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Abstract 1

Even when environments deteriorate gradually, ecosystems may shift abruptly from one state to 2

another. Such catastrophic shifts are difficult to predict and reverse (hysteresis). While well studied 3

in simplified contexts, we lack a general understanding of how catastrophic shifts spread in realistic 4

spatial contexts. For different types of landscape structure, including typical terrestrial modular and 5

riverine dendritic networks, we here investigate landscape-scale stability in metapopulations made 6

of bistable patches. We find that such metapopulations usually exhibit large scale catastrophic shifts 7

and hysteresis, and that the properties of these shifts depend strongly on metapopulation spatial 8

structure and dispersal rate: intermediate dispersal rates and a riverine spatial structure can largely 9

reduce hysteresis size. Interestingly, our study suggests that large-scale restoration is easier with 10

spatially clustered restoration efforts and in populations characterized by an intermediate dispersal 11

rate. 12
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Introduction 13

As humans exert increasing pressures on ecosystems, understanding how they respond in terms of 14

biomass, species diversity and composition is one of the most pressing issue in ecology. Importantly, 15

some ecosystems can exhibit abrupt responses to gradual changes in environmental conditions 16

(Noy-Meir, 1975; May, 1977; Scheffer et al., 2001). Such responses, referred to as “catastrophic 17

shifts”, are usually attributed to the existence of multiple stable ecosystem states between which 18

ecosystems can shift following a perturbation or when a threshold in environmental condition, or 19

“tipping point” is passed (Suding et al., 2004; Kéfi et al., 2007b, 2016). Reverting the ecosystem to its 20

initial state after a shift can be challenging if not impossible, a phenomenon known as “hysteresis”. 21

Catastrophic shifts have been described in various ecosystems all over the world (Biggs et al., 22

2018). Common examples include the eutrophication of shallow lakes (Scheffer et al., 1993; Meijer 23

et al., 1994; Scheffer et al., 1997; Carpenter et al., 1999; Jeppesen et al., 1999), the degradation of 24

coral reefs (Done, 1992; Knowlton, 1992; McCook, 1999; Nyström et al., 2000), the transitions 25

between woodlands and savannas (Dublin et al., 1990; Wilson and Agnew, 1992; Walker, 1995) and 26

the desertification of grasslands (Kassas, 1995; Rietkerk et al., 1997; Nicholson, 2000; Wang and 27

Eltahir, 2000; Reynolds et al., 2007; Kéfi et al., 2007a). Because they are difficult to predict and 28

reverse (Scheffer and Carpenter, 2003) and because they can negatively affect human livelihoods 29

(Reynolds et al., 2007; Biggs et al., 2018), catastrophic shifts have gained a large interest in the 30

literature, providing us with a theoretical framework rooted in bifurcation theory to describe the 31

most common catastrophic shifts (e.g., desertification: Noy-Meir 1975; May 1977; Rietkerk and 32

van de Koppel 1997; Klausmeier 1999; Kéfi et al. 2007b,a; or shallow lakes eutrophication: Scheffer 33

et al. 2001; Carpenter et al. 1999). 34

However, early theoretical work on catastrophic shifts mainly focused on isolated systems (but 35

see Keitt et al., 2001; van Nes and Scheffer, 2005). Real ecosystems are networks of connected 36

entities between which matter and energy can flow (Leibold et al., 2004). This means that if one of 37

these entities experiences a catastrophic shift locally, this shift can spread through the spatial network 38

and possibly trigger other shifts. Scaling up our understanding of catastrophic shifts from the local 39
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scale to the regional scale remains a challenge. In particular, whether local multistability implies 40

regional multistability or whether different stable states can coexist in space (spatial multistability) 41

and how this is modulated by a landscape’s spatial structure are still open questions. Recent studies 42

have started to address these questions by including space explicitly in models, under two main 43

settings: i) in continuous space, which is well suited to relatively homogeneous habitats where clear 44

spatial entities are not easily identified (see the example of Lake Veluwe in van de Leemput et al., 45

