Fungal exposome, human health, and unmet needs: A 2022 update with special focus on allergy

Joana Vitte1,2 | Moïse Michel1,2,3 | Andrei Malinovschi4 | Marco Caminati5 | Adeyinka Odebode6 | Isabella Annesi-Maesano1 | Davide Paolo Caimmi1,7 | Carole Cassagne8 | Pascal Demoly1,7 | Enrico Heffler9,10 | Estelle Menu8 | Bright I. Nwaru11,12 | Youssouf Sereme2,13 | Stéphane Ranque8 | Monika Raufl14 | Wojciech Feleszko15 | Christer Janson16 | Carmen Galán17,18 | the EAACI Task Force on Allergic Bronchopulmonary Aspergillosis

1IDESP, University of Montpellier and INSERM, Montpellier, France
2MEPHI, IHU Méditerranée Infection, IRD, APHM, Aix-Marseille Univ, Marseille, France
3Immunology Laboratory, University Hospital Nîmes, Nîmes, France
4Department of Medical Sciences Clinical Physiology, Uppsala University, Uppsala, Sweden
5Asthma, Allergy and Clinical Immunology Section, Department of Medicine, University of Verona, Verona, Italy
6Department of Basic Science, Kampala International University, Kampala, Uganda
7Department of Pneumology, University Hospital of Montpellier, Montpellier, France
8VITROME, IHU Méditerranée Infection, APHM, Aix-Marseille Univ, Marseille, France
9Personalized Medicine, Asthma and Allergy Humanitas Clinical and Research Center IRCCS Rozzano, Rozzano, Italy
10Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
11Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
12Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
13Department of Immunology, Infectiology and Hematology, Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Université Paris Descartes, Paris, France
14Department of Allergology and Immunology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
15Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland
16Department of Medical Sciences Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
17International Campus of Excellence on Agrifood (ceiA3), University of Cordoba, Córdoba, Spain
18Andalusian Inter-University Institute for Earth System Research (LISTA), University of Cordoba, Córdoba, Spain

Correspondence
Joana Vitte, IDESP IURC, 641 Avenue du Doyen Gaston Giraud, 34093 Montpellier, France.
Email: joana.vitte@inserm.fr

Abstract
Humans inhale, ingest, and touch thousands of fungi each day. The ubiquity and diversity of the fungal kingdom, reflected by its complex taxonomy, are in sharp contrast with our scarce knowledge about its distribution, pathogenic effects, and...
INTRODUCTION

The fungal kingdom is an intrinsic component of the global environment and a prominent contributor to planetary health. 1–3 Fungi are also a major cause of human diseases, including type I (IgE), type III (IgG), and type IV (T cells) hypersensitivity. 4 Long-known unmet needs in the field of fungal hypersensitivity are increasingly addressed by new technologies, as highlighted in EAACI position papers. 5–7 The aim of this position paper is to summarize our current understanding of fungi, their place in the human exposome, their involvement in hypersensitivity diseases, and to provide an overview of the tools available for their investigation and of the currently unmet needs.

The fungal kingdom comprises ubiquitous heterotrophic eukaryotes, which possess chitin in their cell walls, feed through osmotrophy, and are specialized in the decomposition and recycling of organic material. 8–10 The fungal and animal kingdoms share a common ancestor. 9 Fungi engage in intra- or interkingdom symbiotic interactions, for example, with algae in lichens or with plants in mycorrhizae. 10,11 Fungal systematics is complex, 12 but genomic technologies supported an extensive update of the classification and taxonomy of the fungal kingdom since 2011. 13,14 Fungi can be either unicellular, such as yeasts, or multicellular, forming filaments called hyphae (filamentous fungi). Filamentous fungi may present as mushrooms (e.g., Coprinus), poly pores (e.g., Ganoderma), smuts (e.g., Ustilago), exhibit a fuzzy appearance typical of molds (e.g., Penicillium), and more. The ubiquity and diversity of fungi reflect those of the living world: spores of several fungal species have been detected in samples collected in arctic or desert areas, 15 and the number of fungal species has been estimated at 3.8 million, 16 most of them still unknown today. As a result, humans are exposed to fungi each day during their entire lifetime.

Fungi evolved to feed on virtually every complex molecule in any ecological niche, reducing it to simple units able to re-enter the nutrition chains. In doing so, fungi selected an evolutionary pathway characterized by complexity and mobility, through the efficient use of multiple developmental stages and enzyme secretion in the environment. 11 Fungi do not ingest the organisms they are feeding upon but release lytic enzymes able to process macromolecules into small nutrients. Ingested nutrients allow fungal growth and the production of mobile, airborne forms conveyed to new locations. Leftovers such as secreted components and previous developmental forms persist in the environment, explaining the ubiquity and abundance of fungal components.

Although fungi bear pathogen-associated molecular patterns (PAMPs), which are ligands for the host’s innate immune pattern recognition receptors (PRRs), most interactions between fungi and the human host do not result in disease. Instead, a fungal disease usually manifests in susceptible hosts. Infection is often associated with immune deficiency, while type I hypersensitivity occurs mainly in atopic patients. 17,18 Depending on the ability of a given fungus to grow at human body temperature (thermotolerant fungi) or not (mesophilic fungi), the pathogenic threat posed to the human host is either both infectious and allergic, or allergic only. Typical examples of medically important thermotolerant fungi are Aspergillus fumigatus and Candida albicans, while Alternaria alternata and Cladosporium herbarum are typically mesophilic. 19

The third form of fungi-related disease is caused by mycotoxins, small molecules produced by fungi as means to secure their feeding environment. Mycotoxins are potentially harmful when they are ingested from contaminated stored foods. As opposed to diseases related to airborne fungal forms, mycotoxin exposure other than through ingestion is not considered causal for mycotoxin-related diseases. 20

