codon resolution
in yeast

We analysed three different datasets (14,20,23) and gath-
ered the NEAR elongation-to-initiation ratios {k;} for each
gene. The percentage of codons that passed the quality
check (points 4(a) and (b)) for the Weinberg, Pop and Guy-
dosh datasets is 75, 66 and 44%, respectively. These are the
percentages of the total number of analysed codons, i.e.
without taking into account different transcript lengths.

We also computed the percentage of rejected codons for
each transcript. The percentages of codons that were re-
jected at point 4(a) have a median value of 2.3% (Weinberg),
3.8% (Pop) and 8.2% (Guydosh). The respective medians
for the percentages of codons that passed 4(a) but were re-
jected at point 4(b) are 9.5, 16 and 26.7%. Again, the best
fit is achieved for the Weinberg dataset.

We note that our analysis included only transcripts with
large number of reads per codon (10 or more), i.e. with high
ribosome traffic. If we had analysed all transcripts, the per-
centage of accepted codons would have been higher. How-
ever, many transcripts with low read count have codons with
zero reads, which are difficult to handle in the model as they
imply unphysically large elongation speed.

We now turn to the codons that passed the quality check.
The estimated elongation-to-initiation ratios passing the
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Figure 3. Results of NEAR applied to the YLR301W gene. (A) The opti-
mized profile {k;} is plotted (triangle markers) as a function of the codon
position 7, and compared to the naive estimates {1/r;} (round marker). In
panel (B), we compare the model-predicted density profile obtained using
the inferred {k;} (lighter line) with the experimental normalized profile
{ri}. The inset shows the scatter plot between the two densities (for each
codon /) demonstrating an excellent agreement between theory and exper-
iments.

quality check are plotted in Figure 4 and compared to the
naive estimates 1/r;. In particular, we find many instances
where 1/r; deviates from k; obtained by NEAR. The model
predicts that k; ~ 1/r; if there are very few ribosomes on the
transcript so that ribosome collisions are rare. Our findings
in Figure 4 thus suggest that the effect of ribosome interfer-
ence is not negligible. We will discuss this point later when
we introduce better measures for detecting ribosome inter-
ference.

Next, we wanted to understand if each codon type has
a characteristic decoding time and verify or reject a com-
mon hypothesis that elongation rates are determined by the
availability of aminoacyl-tRNAs. By definition, «; is equal
to the ratio k;/a between the elongation rate of codon i
and the initiation rate a of the gene. Because the initiation
rates are likely to be gene-specific, we do not know if the
observed variation in elongation-to-initiation ratios of the
same codon types (see Supplementary Figure S4) is due to
variation in the elongation or initiation rates.

However, we observe that STOP codons show the least
variability of all the elongation-to-initiation ratios {k;} in
the Guydosh and Weinberg datasets (Supplementary Fig-
ure S4). This result is consistent with the expectation of a
context-independent termination. Thanks to this observa-
tion, we then compute the elongation-to-termination ratio
k;/kr = k;/B, 1.e. the elongation rate of codon i with respect
to the termination of the gene under investigation (Supple-
mentary Figure S5). This quantity does not depend on the
initiation rate « that is likely to be context-dependent and
different from gene to gene. Indeed, the variation in k;/kp
linked to the same codon type is now more uniform across
61 codon types, especially in the Guydosh dataset (Supple-
mentary Figure S5). We have also compared median val-
ues of k;/k . for each codon type against two common mea-
sures of tRINA availability: a codon-dependent rate of trans-
lation based on the tRNA GCN corrected for the wobble
base pairing from Weinberg et al. (23), and the tAI (45). We
find a moderate correlation between the median of the k; /k .
distributions and the corresponding tRNA GCNs (Supple-
mentary Figure S6). This result suggests that the elongation
speed of individual codons is only partially determined by
their codon type.

We now turn to ribosome traffic and its impact on trans-
lation efficiency. In the following sections we will define
quantities that, contrary to the k;, can be used to compare
translation efficiency of different genes. Those quantities,
which we name the translation initiation efficiency (TIE)
and the translation elongation efficiency (TEE), can be used
to rank initiation of different transcripts and quantify the
impact of ribosome interference along a mRNA.