2015), and ii) in discrete space, better representing habitats with clear spatial entities (or patches) 46

connected through dispersal of individuals and flows of resources (e.g., an archipelago such as the 47

Åland Islands in Hanski et al., 1995). As a consequence of these recent developments, we have a 48

good understanding of how locally bistable dynamics can affect the regional behaviour of spatially 49

structured ecosystems: alternative stable states are not expected to coexist in space (Keitt et al., 50

2001; van de Leemput et al., 2015), unless dispersal is low and space is discrete (Keitt et al., 2001), 51

or strong stochasticity and heterogeneity are at play (van Nes and Scheffer, 2005; Martı́n et al., 52

2015). A spatially structured system will experience sharp transitions between fully occupied and 53

fully empty states. These can usually not be called catastrophic shifts as regional bistability and 54

hysteresis are largely reduced due to the dominance of a single of the two possible stable states 55

(Keitt et al., 2001; Hilt et al., 2011; van de Leemput et al., 2015). However, all studies so far assume 56

overly simplified spatial structures, either 1-D (Keitt et al., 2001; van de Leemput et al., 2015) or 57

2-D continuous space (Martı́n et al., 2015), linear (Keitt et al., 2001; Hilt et al., 2011) or grid-like 58

(van Nes and Scheffer, 2005) discrete systems. This implies that we currently don’t know how 59

more realistic spatial settings affect landscape-scale stability. Indeed, in real ecosystems, suitable 60

habitat is usually neither continuous nor organized on a regular lattice but has a particular structure: 61

terrestrial populations, for example, usually show emergent modularity (Gilarranz, 2020) while 62

riverine systems are typically dendritic (Carraro et al., 2020; Rinaldo et al., 2020). Importantly, 63

these specific spatial configurations have been shown to affect ecological dynamics (Gilarranz et al., 64

2017; Altermatt and Fronhofer, 2018; Carrara et al., 2012). This omission of spatial complexity is 65

an important shortcoming of the current state of the literature as the properties of such habitats may 66
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change how local bistability affects regional scale dynamics and equilibria (van Nes and Scheffer, 67

2005; van de Leemput et al., 2015). 68

Here, we aim to fill this gap by studying how local bistability affects the regional scale dynamics 69

of spatially complex populations, using a metapopulation framework in which local patches are 70

connected to each other via dispersal of individuals. We simulate the dynamics of metapopulations 71

with various spatial structures, ranging from classical abstract structures (lattice and random, 72

Erdős–Rényi, spatial networks) to structures rooted in real systems (Random Geometric Graphs for 73

terrestrial systems and Optimal Channel Networks for riverine systems; Gilarranz, 2020; Carraro 74

et al., 2020). For a range of dispersal rates, we measure the size of hysteresis and the position of 75

tipping points at the scale of the whole landscape. We also study how the structure of perturbations 76

themselves affects landscape dynamics by conducting targeted local perturbations of firstly high- 77

degree patches vs. low degree patches and secondly neighboring patches vs. independent patches. 78

Model description 79

Metapopulation model 80

We used a model of a spatially structured metapopulation describing the dynamics of n patches linked 81

by the dispersal of individuals. Here is a short description of the model, but see the supplement S1 82

for a more in-depth presentation. The dynamics of the vector −→x (containing the local biomasses xi) 83

are described by a system of n coupled differential equations, which can be written in a matricial 84

form: 85

d−→x
dt

= r−→x
(

1−
−→x
K

)
−B

−→x
A+−→x

+µ M−→x (1)

The first two terms of Eq. 1 describe the local dynamics of the biomass, while the last term describes 86

the dispersal between patches. 87

Local dynamics We describe the local dynamics using a model derived by Noy-Meir (1975) in 88

which plants grow logistically with a growth rate r and carrying capacity K, and are harvested 89

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469221
http://creativecommons.org/licenses/by-nc/4.0/


by a fixed consumer with a Holling type II functional response (B: maximal harvesting rate, A: 90

half saturation constant). For the rest of this work, we used the same fixed values for r, K and 91