Fungal antigens are characterized by intrakingdom specificity, with a relation between the fungal systematics and immunoglobulin (Ig) E sensitization pattern. 20 Many fungal proteins have evolved for specific functions associated with heterotroph nutrition. The degree of homology reflects phylogenetic distance. 21 There is extensive cross-recognition of fungal antigens, contributing to clinical cross-reactivity manifested as hypersensitivity symptoms related to exposure to various fungi, and biological cross-reactivity when skin or laboratory tests are performed for fungi-specific IgE and IgG. 22 Cross-reactivity between fungi and organisms from other domains of life is limited. A prominent exception is chitin, a carbohydrate component of the fungal cell wall, but also of insect and arachnid (house dust mites, crustaceans) exoskeleton. 20,23 However, other examples of medically
relevant cross-reactivity exist, for example, between the skin resident yeast Malassezia (M.) sympodialis and human host proteins. 24

Fungal taxonomy is complex and still evolving. The main allergenic genera and species belong to three of the 10 fungal phyla currently described: Ascomycota (comprising Candida, Alternaria, Aspergillus, Penicillium, Trichophyton, and among other genera), Basidiomycota (e.g., Rhodotorula and Ustilago), and Mucoromycota (classified until recently as part of the former phylum Zygomycota) (e.g., Mucor)10,25 (Table 1). Inside each phylum, phylogenetic relationship explains allergen cross-reactivity at the level of genera and species. 21 The following sections bring further detail to these topics.

2 WHAT IS A FUNGUS?

Fungi are eukaryotic, heterotrophic, mainly aerobic organisms, possessing chitin in their cell walls, ergosterol in their plasma membranes, typical eukaryotic 80S ribosomes, that are able to produce lysozyme. 26–28 Fungi that display unicellular vegetative forms are called yeasts. 26 Most yeasts belong to the group of dimorphic fungi, defined on the basis of their ability to develop either as yeasts and related unicellular forms, for example, spherules and adiaspores, or as multicellular filamentous fungi, depending on physicochemical conditions and nutrient availability. 27,28 Yeasts reproduce through budding, while filamentous fungi display hyphae in a mycelium and produce spores. 26,27

Dimorphism manifests in species across the fungal phyla, supporting the view that it evolved multiple times. 28 The main trigger of

<table>
<thead>
<tr>
<th>Table 1: Overview of the current classification of fungi at the phylum level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal phylum</td>
</tr>
<tr>
<td>Ascomycota</td>
</tr>
<tr>
<td>Basidiomycota</td>
</tr>
<tr>
<td>Blastocladiomycota</td>
</tr>
<tr>
<td>Chytridiomycota</td>
</tr>
<tr>
<td>Cryptomycota</td>
</tr>
<tr>
<td>Microsporidia</td>
</tr>
<tr>
<td>Mucoromycota</td>
</tr>
<tr>
<td>Olpidiomycota</td>
</tr>
<tr>
<td>Sanchytriomycota</td>
</tr>
<tr>
<td>Zoogomycota</td>
</tr>
</tbody>
</table>

Note: Phyla comprising established allergenic species are shown in bold font. References 9,11,12,19,25,74,79, allergen.org, and PubMed pubmed.ncbi.nlm.nih.gov/search for (phylum name) AND (hypersensitivity) OR (allergy) OR (IgE) OR (occupational) accessed July 24th, 2022.
TABLE 2 Examples of yeasts involved in hypersensitivity reactions and/or infections in humans

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Genus, species</th>
<th>Hypersensitivity/Allergy</th>
<th>Infection</th>
<th>Component of healthy human microbiome</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Candida (e.g., C. albicans, C. boidinii)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>A</td>
<td>Saccharomyces (e.g., S. cerevisiae)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>A</td>
<td>Geotrichum (e.g., G. candidum)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>Malassezia (e.g., M. sympodiis, M. furfur, M. globosa)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>Trichosporon spp</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>Rhodotorula (e.g., R. mucilaginosa)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>M</td>
<td>Rhizopus (e.g., R. microsporus, R. oryzae, R. stolonifer)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (infrequent)</td>
</tr>
<tr>
<td>M</td>
<td>Mucor (e.g., M. racemosus)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>A</td>
<td>* Blastomyces dermatitidis*</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Coccidioides (e.g., C. immitis, C. posadasii)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Emmonsia (e.g., E. parva)</td>
<td>No</td>
<td>Yes</td>
<td>Yes (infrequent)</td>
</tr>
<tr>
<td>A</td>
<td>Emergomyces (e.g., E. africanaus)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Histoplasma (e.g., H. capsulatum)</td>
<td>No</td>
<td>Yes</td>
<td>No (reported in HIV-infected subjects)</td>
</tr>
<tr>
<td>A</td>
<td>Paracoccidioides (e.g., P. brasiliensis, P. lutzii)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Sporothrix (e.g., S. schenckii)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>Talaromyces marneffei</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Cryptococcus (e.g., C. neoformans, C. gattii)</td>
<td>No</td>
<td>Yes</td>
<td>No (infrequent)</td>
</tr>
</tbody>
</table>

Note: Yeasts are fungal unicellular vegetative forms. They are found as constituents of both the external exposome (natural and anthropic environment) and of the internal exposome (commensal mycobiome). Some yeasts are responsible for infections and/or hypersensitivity reactions. References 6,17,22,28–30,32,34,40,48,112,152,154 and PubMed pubmed.ncbi.nlm.nih.gov/search for (genus name) OR (species name) AND (hypersensitivity) OR (allergy) OR (IgE) OR (occupational) OR (infection) OR (mycobiota) accessed July 24th, 2022. A, *Ascomycota*, B, *Basidiomycota, M, Mucoromycota*.

Inflammation in healthy volunteers their impact on human health is still controversial. Given their characteristics mentioned above, fungi are key constituents of the human exposome and further research is needed to evaluate and characterize the impact of fungal exposome on human health and use the data for risk assessment.

3 | FUNGAL EXPOSOME

Worldwide, fungi are an increasingly acknowledged part of the human exposome, both external5,27 and internal as microbiome components collectively named mycobiota (Figure 1). The external, or environmental, part of the fungal exposome may be divided into outdoor and indoor categories, with many shared features but also with many differences in terms of composition, variation, and potential interventions.