Translation Initiation Efficiency (TIE)

By running stochastic simulations with the inferred k; we
can measure the ribosomal current J divided by the initia-
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Figure 4. Scatter plot of the elongation-to-initiation k; for each codon that passed the quality check versus the inverse of the experimental density 1/r; for
the Guydosh, Pop and Weinberg datasets. The dashed line corresponds to the bisect.

€20z Areniga g0 uo Jesn HO| - 3dI0D A LEEG68SG/8L76/L1/8F/oI01E/IEU/WOD dNODlWapEDE//:SdRY WOl papeojumoq



>

Nucleic Acids Research, 2020, Vol. 48, No. 17 9485

Guydosh B Po c .
70 e 180 P, 250 Weinberg
60} 160 |
8 5o median =085 $ 140} median = 0.82 $ 2001 median = 0.78
g3 G 120} S
C 40+ C 100+t c 150
o o o
5 30f S 80f S 100k
8 20t g 6or 3
© 1o} ° M0 S s0f
%0 02 04 06 08 10 %002 04 06 08 1.0 %0 02 04 06 08 1.0
TIE TIE TIE
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gives the probability that the first codons are unoccupied.

tion rate a, which is a quantity dependent on {k;} only; the
current J can be used as a proxy for protein synthesis rate
per mRNA.

In the biological literature translation initiation is often
identified with protein synthesis rate, i.e. / = a. However
this is true only if initiation is much slower than elongation
so that essentially only one ribosome is translating a tran-
script at a given time. Yet, this approximation is too crude to
quantitatively describe translation (12). Instead, when more
than one ribosome is engaged in translation, J becomes a
function of « and the elongation rates {k;}; the current J
can be thought of as the intrinsic initiation rate o multi-
plied by the probability that the first codons of the mRNA
are not occupied by another ribosome (which would other-
wise obstruct initiation).

Therefore we propose to use J/a as a measure of the TIE,
which takes values between 0 and 1. The TIE would be equal
to 1 in the optimal case in which initiation is not hindered by
ribosome traffic (/ = a, hence TIE = 1). Otherwise, the TIE
gives the probability that the first codons, potentially inter-
fering with ribosome recruitment and initiation, are unoc-
cupied. A TIE smaller than 0.5 means that more than half
of the times a new ribosome tries to initiate, it fails because
of another ribosome whose A-site is located within the first
10 codons. In Figure 5 we plot the histograms of TIE for
all the genes and datasets included in our study. We find
that almost all genes show TIE > 0.5 with a median value
around 0.8 for all the datasets. These values suggest that the
first codons are mainly free from ribosomes that are already
engaged in translation.

Our previous theoretical work on the exclusion process
showed that if translation is rate-limited by initiation, then
TIE predominately depends on the k; of the first £ ~ 10
codons, which is the ribosome footprint on the mRNA (12).
Based on that prediction, TIE > 0.5 is a strong signature
that the codon sequences, and in particular the first codons
of S. cerevisiae genes might have been selected to optimize
translation initiation.

Translation elongation efficiency (TEE) shows congestion of
ribosomes in vivo

In contrast to the TIE, we define an efficiency index for
translation elongation that identifies local ribosome inter-
ference along the transcript and not only around the ini-
tiation region. In order to do that, we emphasize that

the total time 7;(total) that a ribosome spends with its A-
site on a given codon i can be seen as the sum of two
contributions: the time f;(intrinsic) needed to decode this
codon and incorporate the new amino acid to the growing
peptide chain, plus the time 7;(collision) spent in a queue
waiting for the downstream ribosome to move. For each
codon i, ti(total) = f;(intrinsic) + f;(collision). The inverse
of t;(total) is the actual elongation rate, whilst the inverse of
t;(intrinsic) is the intrinsic elongation rate k;, i.e. the elon-
gation rate in the absence of other ribosomes. The distinc-
tion between these two rates is important because the ac-
tual elongation rates may be much smaller than the intrin-
sic ones in genes with higher initiation rates in which ri-
bosomal collisions are more likely. Thus analysing the ac-
tual instead of intrinsic elongation rates could obscure our
search for the molecular determinants of the translation
speed.