A (Table S6.1). These parameter values give rise to two tipping points at B = 50 and B = 56.25 92

between which the system is bistable: it admits two stable equilibria (xi = 0 and xi = r1 > 0) 93

separated by an unstable equilibrium (0 < r2 < r1) (Fig. 1a). 94

Note that this is one of several possible models of bistability that we chose because of its simplicity 95

and intuitive biological interpretation. Importantly, we show in the supplement S3 how this model 96

and three other common models of bistable systems share a common structure through parameter 97

aggregation which highlights the generality of our findings. 98

Spatial dynamics We consider that individuals leave their local patch at a constant rate µ and 99

that the dispersing individuals are distributed evenly among adjacent patches. Mathematically, the 100

vector describing net dispersal for all patches is given by the last term of Eq. 1 (µM−→x ) where M is a 101

matrix describing the structure of the landscape: the diagonal terms describe emigration (Mi,i =−1) 102

and the off-diagonal terms describe the neighbourhood relationship between patches (see detail in 103

supplement S1). 104

Integration scheme We simulated the dynamics using the function ode (R-package deSolve, 105

version 1.28). We performed linear regressions on the biomass of each patch over the last 100 106

simulated values to determine whether the metapopulation had reached an equilibrium (slope smaller 107

than 10−3). 108

Analysis of a two-patch system 109

Before moving on to large systems which are only accessible through simulation (see section “Land- 110

scape design”), we conducted analytically the stability analysis of a simple system for demonstrating 111

general principles. We used a particular case of Eq. 1 with only two patches exchanging biomass at 112

a rate µ (supplement S1: “Two-patch system”). We determined all its existing equilibria as well as 113
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their stability using MatCont (version 7.2, in MATLAB R2017b). 114

Landscape design 115

We used four different types of landscapes (see supplement S2 for more details on landscape 116

generation, and Fig. S6.1 to S6.3 for examples of landscapes): i) Regular graphs, where patches 117

are arranged regularly on a lattice with periodic boundary conditions. While not very realistic, 118

such landscapes have been used in previous studies (Keitt et al., 2001; van Nes and Scheffer, 119

2005) and we include them for the sake of comparison. ii) Erdös-Rényi graphs are obtained by 120

randomly connecting pairs of patches with a fixed probability p and can be thought of as a null 121

model. iii) Random Geometric Graphs (RGGs) are obtained by randomly drawing patch coordinates 122

in space and connecting patches depending on distance. The random distribution of patches in 123

space results in the emergence of modularity which is thought to be characteristic of terrestrial 124

systems (Gilarranz, 2020). iv) Optimal Channel Networks (OCNs) are generated by simulating 125

geomorphological processes to obtain a structure closely resembling that of a river (Carraro et al., 126

2020). 127

For each type of landscape, we generated 50 replicates with each n = 100 patches. The main text 128

analysis was made on landscapes where patches had on average approximately 4 neighbours (except 129

for OCNs as their generating process constrains their connectivity), and we conducted sensitivity 130

analysis on the connectivity using networks with higher and lower connectivity (supplement S4). 131

Simulations 132

For each type of network, we generated 50 replicates and computed their bifurcation diagram for 133

100 values of dispersal rates (µ) between 0.001 and 1. We used 46 values of harvesting rates (B) 134

equally spaced between 50 and 56.25 (the bistability range of a single patch). For each value of B, 135

we computed the high-biomass (resp. low-biomass) branch of the bifurcation diagram by initially 136

setting each patch to the positive (resp. null) equilibrium of a single patch. Once the system had 137

reached an equilibrium, we degraded (resp. restored) 5% of the patches by setting them to a null 138
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biomass (resp. to their positive equilibrium). We then measured the steady-state average biomass in 139

order to plot the bifurcation diagram. 140

We used three different perturbation schemes: Firstly, we chose the 5 patches to be de- 141

graded/restored randomly (Fig. 2-4). Secondly, we focused on the influence of node degree 142

by degrading/restoring patches chosen from either the most or least connected nodes (Fig. 5). We 143

conducted these perturbations in Erdös-Rényi graphs, RGGs and OCNs but not in regular graphs (as 144

their nodes all have the same degree). Thirdly, we focused on the influence of the spatial structure 145

of perturbations by degrading/restoring patches that were either clustered or dispersed in space 146