Indoor and outdoor fungal exposures shows geographical, seasonal, and urban versus rural variability and induces immune responses and health effects, often respiratory and allergic, that may start in infancy. In fact, human–fungus interactions extend from medicine and pharmacy to leisure activities, agriculture, food processing, industry, and even interplanetary travels.

Currently, allergenic molecules from more than 40 fungal genera have been characterized (www.allergen.org, accessed July 25th, 2022), but molecular data are still lacking for many environmental fungi (Table 3). Cross-reactivity between fungal allergens may help to identify some, but not all, fungal sensitization outside of the available extracts and molecules.

3.1 | External exposome

Airborne fungi and subcellular components originate from diverse sources, for example, soil, plants, animals, and water. Fungal spores are distributed by physical mechanisms of gravity, wind, water, and animals. Airborne particles originating from biological sources (viable and nonviable e.g., bacteria, fungi, pollen, mites, dead tissues, and pieces of these materials or their metabolic products including endotoxins and mycotoxins) are called bioaerosols. Bioaerosols are ubiquitous; they originate mainly from soil and aquatic, animal, vegetal, and anthropogenic sources, become airborne and may travel long distances in the environment thanks to wind dispersal before sedimenting in so-called sinks, or settle, for example, on indoor surfaces or clothing.

Fungal spores, ranging from 1 to 30 μm in size, are major components of bioaerosols, where their release, time of flight, survival, and hence, fitness for subsequent growth follow a variety of pathways. Culture-independent studies have demonstrated a very high diversity of airborne fungal taxa. As an example, each dust sample...
Fungal exposome components and their interaction with the human host. Fungi are ubiquitous in the outdoor and indoor environment, originating in both natural (e.g., soil, water, living or decaying plants, and animals), and anthropic (e.g., food, buildings, and furniture) sources, and are collectively denoted as “external fungal exposome.” The internal fungal exposome consists of the fungal part of the microbiota, or mycobiota, comprising fungi found inside the human body or on its cutaneous and mucosal surfaces. The most prevalent fungal genera in the external and internal exposomes are shown. External and internal fungal exposomes interact, for example, daily inhalation and ingestion of fungi or fungal fragments. Fungi interact with other eukaryotes, such as Protistae, and with bacterial, viral and archaeal components of the mycobiota. The mucosal and systemic immune responses mounted by the host in presence of fungi may contribute to preserve health or induce fungal-related diseases. Lower left box: ± denotes inconsistently demonstrated airborne fungal genera (as opposed to ubiquitous ones).

Cladosporium, Alternaria, Eurotium, Epicoccum, Penicillium, and Sporobolomyces were detected in more than 90% of samples from Madrid. In more arid climate types, such as Karachi (Pakistan) and Kuwait, Cladosporium, Alternaria, Aspergillus, and Penicillium were also found among the top frequent airborne fungal spores, together with Curvularia and Periconia in Karachi and Cryptococcus, Candida, Schizophyllum, Fusarium, and Gliotinia in Kuwait. Finally, under tropical climates, airborne fungal spores were dominated by Cladosporium, Leptosphaeria, Coprinus, Aspergillus, and Penicillium in Havana (Cuba) using a culture-independent direct identification method and by Penicillium and Aspergillus in Nigeria using a culture-dependent approach. Under temperate climates, seasonal variations usually increase fungal abundance with higher temperatures and rainfall, such as during summer and fall. However, very high-temperature values may negatively affect the airborne fungal spores, as observed in Karachi and Lagos. Significant interannual variations in rainfall are common and associated with variations in airborne fungal abundance. Depending on the considered fungi, spore release may occur preferentially during the daytime, as observed for Alternaria, Cladosporium, Epicoccum, and Exosporium or at night, for example,
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Genus</th>
<th>Number of allergens</th>
<th>Serine-proteases</th>
<th>Ribosomal proteins</th>
<th>Peroxisomal proteins</th>
<th>Enolases</th>
<th>Thioredoxin and Thioredoxin-like</th>
<th>Heat-shock proteins</th>
<th>Cyclophilins</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycota</td>
<td>Alternaria</td>
<td>12</td>
<td>Alt a 15</td>
<td>Alt a 5, Alt a 12</td>
<td>Alt a 6</td>
<td>Alt a 3</td>
<td>Alt a 1 (unknown function)</td>
<td>Alt a 12,</td>
<td>Asp f 27</td>
<td>Asp f 1 (mitogillin family)</td>
</tr>
<tr>
<td></td>
<td>Aspergillus</td>
<td>38</td>
<td>Asp f 13, Asp fl 13, Asp o 13, Asp v 13, Asp f 18, Asp n 13</td>
<td>Asp f 8, Asp f 23</td>
<td>Asp f 3</td>
<td>Asp f 22</td>
<td>Asp f 28, Asp f 29</td>
<td>Asp f 19</td>
<td>Asp f 12</td>
<td>(unknown function), Asp f 4 (unknown function), Asp f 36 (triiodine phosphate isomerase)</td>
</tr>
<tr>
<td></td>
<td>Candida</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Cand a 3,</td>
<td>Cand a 3,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium</td>
<td>10</td>
<td>Cla c 9, Cla h 9</td>
<td>Cla h 5, Cla h 12</td>
<td>Cla h 6</td>
<td>Cla h 6</td>
<td>Cla h 8 (mannitol dehydrogenase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curvularia</td>
<td>4</td>
<td>Cur 1, Cur 14</td>
<td></td>
<td>Cur 1 2</td>
<td>Cur 1 2</td>
<td>Cur 1 3 (cytochrome c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epicoccum</td>
<td>1</td>
<td>Epi p 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fusarium</td>
<td>4</td>
<td>Fus p 9</td>
<td>Fus c 1</td>
<td>Fus c 2</td>
<td>Fus c 2</td>
<td>Fus c 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium</td>
<td>17</td>
<td>Pen b 13, Pen c 13, Pen ch 13, Pen ch 18, Pen o 18</td>
<td>Pen b 26, Pen cr 26</td>
<td>Pen c 3</td>
<td>Pen c 22</td>
<td>Pen c 19</td>
<td>Pen c 32 (peptidase lyase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stachybotrys</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sta c 3 (extracellular desoxyribonuclease)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichophyton</td>
<td>4</td>
<td>Tri r 4, Tri t 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulocladium</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ulo c 1 (Alt a 1 homologue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basidiomycota</td>
<td>Coprinus</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malassezia</td>
<td>13</td>
<td></td>
<td>Mala f 2, Mala f 3</td>
<td></td>
<td></td>
<td>Mala s 13, Mala s 10, Mala s 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psilocybe</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhodotorula</td>
<td>2</td>
<td>Rho m 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rho m 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schizophyllum</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sch c 1 (glucosaminase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucoromycota</td>
<td>Rhizopus</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rhi o 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rhi o 1 (aspartyl endopeptidase)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 120 21 9 6 6 5 5 4