We consider a codon as efficient if a ribosome attempting
to translate it is not blocked by other ribosomes. We thus de-
fine the TEE at codon i (TEE)) as the ratio of intrinsic and
total time: TEE; = ¢,(intrinsic)/z,(total), or put differently,
as the ratio between the actual and intrinsic elongation rate.
The TEE; is a measure of the local mRNA congestion seen
by a ribosome translating the codon i and it depends on the
context at which the codon is placed. Mathematically, it is
equivalent to the probability that the i + 1...i + £ codons
are not occupied, given that a ribosome’s A-site is at site
i. If the intrinsic decoding time of the ribosome is equal to
the total time dwelt on the codon, then the ribosome experi-
ences on average no interference with other ribosomes and
TEE; = 1. Otherwise, 0 < TEE <1. In the extreme case of
the completely jammed ribosome one would get TEE; ~0,
i.e. the ribosome is ready to advance but it is not allowed to
move forward because the transcript is overcrowded. Fur-
thermore there is a relationship between the TEE; and TIE
given by TEE; = TIE/(k;p;). Further details are given in
Supplementary Data.

We note that the TEE; is a function of {k;} only, mean-
ing that ribosome interference is governed by the balance
between initiation and elongation rates. A TEE profile that
is close to 1 means that initiation is not frequent enough to
cause ribosome congestion along the transcript. Inferring
TEE profile from ribosome profiling data is thus a conve-
nient method for testing whether translation is limited by
initiation. We also stress that both the TIE and TEE; are
dimensionless quantities that take values between 0 and 1.
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Therefore it is possible to compare the TIE and TEE pro-
files between different genes.

In Figure 6A-D we plot the TEE profile of four randomly
selected genes. We observe that the TEE is typically close
to 1 indicating that traffic is negligible for most of codons.
We also identify particular codons where ribosome inter-
ference is significant and TEE; drops to 0.6. These exam-
ples demonstrate that NEAR can locate, at codon resolu-
tion and excluding unreliable estimates, particular regions
on the transcript that are affected by ribosome interference.

After analysing TEE profiles of all genes included in our
study, we observe that the distribution of TEE; for all the
codons that passed the NEAR quality check is peaked at
1, with the median at about 0.99, as shown in Figure 6E.
This result is consistently found in all three datasets that we
analysed, suggesting that ribosome interference is present
only locally on a few codons, and is generally absent in vivo.

If the ribosome density on a given transcript is high, one
would expect to see an increased number of ribosomal colli-
sions resulting in the TEE profile that clearly deviates from
1. In Figure 7 we present the mean of the TEE profile for
each gene that we analysed compared to the ratio of the
ribosome density for that gene and the maximum achiev-
able density pmax = 1/¢, where £ ~ 10 codons is the ribo-
some footprint length. The results across all three Ribo-seq
datasets clearly show that genes with low ribosome density
have the mean TEE very close to 1 (few collisions). On the
other hand, the mean TEE of genes with high ribosome den-
sity deviates significantly from 1 (many collisions).

Another way to demonstrate the importance of ribosome
collisions is to directly estimate #;(collisions). Since the total
time spent on a codon is given by r; divided by the ribosomal
current, we obtain:

.. ri 1

«a t;(collisions) = I Pl (6)
The time spent in traffic on codon i is then larger than zero if
ri/TIE > 1/x; and equal to zero only if there is no ribosome
interference. In the second row of Figure 7 we show that
many of the codons analysed deviate from the bisect. This
is another quantitative evidence that, according to experi-
mental data, it is not that rare to observe ribosomes queuing
in vivo.

Initiation and elongation interdependence

After observing that TEE is generally close to its optimum
value of 1, we now look for spatial distribution of the TEE;
along the transcripts. To this end we compute a metagene
TEE profile by aligning the genes at their START codon and
computing the distributions of the TEE; at each position i.
We then take the median of the distribution on each codon.
The results are plotted in Figure 8 A. This genome-averaged
profile confirms our earlier observation that TEE is close to
1. However, we also observe that the first ~10 sites have a
larger elongation efficiency. A large value of TEE around
the START codon helps to clear this region from queue-
ing ribosomes and thus facilitates ribosome recruitment (see
also Relationship between TIE and TEE in Supplementary
Data). This result is consistent with a large value of TIE
previously observed in Figure 5, and it confirms the impor-
tance of the beginning of the coding sequence in controlling
translation.