(Fig. 6). In regular graphs, this was done by drawing the 5 perturbed nodes either from a 9 patch 147

neighborhood (3x3 patches in grid landscapes or 9 adjacent patches in circular landscapes) for the 148

“clustered” modality or drawing them from the whole landscape for the “dispersed” modality. In 149

RGGs and OCN, we identified modules using the function edge.betweenness.community (R-package 150

igraph version 1.2.6) and the dispersal matrix M, and drew 5 patches from a single modules for the 151

“clustered” modality or from 5 different modules for the “dispersed” modality. We did not conduct 152

this third analysis on Erdös-Rényi graphs as they are not spatially explicit so there is no notion of 153

proximity between patches. 154

Characterizing large scale shifts 155

From the established bifurcation diagrams, we extracted synthetic information on the large scale 156

behaviour of the system. 157

State diagram We affected one of three categorical states to each simulation depending on its 158

steady-state average biomass: it was considered “fully occupied” when the average biomass was 159

higher than 99% of the pre-perturbation high-biomass equilibrium, “empty” when the average 160

biomass was less than 1% of it and “partially occupied” in between. We constructed state diagrams 161

for each type of networks by averaging the states borders over all replicates and plotting them as a 162

function of the harvesting rate (B) and dispersal rate (µ). 163
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Hysteresis size We computed the size of the hysteresis as the area in between the higher and 164

lower branches of the bifurcations diagram. 165

Tipping point Finally, we computed the position of the tipping points from the bifurcation 166

diagrams as the value of harvesting rate (B) at which the average biomass decreased (for the 167

degradation trajectory) or increased (for the restoration trajectory) the most. 168

Results 169

Analysis of a two-patch system 170

Starting from an isolated patch exhibiting bistability (Fig. 1a) and connecting it to another patch, we 171

found that, at high dispersal, spatial bistability — the stable coexistence of patches in different states 172

— is not possible and the whole system behaves as a single bistable unit (Fig. 1b, supplement S5). 173

As dispersal decreases, spatial bistability becomes possible as new stable states appear (Fig. 1c, 174

supplement S5) with strong differences in biomass between the two patches. 175
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Figure 1: Bifurcation diagrams of a single patch (a) and of two patch systems (b, c) at high (b,
µ = 0.3) and low (c, µ = 0.005) dispersal rates. Full lines are stable equilibria, dashed lines are
unstable equilibria. (a) Equilibria of the biomass (x) of an isolated patch as a function of the grazing
pressure (B). (b, c) Equilibria of the biomasses (x1,x2) of two patches connected by dispersal, as a
function of the grazing pressure (B).

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469221
http://creativecommons.org/licenses/by-nc/4.0/


Stable states of larger metapopulations 176

We now focus on larger metapopulations made of 100 patches. The results described in the following 177

sections held qualitatively when considering graphs that were overall more or less connected (see 178

sensitivity analysis in supplement S4). 179

On a regular grid, a larger metapopulation can reach different states (fully occupied, empty or 180

partially occupied) depending on dispersal (µ) and harvesting (B) rates (Fig. 2). At high dispersal 181

rates (Fig. 2a-d, µ > 0.15), only two stable states are possible: the landscape is either fully occupied 182