Note: There are 120 fungal molecular allergens included in the IUIS/WHO nomenclature (www.allergen.org accessed July 24th, 2022): 95 for the Ascomycota phylum, 23 for Basidiomycota, and 2 for Mucoromycota (one species, Rhizopus oryzae, formerly a member of the Zygomycota phylum). Allergen families with the greatest count of validated members are shown, together with examples of allergens. The table is not exhaustive for fungal molecular allergens, nor for biochemical families thereof.
Contact with the external fungal exposome may also occur through direct contact with soil and water. An international study reported on culturable fungi found in the sand of 91 marine, oceanic and freshwater beaches from Europe and Australia. Notable differences were observed among European beaches, as well as between Europe and Australia. As an example, yeasts were found in abundance in sand samples from Sydney, Australia, but not in European samples, while Aspergillus spp were detected mainly in sand samples from the Mediterranean beaches and from Sydney, but not in samples from North European neither South-Western European beaches.

Indoor exposure is paramount, as most people now spend most of their time indoors. Fungi can be transported by dust particles, people, pets, and air ventilation systems into the indoor environment. The relative humidity and moisture content of building materials may also control to a certain level the fungal burden present on indoor materials. Water damage, defined as "a moisture problem caused by various leaks of water", is an essential contributor to indoor mold growth, often related to climatic events (e.g., floods, storms, and rising ocean levels) or poor housing standards, including older homes. Indoors, fungi can colonize virtually any material: walls, windows frames, furniture, carpets, books, wallpapers, and even spacecrafts. Biodeterioration due to fungal colonization poses additional health threats, both direct such as skin contact with fungi growing on documents from archives or libraries, and increased airborne spore and mycotoxin load, and indirect due to the toxicity of biocide treatments. However, the effect of indoor exposure to certain fungi might be beneficial, and a protective effect against wheeze in infants has been reported for culturable yeasts from indoor dust.

The abundance of indoor fungal spores shows geographic and seasonal variations related to exchanges between the outdoor and indoor environments, fungal growth, and meteorological conditions. The degree of exposure to indoor molds was estimated at 5%–10% under cold-temperate climates, and up to 30% in warmer climates.

Exposure to fungi also occurs at various workplaces. A distinction must be made between the intentional use of fungi and unintentional exposure to contaminated materials. The intentional use of fungi including molds and yeasts in workplaces is found in food production, pharmaceutical production, and microbiological laboratories. Representative of the fungal genus Penicillium, for example, Penicillium camemberti and Penicillium roqueforti, are found in ripen cheese and salamis and produce antibiotics. Multiple enzymes derived from Aspergillus oryzae or Aspergillus niger are employed during food processing, for example, α-amylase, cellulase, xylanase, glucoamylase in bakery, and pectinase and gluconase for fruit salad processing. In microbiology laboratories, workers may be exposed to fungi when growing and multiplying microorganisms. Many more workers encounter fungi, including molds and yeasts, unintentionally: farmers working in fields or keeping animals, waste processors sorting by hand in waste management, wood processors handling moldy wood, metal workers inhaling contaminated cooling lubricants, renovating houses, to name just a few areas.

Exposure to mushrooms, members of the fungal kingdom which are beyond the scope of the present paper, is also recognized as a cause of occupational hypersensitivity.

Despite the diversity of indoor molds, with more than 80 species currently described, and the fact that indoor air may be 70–100 times more contaminated than outdoor air, there are only four genera of significant importance: Aspergillus, Penicillium, Alternaria, and Cladosporium.

3.2 Internal exposome

Animal and plant microbiota contain a fungal component, the mycobionta; conversely, fungi possess their own microbiota. The diversity and make-up of fungal communities vary as a function of the considered anatomical site, of age, health status, lifestyle, and exposure. Cross talk between fungal and bacterial components of the microbiota and between each of them and the host are essential for sustained commensalism. The identification of fungal species associated with human mucosae and skin needs to be complemented by demonstrating their transient or resident status, the latter allowing recognition as genuine members of the mycobionta. The most prevalent fungal genera in the healthy gut are the yeasts Saccharomyces, Malassezia, Candida, and Cyberlindnera. In fact, the question of a gut mycobionta, defined as persistent commensal fungal species detected in stools but not in oral or food samples, is still open. Indeed, all gut fungal species were found to be transient in experiments performed with healthy Western adults, raising the hypothesis that, at least in this population, fungal colonization might be lacking. Strikingly, frequent fungal taxa associated with oral, pulmonary, intestinal, or cutaneous locations, such as Aspergillus, Cladosporium, Alternaria, or Penicillium overlap with environmental counterparts described in the previous section. On the contrary,
even if fungi do not colonize the healthy human host, their ubiquitous presence results in sustained contact and, therefore, the need for an adaptive immune response, often a Th17-oriented one. A special case could be represented by breastmilk mycobiota, which comprises *Malassezia*, *Penicillium*, *Davidiella*, and *Sistotrema* genera, possibly explaining the abundance of yeasts from the *Malassezia* genus in the neonatal and young infant gut mycobiota. It was suggested that the establishment of gut mycobiota could begin prior to birth, that fungal species in infant gut exhibit high variability during the first year of life, with *Saccharomyces* yeasts being the preponderant fungal component of gut mycobiota at the age of 1 year, and that altered abundance of certain gut fungi in infants is predictive of later development of allergic diseases. Interestingly, in a multicentric birth cohort from Canada, decreased relative abundance of yeasts from the genera *Candida* and *Saccharomyces* but increased relative abundance of *Cladosporium* and *Aspergillus* was found in the gut of 1-year-old infants who later developed inhalant atopy. Among fungi associated with human skin, lipophilic yeasts of the *Malassezia* genus are the predominant constituent of skin mycobiota. *Malassezia* species, mainly *M. sympodialis*, are probably the most important in terms of relationship to allergy and atopy especially in the development and progression of atopic dermatitis, explained by cross-reactivity between conserved eukaryotic proteins, such as thioredoxins (e.g., Mala s 13), manganese superoxide dismutase (Mala s 11), and cyclophilin (Mala s 6) being potential panalergens, found in fungi and humans. Other constituents of the skin mycobiota include *Candida* spp and *Aspergillus* spp.