Our results seem to suggest that TIE and TEE should be
strongly related. On the one hand, if translation initiation is
efficient but elongation is inefficient, ribosome interference
would dominate and ribosomal resources would be wasted.
On the other hand, effective elongation and weak initiation
would still finely tune the overall protein production with-
out harming cellular fitness. Following these considerations,
from the evolutionary point of view there should exist a con-
straint between the relative weights of initiation and elonga-
tion, and a situation with strong initiation and weak elon-
gation should be avoided.

We can roughly evaluate the overall elongation efficiency
as the mean of the TEE; profile of each gene, and thus as-
sociate a couple of values (TIE, mean TEE) to each gene
analysed. In Figure 8B we observe that the constraint TIE
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< mean TEE is satisfied for most of the genes analysed (only
a few exceed the TIE = mean TEE dashed line, and for very
initiation-efficient genes); thus the data analysed are con-
sistent with the hypothesis explained above. We also notice
that transcripts with inefficient initiation might also present
a less optimized elongation, suggesting that initiation and
elongation are interdependent.

DISCUSSION

In this work we introduce NEAR, which is based on a well-
studied model borrowed from statistical physics. The model
tracks individual ribosomes engaged in translation and pre-
dicts their spatial distribution on the mRNA and the rate of
protein synthesis using initiation, elongation and termina-
tion rates as input parameters. Here we do the opposite—we
develop a method that infers elongation-to-initiation ratios
at codon resolution directly from ribosome profiling data.

We first emphasize that Ribo-seq profiles, being an av-
eraged snapshot of the translatome, do not contain infor-
mation on the absolute timescales of the process and that
thus it is possible to estimate relative rates only. These rates
uniquely determine the density profile and allow us to eval-
uate the extent of ribosome traffic along the transcript and
show a possible interplay between initiation and elongation.
To this end we introduce new measures of translation effi-
ciency that we named translation initiation and elongation
efficiencies (TTE and TEE, respectively). Importantly, both
TIE and TEE are dimensionless scores taking values be-
tween 0 and 1, which allows us to compare ribosome traffic
between different genes.

TIE is defined as the probability that a ribosome attempt-
ing to initiate translation is not obstructed by another ri-
bosome on the coding sequence. The distribution of TIE
for the three datasets that we used in this study show that
ribosomes can easily access most transcripts, with the me-
dian value of 0.8 for the probability to find the initiation
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region unobstructed (Figure 6). Yet, we find genes with low
TIE suggesting that the first codons can exert control over
protein synthesis through ribosome traffic interfering with
translation initiation. These results are in line with recent
experimental evidence on ribosome stalling and traffic in
the initiation region (17,46-47).

Similarly, TEE; is defined as the probability that a ribo-
some at codon position i is not blocked by another ribo-
some downstream of i. The distribution of TEE; across all
transcripts shows that TEE; is generally close to 1 suggest-
ing that ribosome interference is negligible for most codons
(Figure 6E). However, when looking at the individual gene
TEE profiles, we observe that it is not so rare to find the
probability of ribosome interference as high as 50% (Fig-
ure 6A-D). In accordance with these results, we find more
evidence of ribosome interference (lower TEE) in genes with
higher ribosome density (Figure 7). We also compute the
average time ¢;(collisions) that each ribosome spends on a
codon due to the blockage of downstream ribosomes. If no
traffic is present then 7;(collisions) = 0. Instead, we observe
many codons for which #;(collisions) > 0 (Figure 7).

The fact that the value of TEE at each codon must fall
between 0 and 1 allows us to agglomerate all values of TEE
into a ‘metagene’ profile (Figure 8). Interestingly, the me-
dian TEE shows slightly higher values at the first 10 codons,
suggesting that queuing is avoided in order to allow for ef-
ficient ribosome recruitment at the start codon. This re-
sult is consistent with a recent study in which replacing the
first eight codons with their slower synonymous variants
significantly reduced protein expression without affecting
mRNA levels (46). Furthermore, the first codons have been
recognized as critical in determining protein synthesis both
theoretically (12-13,48) and experimentally (47,49-51). Be-
yond the first 10 codons, the metagene profile of TEE fur-
ther reveals a small but noticeable drop between codons 10
and 20, followed by a slow increase between codons 20 and
100. These results are consistent with the ‘ramp hypothe-
sis” proposing that rare codons are more frequent at the be-
ginning of genes in order to avoid ribosome traffic further
along the transcript (52).