(the average biomass is that of a single patch) or empty (the average biomass is null), and the 183

metapopulation is bistable as a whole (regional bistability). The bifurcation diagram of the average 184

biomass is then qualitatively similar to that of a single patch (Fig. 2d), albeit with a displaced 185

restoration tipping point. As dispersal rate decreases, the bistability domain shrinks and partially 186

occupied states (where some of the landscape patches are empty and others are occupied) become 187

stable (i.e., spatial bistability; Fig. 2c, e). At very low dispersal rates, the system behaves roughly 188

as a collection of independent patches: spatial bistability is common, and local degradation (resp. 189

restoration) can neither spread in space nor be reversed. As a consequence, the bifurcation diagram 190

of the average biomass mostly reflects the initial conditions (Fig. 2f). 191

These results hold qualitatively for other types of landscapes such as Erdös-Rényi and Random 192

Geometric Graphs (RGG), even though spatial bistability is then more common than for regular 193

grids (Fig. 3a-c). In Optimal Channel Networks (OCNs), we observed a similar state space diagram, 194

although the bistability domain was reduced and did not expand much with increasing dispersal 195

rates, and the partially occupied (i.e., spatially bistable) state was stable at higher dispersal rates 196

than for the other networks (up to µ ≈ 0.25) (Fig. 3d). 197

Characterisation of regional scale catastrophic shifts 198

Hysteresis size For all landscape types, the hysteresis size of the metapopulation was smaller 199

than that of an isolated patch (Fig. 4a). Hysteresis sizes were similar across network types at low 200

dispersal rates (µ < 0.1) but quickly diverged for higher dispersal rates: regular graphs had the larger 201
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Figure 2: State diagram of a regular grid made of 10*10 bistable patches as a function of the
harvesting rate (B) and the dispersal rate (mu) (a, b, c) and bifurcation diagrams of the average
biomass for various dispersal rates (d, e, f). (a) and (b) state diagrams of a regular grid of 10*10
bistable patches when starting from 5 random occupied patches in a otherwise empty landscape
(a) or 5 random empty patches in an otherwise occupied landscape (b). The colors denote the final
state of the system: “fully occupied” (green) means that the total equilibrium biomass was greater
than 99% of the maximal equilibrium biomass, “empty” means that the total equilibrium biomass
was smaller than 1% of the maximal equilibrium biomass, and “partially occupied” means that
the system was neither empty nor fully occupied. (c) general state diagram of the aforementioned
system, obtained by superimposing panels (a) and (b). (d), (e) and (f) bifurcation diagrams of the
average biomass of a regular grid (10*10 bistable patches) for different dispersal rates ((d): µ = 0.5,
(e): µ = 0.05, (f): µ = 0.001). State space limits from panels (a), (b) and (c) were obtained as the
average of 50 replicates; panels (d), (e) and (f) are the bifurcation diagram of a single replicate each.

hysteresis size, followed by Erdös-Rényi graphs and RGGs and finally by OCNs, whose hysteresis 202

size was almost null at high dispersal rates (µ > 0.2). For regular graphs, Erdös-Rényi networks 203

and RGGs, we found a unimodal relationship between the hysteresis size and dispersal rate: the 204

hysteresis size quickly decreased at first and reached a minimum at µ ≈ 0.1 before slowly increasing 205
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Figure 3: State space diagrams of spatially structured metapopulations as a function of the harvesting
rate (B) and the dispersal rate (µ) for various types of landscapes: (a) a regular grids (10*10 patches
on a torus) (same as fig 2c); (b) Erdös-Rényi graphs; (c) random geometric graphs (RGGs) and (d)
optimal chanel networks (OCNs). Each panel was obtained by combining the state space diagram of
a landscape starting with 5% of random occupied patches and the state space diagram of a landscape
starting with 5% of random empty patches, averaged over 50 replicates, similarly as Fig. 2(a-c).

with the dispersal rate to reach a plateau (µ > 0.1). Hysteresis size in OCNs also decreased with 206

dispersal rate at first, but stayed at a constant value for higher dispersal rates (µ > 0.2). 207