3.3 Tools for studying the fungal exposome

Collecting, storing, and conveying environmental or human samples for fungal assessment are critical steps. This preanalytical stage needs to be planned and performed according to the desired sample nature (bioaerosol, house dust, skin, and feces), to the environment (temperature, wind, relative humidity, and building material) or personal conditions (adult vs. child and professional vs. home exposure), and to the purpose of the study (e.g., epidemiological study vs. examination of a patient’s case). Sampling and analytical methods for external exposome assessment may vary in terms of sensitivity and specificity, depending on the environment, for example, indoor air sampling from hospital settings, homes, or working places. So far, standardized collection methods are lacking, hindering comparison even for samples of the same nature.

Environmental samples may be analyzed by culture-dependent and culture-independent approaches. The former requires in vitro growth of fungal samples prior to identification, while the latter proceeds with spore and sub-spore fragments identification, either through microscopy analysis or through molecular methods. For most environmental fungal taxa, culture cannot be achieved. On the contrary, for those growing in vitro, their growth rate will depend on the type of fungal culture and the nutrient media in use. Microscopic examination allows for quantitative assessment of samples and low taxonomical detection of taxa which is a less precise approach. Immunological detection of molds using specific enzyme-linked immunoassay (ELISA) is also possible. Alternatively, DNA-based approaches such as PCR targeting taxonomic marker sequences, or DNA metabarcoding, allow the identification of considerably higher taxonomic biodiversity within the collected samples. However, this new technology also has some shortcomings, including primer bias which can heavily alter sequencing results, or the fact that taxonomic marker sequences are not directly related to the identification of a fungal species, therefore introducing the need for operational taxonomic units. The usage of DNA-based procedures for characterizing environmental fungal communities includes application of PCR amplification of ribosomal RNA genes and DNA fingerprinting methods such as denaturing gradient gel electrophoresis (DGGE), which uses a genetic fingerprinting method to examine microbial communities from environmental samples. These methods provide a broad quantification of fungi identified from the environment. The metagenomic approach also allows the study of external fungal exposome.

A third approach gaining momentum addresses fungal exposome using statistical modeling of airborne particles based on the study of air-mass movements categorized in spatio-temporal patterns of connectivity. This approach might alleviate the labor-intensive classical identification of airborne fungal spores, and eliminate the potential bias linked to the choice of the air sampling site.

Studies on human mycobiota have taken advantage of the culturomics approach, which can be combined with molecular methods such as metagenomic deep sequencing, allowing the identification of more fungal taxa in patients and healthy controls.

4 Overview of major fungal-related hypersensitivity diseases

Fungus–human host interactions involve a combination of hypersensitivity, toxicity, and opportunistic infections. Indoor and outdoor exposure to fungi is ubiquitous and altered by climate change. Referring to Gell and Coombs’ classification, this section addresses type I (IgE), III (IgG) and IV (T-cell) fungal hypersensitivity, and underlying immune mechanisms, for example, type 2 innate and adaptive immunity.

4.1 Upper airways: Allergic fungal rhinosinusitis (AFRS)

AFRS is a unique form of immune-mediated non-invasive fungal rhinosinusitis exhibiting a dysfunctional epithelium and prominent type 2 responses with eosinophilic inflammation and local production of IgE with broad cross-reactivity among fungal species. Among AFRS patients, more than 50% displayed serum IgE directed to two or more fungal genera among *Aspergillus fumigatus*, *Alternaria alternata*, and *Candida albicans*. Its prevalence is definitely higher in arid and tropical climates, such as in the Asia-Pacific region, Australia,
Thailand, Malaysia, India, the Middle East, Saudi Arabia, North Africa, and Southeastern and Southwestern parts of the United States, especially the Mississippi basin. Climate influence is prominent, as demonstrated by a prevalence of 0.4% in Northern US states compared with over 10% in Southern ones. Aspergillus fumigatus is the most frequent fungus involved in AFRS.4,10,11

4.2 Lower airways

4.2.1 Asthma

Fungi possess a rich equipment of proteases, which may contribute to the disruption of bronchial epithelial tight junctions, an early step in the pathophysiology of asthma linked to epithelial dysfunction and increased risk of sensitization. Subjects sensitized to thermotolerant fungi such as Aspergillus spp (filamentous) and Candida spp (yeast), which induce sensitization and can persist as colonizing, cultivable organisms are at high risk of developing chronic severe lung disease, including life-threatening asthma, bronchiectasis, and lung fibrosis. Conversely, mesophilic mold-related lung diseases typically manifest as respiratory exacerbations. Examples are Aspergillus fumigatus-related fungal asthma, as opposed to Alternaria alternata-related asthma attacks in the aftermath of summer storms. With respect to Aspergillus fumigatus, it has been demonstrated that both specific IgE production (sensitization) and airway colonization (cultivable mold present in bronchial samples) are associated with lung function deterioration. In adults from the European Community Respiratory Health Survey (ECRHS), sensitization to Alternaria was associated with severe asthma and a decrease in lung function, especially in women; also, sensitization to molds (Cladosporium and Alternaria) was more prevalent in individuals living in damp dwellings and related to current asthma. In pediatric asthma, mold sensitization related to impaired pulmonary function and increased airway hyperresponsiveness. In adults with severe asthma, multiple fungal sensitizations are related to poorer asthma control. Conversely, Aspergillus fumigatus specific IgG has not been associated with modified clinical outcomes in asthma, in the absence of ABPA or HSP.