All together, our results indicate that translation initia-
tion is slow compared to elongation (all k; = k;/a < 1) and
the coding sequence interfering with initiation is cleared ef-
ficiently (median TIE at 0.8). We also find that translation
elongation is largely optimized to avoid traffic (median TEE
at 0.99), although one can locally observe high levels of ri-
bosome interference. Interestingly, despite variations in TIE
between genes (Figure 5), elongation remains consistently
more efficient than initiation (mean TEE > TIE, Figure 8).
It is possible that the relative role of elongation and initia-
tion is under evolutionary pressure to allow for an efficient
ribosome recruitment and to avoid ribosome interference
for efficient transition from initiation to elongation (52).

Perhaps the most surprising result of our study is the vari-
ability of the inferred elongation-to-initiation ratios ;. We
can affirm that there is a correlation between common in-
dices of codon optimality, such as the local tAl, and the es-
timated elongation-to-initiation ratios (see Supplementary
Figure S6). However, the large variability of the estimated
rates of each individual codon type implies that using those
indices for protein synthesis optimization or other synthetic

applications will probably not lead to the expected results.
Instead, our findings indicate that codon context in the se-
quence is as relevant as the particular codon used, and fur-
ther studies should focus on the discovery of mechanisms
giving rise to the codon context dependence. For instance,
mRNA secondary structures might be relevant, particularly
around the initiation region (49-51,53) or the amino-acid
charge at the beginning of the coding sequence (42).

Our method has detected many codons at which the
model is incompatible with the ribosome profiling data, par-
ticularly for genes for which we estimated high level of ri-
bosome interference (see for instance Supplementary Fig-
ure S7). One possibility is that our results are affected by
known biases during the bioinformatic analysis (54). An-
other source of inconsistency between the model and the
data is possibly hidden in the nature of the ribosome profil-
ing technique. Queuing ribosomes generate large footprints
(14) that are usually discarded in the experimental pipeline.
Intuitively, one would expect that ribosome profiling dis-
carding large footprints would be insensitive to ribosome
interference. However, we note that the model is able to cap-
ture correlations between ribosomes that are not immedi-
ately adjacent to each other. A recent theoretical study by
Scott and Szavits-Nossan (48) showed that a slow codon af-
fects ribosome density over multiple codons, although the
effect subsides with the distance from the slow codon. In-
deed, NEAR finds evidence of local jamming despite the
experimental bias that discards jammed ribosomes. We re-
mark that the high TIE and TEE values at the first 10
codons could also be attributed to the nature of Ribo-seq
that exclude disome footprints; a recent study by Diament
et al. (17) in fact showed that the largest concentration of
disomes in S. cerevisiae is at the first 10 codons.

Finally, we note that some transcripts show a significant
number of rejected codons whose estimated k; cannot be
considered reliable (see Supplementary Figure S1). In those
cases the best estimate we have for k; is the mean-field
approximation that neglects correlations between closely
spaced ribosomes. Consequently, TIE and TEE may be-
come less reliable, too. Interestingly, transcripts with many
rejected codons generally display low values of TIE and
mean TEE (Figure 8B). There seems to be a connection be-
tween how well the TASEP fits the ribosome profiling data
and the extent of ribosome traffic that needs further inves-
tigation.

To summarize, we have developed a model-based method
for inferring codon-specific elongation rates (relative to the
initiation rate) from ribosome profiling data. In addition,
we have proposed new measures of translation initiation
and elongation efficiencies that quantify the extent of ribo-
some traffic in vivo and can be used to compare different
genes and experimental conditions. We believe these new
scores will complement the standard indices of translation
efficiency and will contribute to the understanding of this
complex biological process.

Despite the tremendous importance and potential of ri-
bosome profiling, our work emphasizes its limitations when
deciphering translation dynamics such as the lack of quan-
tification in physical units and the lack of absolute time
scales. These challenges have been recognized and steps
have been made recently to combine Ribo-seq with other
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methods for absolute quantification such as RNA-seq with
spike-ins (1) and pulsed stable isotope labelling of amino
acids (18). Future developments of NEAR will include
these data to obtain a more detailed view on translation
dynamics. Another key question that quantitative studies
using ribosome profiling should address in the future is the
role of density normalization in order to better compare the
outcome of different genes and of different organisms.
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