Tipping points For all landscape types, the degradation (resp. restoration) tipping points happened 208

at a lower (resp. higher) harvesting rate than in an isolated patch, which explains the lower hysteresis 209

size in spatially structured landscapes (Fig. 4b and c). The degradation tipping point was mostly 210

unaffected by dispersal rate beyond a threshold (µ > 0.1 for regular graphs, Erdös-Rényi graphs 211

and RGGs and µ > 0.25 for OCNs). The restoration tipping point, however, was more affected by 212

dispersal rate (Fig. 4c). Interestingly, this means that the patterns observed for hysteresis size are 213
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mainly explained by modifications of the restoration rather than of the degradation point. OCNs 214

were the landscapes whose tipping points were overall the most different from an isolated patch. 215

Similarly to what was observed for hysteresis size, the tipping points were closer to those of a 216

single patch at low dispersal rates, but then deviated from it before reaching a plateau. 217
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Figure 4: Effect of different landscape types (spatial structures) on the regional dynamics of
metapopulations (purple: regular graphs; green: Erdös-Rényi graphs; brown: random geometric
graphs (RGGs); blue: optimal channel network (OCNs)). (a) Size of the hysteresis (computed as
the area between the upper and lower branches of the bifurcation diagram of the average biomass)
as a function of the dispersal rate. (b) and (c) large scale tipping points as a function of the dispersal
rate: value of the harvesting rate (B) at which the system loses (b) or gains (c) the most biomass.
All quantities are computed as the mean (full line) and standard deviation (colored areas) of 50
replicates.

Perturbation modality and large scale catastrophic shifts 218

Lastly, we considered how different types of perturbations affected large scale shifts, as opposed to 219

the random perturbations considered up to this point. 220

Spatial proximity of perturbations Both in regular graphs and RGGs, spatially clustered pertur- 221

bations resulted in a smaller hysteresis compared to spatially dispersed perturbations (Fig. 5a) for 222

all dispersal rates higher than ∼ 0.1. This was once again explained by differences in the restora- 223

tion tipping point: while degradation happened at the same harvesting rate in both perturbation 224

modalities (Fig. 5b), the restoration happened at higher harvesting rates for clustered perturbations 225
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(Fig. 5c). 226

In OCNs, the spatial organization of perturbations had no effect on the hysteresis size (Fig.5a) 227

as both degradation and restoration were mainly unaffected by the perturbation modality (Fig. 5b 228

and c). 229
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Figure 5: Effects of different perturbation types on the regional dynamics of metapopulations (full
line: clustered perturbations, dashed lines: dispersed perturbations) and different landscape types
(purple: regular grid; brown: random geometric graphs (RGGs); blue: optimal channel networks
(OCNs)). (a) Size of the hysteresis as a function of the dispersal rate. (b) and (c) regional scale
tipping points as a function of the dispersal rate: value of the harvesting rate (B) at which the system
loses (b) or gains (c) the most biomass. All quantities are computed as the mean (lines) and standard
deviation (colored areas) of 50 replicates.

Connectivity of perturbed patches In RGG, perturbing highly vs. lowly connected patches had 230

no discernible effect on the hysteresis size and tipping points of the metapopulation (Fig. 6). In Erdös- 231

Rényi graphs and OCNs, perturbing lowly connected patches resulted in a slightly smaller hysteresis 232

at high dispersal rates (µ > 0.1) (Fig. 6a), once again because of differences in the restoration point: 233

restoration happened at higher harvesting rate for perturbations of lowly connected nodes compared 234

to highly connected nodes (Fig. 6c), while the degradation point was unaffected (Fig. 6b). 235
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Figure 6: Effect of different perturbation types on the regional dynamics of the metapopulation (full
line: perturbation of high-degree patches, dashed lines: perturbation of low-degree patches) and
different landscape types (green: Erdös-Rényi graphs; brown: random geometric graphs (RGG);
blue: optimal channel networks (OCN)). (a) Size of the hysteresis as a function of the dispersal rate.
(b) and (c) regional scale tipping points as a function of the dispersal rate: value of the harvesting
rate (B) at which the system loses (b) or gains (c) the most biomass. All quantities are computed as
the mean (lines) and standard deviation (colored areas) of 50 replicates.