In occupational settings, asthma has been associated with a variety of fungal exposures, for example, the yeast Saccharomyces cerevisiae and occupational baker's asthma, or fungal enzymes employed in food processing. Fungal dysbiosis may also influence the risk of asthma, as infants harboring an increased relative abundance of yeasts from the genera Candida and Rhodotorula in their gut were at higher risk of later development of asthma.

4.2.2 Allergic bronchopulmonary mycosis (ABPM)

ABPM is probably the most severe allergic fungal diseases. It is typically induced by Aspergillus fumigatus (ABPA), often recognized...
during an episode of respiratory exacerbation in asthma or cystic fibrosis patients and involving an exuberant anti-fungal type I and type III hypersensitivity response.4,9,4,10 The allergic response comprises eosinophilic inflammation and high levels of total and A. fumigatus-specific IgE. The IgE response is a major diagnostic criterion for ABPA, often accompanied by high A. fumigatus-specific IgG responses as a minor diagnostic criterion, while the demonstration of A. fumigatus bronchial colonization is required in some diagnostic scores.109-111

ABPA natural history consists of sequential flare and remission episodes leading to irreversible lung damage with central bronchiectasis and fibrosis if not appropriately treated.

In addition to Aspergillus spp, other filamentous fungi, for example, Penicillium spp, Schizophyllum commune, but also yeasts such as Candida spp may be responsible for ABPM (4110).

4.3.1 Hypersensitivity pneumonitis (HSP)

HSP is an interstitial lung disease developing in susceptible individuals as a result of an immune-mediated response to inhaled environmental antigens.35,40 Fungal antigens are among the most frequent culprits, for example, Aspergillus spp, Alternaria spp, Cladosporium spp, Penicillium spp, Fusarium spp, Trichosporon spp, Saccharomycetes spp, and Mucor spp, Rhizopus spp (water damage, hot tub, farming, gardening, food industry employment, wind musical instruments etc).35,40 Fungal-related HSP usually presents as chronic HSP due to prolonged exposure to fungal material, in an occupational setting, at home, or during leisure activities and manifests as lung functional deterioration.40,42 From a mechanistic viewpoint, the pathogenesis of HSP does not involve type 2 responses, but an inflammatory reaction with granuloma formation, exaggerated cellular responses and the production of antigen-specific IgG which can be measured in the serum during diagnostic work-up.35,40

5 | OVERVIEW OF DIAGNOSTIC TOOLS FOR FUNGAL HYPERSENSITIVITY DISEASES

Diagnostic work-up of fungal hypersensitivity diseases is often complex, requiring a multistep investigation with a combination of clinical, imaging, and laboratory tools sometimes complemented by therapeutic response analysis.

5.1 Clinical and imaging tools

Lung function test in ABPA often shows the features of uncontrolled asthma with airflow obstruction with or without airway bronchodilator reversibility. In HSP, a restrictive pattern is often found in combination with a decrease in the carbon monoxide transfer test117 (Table 4).

Computed tomography of the chest is used to diagnose both ABPA and HSP. In ABPA, central bronchiectasis is a common finding of relatively late onset and high attenuation mucus is pathognomonic.118 While in HSP, the most common finding is a patched ground glass pattern.117 The limited studies on magnetic resonance imaging (MRI) did not provide evidence for any added diagnostic value of these investigations.119 Imaging, in particular, tomographic assessment of thoracic fungal diseases has proven specificity, with patterns and particular signs well described and adopted in clinical practice.115

Exhaled nitric oxide, a marker of type 2 inflammation, appears to be elevated in cystic fibrosis patients suffering from ABPA compared with Aspergillus-sensitized cystic fibrosis patients. Therefore FeNO (fractional exhaled nitric oxide) might have a role as a diagnostic test in the context of cystic fibrosis.120

The study of exhaled air led to the emergence of “breathomics,” which provides noninvasive analysis of exhaled air signatures.121
Using an electronic nose technology, chronic lung diseases comprising asthma and COPD were phenotyped as a function of their inflammatory profile. Applications to exhaled fungal VOC have been proposed for fungal-related diseases, such as Aspergillus infections and volatile profiles for Candida species, but applications in the field of fungal hypersensitivity are lacking.

5.2 | Laboratory tools

Evidence of IgE responses and eosinophil involvement support a type I hypersensitivity mechanism, while mycological evidence of fungal persistence is more challenging to obtain. Particularly in the case of HSP and ABPA, the determination of specific antifungal IgG (A. fumigatus-specific IgG in the case of ABPA) is an additional useful diagnostic tool.

5.2.1 | Mycology

The detection of fungi at various human body sites, their identification at the species level, the quantification of the fungal burden and the assessment of their in vitro susceptibility or resistance to antifungal drugs are collectively denoted as a mycological diagnosis in the clinical laboratory. The demonstration of fungi in clinical samples requires a variety of methods to address the diversity of this kingdom, for example, unicellular (yeasts) vs. multicellular, filamentous hyphae, their geographical diversity, and regional differences in medical and laboratory practice.

Conventional mycological diagnosis relies on the macroscopic and microscopic assessment of fresh and culture samples. Direct examination of fresh samples aims at recognizing characteristic features, such as fungal hyphae. Inoculation on fungal growth media, followed by 5–7 days of incubation yields colonies further identified at the species level using MALDI-TOF Mass Spectrometry and a specialized fungal reference spectra database. Additional examination and analysis can be achieved by microscopic (direct, optical, or electronic) and molecular methods.