Discussion 236

Stable states of metapopulations composed of locally bistable patches 237

We found that the stable states of metapopulations made of locally bistable patches depended 238

strongly on dispersal rate and were qualitatively similar for various spatial structures and network 239

connectivity. 240

Strong dispersal homogenized biomass over space and drove the system towards one of two 241

stable states: either all the patches were occupied and the average biomass was roughly the same as 242

the positive equilibrium of an isolated patch, or all patches were empty and the average biomass 243

was null. These two states had overlapping stability ranges, making the metapopulation bistable as 244

a whole, with a clear hysteresis and abrupt shifts. Therefore, we expect the local degradation or 245

restoration of a few patches in an otherwise homogeneous metapopulation to be quickly reversed, 246

which means that, in a metapopulation with strong dispersal, local restoration efforts are bound to fail 247

unless the environmental conditions cross a metapopulation-scale tipping point. Once this tipping 248

point is crossed, local restoration efforts should spread in space until the whole metapopulation is 249
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restored. 250

When dispersal was sufficiently weak, patches were functionally independent from each other. 251

The exchange of biomass was too low for patches to impact the state of their neighbours and spatial 252

bistability was common as occupied and empty patches could thus coexist in space. In our setting, 253

perturbing only 5% of the patches, this resulted in a large scale behaviour very similar to that 254

of a single patch: the unperturbed patches (95% of the landscape) shifted only when the tipping 255

point of an isolated patch was reached, independently of the perturbations. From a conservation 256

standpoint, the effective independence of patches ensures that a local degradation won’t spread 257

in space and policies could focus on local measures of protection without worrying about spatial 258

effects. However, in the absence of significant fluxes between patches, spatial heterogeneity and 259

stochasticity should have a strong impact on local dynamics and extinction probability. How this can 260

affect large scale dynamics is still an open question as these processes can synergize in surprising 261

ways: for example, Martı́n et al. (2015) found that demographic stochasticity coupled with a low 262

dispersal rate results in smooth transition in 1- and 2-dimensional continuous space. 263

Interestingly, this means that in metapopulations made of locally bistable patches, strong 264

dispersal should raise concerns as it translates into possible regional scale catastrophic shifts with a 265

pronounced hysteresis and little prospect for local restoration. On the other hand, weak dispersal 266

should open the door to local conservation and restoration efforts. This should be taken into 267

account when planning conservation measures such as assisted migration or ecological corridors, as 268

increasing a species dispersal rate could make it prone to large scale catastrophic shifts. 269

Characteristics of regional scale catastrophic shifts 270

We observed a smaller hysteresis size than expected from the dynamics of isolated patches for all 271

landscape types. This is particularly pronounced in OCNs where hysteresis was largely reduced 272

(less than 1/10th of the hysteresis of a single patch for dispersal rates > 0.2). This was expected 273

from previous studies, which predicted that hysteresis should mostly disappear at high dispersal in 274

one dimensional continuous space (van de Leemput et al., 2015) or in linear metapopulations (Keitt 275
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et al., 2001; Hilt et al., 2011). Since OCNs are made of large linear parts, they fit this prediction 276

best. The other types of landscapes have more links per patch on average than OCNs, which diluted 277

the effect of any focal patch on more than two neighbours. As a consequence, a local degradation or 278

restoration in an otherwise homogeneous landscape is less likely to spread to its neighbours and 279

more likely to be reversed than in less connected landscapes, resulting in a larger hysteresis. 280

Interestingly, this reduced hysteresis compared to an isolated patch is mostly due to an earlier 281

restoration, i.e., restoration was reached at harsher conditions than expected from the local dynamics. 282