Soluble fungal antigens can be detected in fluid samples. The most widely used are (1→3)-β-D-glucan, considered a pan-fungal cell wall marker, and galactomannan, mainly released during Aspergillus spp hyphal growth. High levels of Asp f 1, a major and marker allergen of Aspergillus fumigatus, in resected nasal polyps from patients with chronic rhinosinusitis with nasal polyps, were associated with increased markers of type 2 immune responses and might contribute to the diagnosis of AFRS.

5.2.2 | Cytology and pathology

From a pathophysiological viewpoint, direct evidence of an eosinophilic type 2 inflammation associated with and attributed to a fungus is compelling evidence for ongoing fungal allergic disease. Direct microscopic examination of naso-sinusal, bronchial, or sputum samples may be performed in search of eosinophilic inflammation with fungal non-invasive colonization of thick mucus plugs. Eosinophils, eosinophilic inflammation markers such as Charcot-Leyden crystals, and fungal hyphae were recently proposed as pathognomonic for ABPA/ABPM.

5.2.3 | Hematology

Systemic or local eosinophilia is a hallmark of fungal allergic diseases. Eosinophils are readily counted and interpreted through a basic white blood cell count. The upper normal for the blood eosinophil count is set at 0.4 × 10^3/L to 0.5 × 10^3/L (500 elements/mm^3) but often used at lower cutoffs, such as 0.3 × 10^3/L or 0.15 × 10^3/L for type 2/non-type 2 stratification and therapeutic management. Eosinophilia is an inconsistent marker of a predominantly type 2 response, without specificity for ongoing fungal-related atopic disease. It is subject to variations related to comorbidities and ongoing treatments, especially corticosteroids.

5.2.4 | Immunology

Immunoglobin IgE or IgG responses and inflammatory mediators are markers of the fungal-host interaction. Such biomarkers are valuable endpoints of individual susceptibility because fungal

TABLE 4 Lung function and fungal diseases

<table>
<thead>
<tr>
<th>Obstructive syndrome</th>
<th>Restrictive syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic bronchopulmonary mycosis/aspergillosis</td>
<td>Paracoccidioidomycosis with ground-glass opacities</td>
</tr>
<tr>
<td>Severe asthma with fungal sensitization</td>
<td>Fungal pneumonia with consolidation; paracoccidiomycosis, histoplasmosis, acute coccidiomycosis, aspergillosis, mucormycosis, candidiasis</td>
</tr>
<tr>
<td>Occupational fungi-related asthma</td>
<td>Pleural effusion, for example, in mucormycosis</td>
</tr>
<tr>
<td>Hypersensitivity pneumonitis (infrequent)</td>
<td>Hypersensitivity pneumonitis</td>
</tr>
</tbody>
</table>

Note: Fungal hypersensitivity and fungal infections may alter lung function parameters and associate with a restrictive or obstructive syndrome. References 17.19,35,110,130.
exposure is not a direct predictor of health effects at the individual level.97 Eosinophil biomarkers such as eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) may assist with the stratification and therapeutic management of eosinophilic fungal-related diseases.138

In the ECRHS cohort of general adult population, indoor mold exposure was associated with a higher risk of adult-onset asthma, oculo-respiratory and general symptoms, as well as increased asthma severity scores, predicted by higher levels of IgE and of the eosinophil biomarker ECP.75–77,139 Preexisting sensitization to airborne molds was associated with a higher risk of mold-related disease.35

Determination of fungal-specific antibody responses: IgE, IgG

Fungal sensitization: anti-fungal specific IgE. Sensitization is defined as detectable specific IgE using either skin prick tests or laboratory methods. According to current literature, the diagnosis of ABPA is possible when the level of specific IgE anti-\(A.\) fumigatus is greater than 0.35kUA/L and probable when the value is equal to or greater than 20kUA/L.109,132,133,134–142

Quantitative laboratory IgE methods allow dynamic monitoring and cross-reactivity assessment.94,133,134,136,143 Given the variations in fungal extract preparation and intermethod variability (Figure 3), dynamic monitoring must rely on the same method.

Identifying the primary fungal sensitizer is an essential step because of the extensive cross-reactivity among whole fungal extracts for skin and IgE tests. It is performed using molecular allergens for in vitro diagnostics, which is currently limited to a handful of molecules, mainly from the filamentous fungi \textit{Aspergillus fumigatus}, \textit{Aspergillus oryzae}, \textit{Alternaria alternata}, \textit{Cladosporium herbarum}, and the yeast \textit{Malassezia sympodialis}.

A complementary approach for improving the specificity of fungal sensitization assessment relies on functional assays similar to an ex vivo provocation test, carried out using a sample of the patient’s circulating basophils, the culprit allergens, and flow cytometry.144,145 Good sensitivity and specificity were reported for select indications of fungal involvement, such as ABPA or cholinergic urticaria, in small population samples.135,136,147

Fungal serology: anti-fungal specific IgG. Since fungi are ubiquitous, detecting antifungal-specific IgG in the blood of individuals free of fungal disease is common. Fungi of the commensal microbiota, for example, from gut or skin, induce detectable systemic IgG, which contribute to protection against pathogenic fungi.148 High concentrations of antifungal-specific IgG may support the diagnosis of ABPA/ABPM and HSP. In contrast to specific IgE, IgG concentrations in healthy individuals vary greatly depending on the antigen; therefore, reference values have to be established for each antigen.149

The diagnostic performance varies as a function of culprit organism, reference population, exposure, and diagnostic methods.35,94,150 The latter comprise multiple technical solutions with heterogeneous diagnostic performance, for example, in-house and automated ELISA and EIA, Western blot, lateral flow assays, immunoprecipitation.94,150 In-house assays and “precipitin” detection are gradually discontinued in clinical laboratories and replaced with new methods.151 As an example, a rapid lateral flow (immunochromatographic) test exhibited sensitivity of 79% for serological ABPA and 93% for ABPA with bronchiectasis and specificity of 81% or higher for the detection of anti-\textit{Aspergillus} IgG.150

6 | UNMET NEEDS

The diversity and abundance of the fungal exposome stands in contrast with the unmet needs in knowledge and methods related to fungal effects on human health.

6.1 | Unmet scientific needs

1. Little is known about the prevalence, specificity, patterns, and temporal changes of sensitization to most airborne fungi.

We suggest tackling the fungal sensitization landscape, defined as the detectable IgE sensitization, its molecular targets and the putative clusters of relevant allergen families among a panel of fungal allergens. This panel should aim to fully represent the fungal exposome and its longitudinal evolution. Harnessing expertise in fungal ecology, fungal culture requirements, fungal allergen biochemistry including further characterization of allergens, cohort studies, fungus-induced immune responses, large-scale analysis of allergen investigations, and big data analysis will be necessary.

2. Species of the airborne fungal exposome are differently distributed under different climate conditions.

Probing the climate-related variations of the fungal sensitization landscape through replication in sister cohorts would contribute to the translation of cohort data to personalized prediction of lung function evolution.

3. Fungal sensitization affects lung function, but data are available only for a small number of fungal species and with heterogeneous methodology.

This scientific barrier relates to translating mycological and immunological data into clinically relevant profiles and endotypes. An effective approach could be taken by assessing the fungal sensitization landscape in existing cohorts, for example, general population, specific allergic populations, and severe asthma.

4. Therapeutic options for fungal hypersensitivity diseases are limited.

Therapeutic management of fungal hypersensitivity diseases is outside the scope of the current work but deserves being mentioned.
as the end point of a medically oriented approach. Besides avoiding exposure to culprit fungi, corticosteroids, allergen immunotherapy, biologicals, and antifungals may be used, but sound validation and guidelines are often lacking.

6.2 | Unmet technical needs

1. Large-scale fungal identification, culture, and production

A major technical barrier hampering the study of fungal sensitization is the lack of stable, well-defined fungal material in sufficient amounts. A further issue is the high diversity of fungal spore morphology and subsequent difficulties in identification, which is more complex when compared with pollen. Involving highly specialized laboratories and networks with expertise in the discovery, identification, and optimal culture of environmental fungal genera and fungal allergy investigation is needed.

2. High-throughput, standardized, sensitive, and specific methods for investigating fungal sensitization

An obvious need is the standardization of the existing diagnostic tools. A miniaturized allergen multiplex assay would optimally address the highly diverse fungal exposome and allow comparison between research, translational, and clinical levels.

3. Investigating the relation between clinical and exposure data through an exposome approach requires high-power statistical analysis and multiple comparisons

Special computational and statistical software and skills are needed, such as environment-wise association studies, trajectory analyses and artificial intelligence.

7 | CONCLUSION AND PERSPECTIVES

The vast and largely uncharted field of the fungal exposome calls for a multidisciplinary approach including environmental science, allergology, immunology, mycology, pulmonary medicine, epidemiology, and biostatistics. The unmet needs in the domain of fungal exposome health effects and personalized medicine should be addressed with three concurrent front lines:

- Thorough clinical and exposure characterization aiming at the identification of further pathophysiology relevant species and molecules and a deeper understanding of their interaction with the host’s immune responses.
- Innovative biomarker assays allowing the personalized profiling of immune responses to fungal species and molecules.
- Advanced statistical analyses and epidemiological interpretation able to predict the health effects of ongoing fungal exposure and climate-related changes in the fungal exposome.
The results of this research would improve our understanding of the health effect of the fungal exposome, paving the way for improved diagnostic and therapeutic management of hypersensitivity to fungi, comprising allergic and nonallergic conditions, in the context of the current climate change and global need for sustainable housing.

ACKNOWLEDGMENTS
EAACI Working Group Infection and EAACI Working Group Aerobiology and Pollution for their contribution; Dr Zuzanna Łukasik, Department of Rheumatology, Ghent University Hospital, Belgium, for her help with the artwork of the manuscript.

FUNDING INFORMATION
This publication was supported by the EAACI Task Force “Diagnosis and Management of Allergic Bronchopulmonary Aspergillosis.”

CONFLICT OF INTEREST
JV reports speaker and consultancy fees in the past 5 years from Meda Pharma (Mylan), Novartis, Sanofi, Thermo Fisher Scientific, Astra Zeneca outside the submitted work. MR reports speaker fees in the past 5 years from Leti and Thermo Fisher Scientific, outside the submitted work. The other authors declare no competing interests in relation to this study.

ORCID
Joana Vitte https://orcid.org/0000-0002-3344-9408
Moïse Michel https://orcid.org/0000-0002-0460-9898
Andrei Malinovski https://orcid.org/0000-0002-4098-7765
Marco Caminati https://orcid.org/0000-0001-7383-1487
Adeyinka Odebode https://orcid.org/0000-0002-6212-2930
Isabella Annesi-Maesano https://orcid.org/0000-0002-6340-9300
Davide Paolo Caimmi https://orcid.org/0000-0003-4481-6194
Carole Cassagne https://orcid.org/0000-0001-6034-6423
Pascal Demoly https://orcid.org/0000-0001-7827-7964
Enrico Heffler https://orcid.org/0000-0002-0492-5663
Estelle Menu https://orcid.org/0000-0002-0681-8431
Bright I. Nwaru https://orcid.org/0000-0002-2876-6089
Youssof Sereme https://orcid.org/0000-0002-5607-1460
Stéphane Ranque https://orcid.org/0000-0003-3293-5276
Monika Rauf https://orcid.org/0000-0001-6315-120X
Wojciech Feleszko https://orcid.org/0000-0001-6613-2012
Christre Janson https://orcid.org/0000-0001-5093-6980
Carmen Galán https://orcid.org/0000-0002-6849-1219

REFERENCES

How to cite this article: Vitte J, Michel M, Malinovschi A, et al. Fungal exposome, human health, and unmet needs: A 2022 update with special focus on allergy. Allergy. 2022;77:3199-3216. doi: 10.1111/all.15483