This is due to an asymmetry in the bifurcation diagram of local dynamics: the tipping point 283

towards restoration is a transcritical bifurcation (Fig. 1a, point F1), while the tipping point towards 284

degradation is a saddle-node bifurcation (Fig. 1a, point F2). As a consequence, the null biomass 285

equilibrium has a small basin of attraction while the positive equilibrium has a large basin of 286

attraction, even close to its tipping point, so local restorations are more easily spread in space than 287

local degradations. This asymmetry of the basins of attraction holds true for various models of 288

desertification (Rietkerk and van de Koppel, 1997; Klausmeier, 1999); we therefore expect these 289

systems to also exhibit a reduced hysteresis and easier restoration in metapopulations than expected 290

from the dynamics of a single patch. However, it is important to keep in mind that other models 291

of bistability should behave differently. For example, a system with two transcritical bifurcations 292

should show almost no hysteresis, while a system with saddle-node bifurcations should show an 293

hysteresis of similar size to an isolated patch. Interestingly, a system with a transcritical bifurcation 294

for the degradation and a saddle-node bifurcation for the restoration should have an hysteresis size 295

similar to what we find here, but mainly through an earlier degradation. 296

Hysteresis size was found to vary with dispersal rate. The largest hysteresis size was observed at 297

the lowest dispersal rate (µ = 0.001) for all types of networks, and quickly decreased with dispersal 298

rates. After this initial decrease, the hysteresis size increased with dispersal to a plateau. This means 299

that the smallest hysteresis size and the easiest restoration happened for intermediate dispersal rates 300

(µ ≈ 0.1) for which the dispersal is strong enough for a local restoration to affect neighbouring 301

patches, but still sufficiently weak to avoid the dilution of the added biomass in space, triggering a 302
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travelling wave of restoration. Interestingly, we observed a large hysteresis size at both very low 303

and high dispersal rates, but with opposite underlying mechanisms: in the case of low dispersal, 304

large scale shifts are hard to induce because local perturbations in a few patches won’t affect the 305

neighbouring patches at all. At high dispersal, large scale shifts are also hard to induce, but because 306

local perturbations quickly get diluted across the whole landscape. 307

It is worth noting that these variations with dispersal rate are reminiscent of Zelnik et al. (2019)’s 308

regimes of spatial recovery: local restoration efforts could only spread in space at intermediate 309

dispersal rates (what Zelnik called “rescue recovery”), but not at very low dispersal (“isolated 310

recovery”: local restoration does not affect neighbouring patches) or at very high dispersal (“mixing 311

recovery”: the local restoration effort is diluted over the whole landscape). 312

Characterizing how hysteresis size varies with dispersal rate is important from a conservation 313

standpoint, because a smaller hysteresis means that it is easier to restore the system after a large 314

scale degradation. We can try to derive broad predictions about which species should raise concern 315

for large scale catastrophic shifts. In terrestrial systems, dispersal increases with height for plants 316

(Tamme et al., 2014) and often with body size for animals (Stevens et al., 2014), while population 317

growth rate is expected to decrease with body mass (Savage et al., 2004). Because of these 318

relationships, we can speculate that one should be more concerned by the possibility of large 319

scale catastrophic shifts in systems dominated by large species. Similarly, oceanic systems may 320

be more prone to large scale catastrophic shifts with a marked hysteresis since oceanic species 321

can exhibit strong propagule dispersal that impacts local dynamics (Kinlan and Gaines, 2003). 322

Of course, dispersal also depends strongly on other species traits (e.g., seed dispersal syndromes, 323

body temperature) and such broad predictions remain speculations and cannot replace the detailed 324

knowledge on a species of interest. 325

The landscape type also affected the metapopulation regional scale behaviour. In OCNs, 326

hysteresis size did not increase with dispersal rates but stayed low after the initial decrease. This 327

is because OCNs are almost one-dimensional, with large linear parts. This linearity limited the 328

aforementioned dilution of local restoration efforts and resulted in tipping points almost unchanged 329
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by dispersal at high dispersal. On top of that, patches in OCNs have a low average degree, with 330

most nodes having only 1 or 2 neighbours. Because of this, the dispersal from any focal patch was 331

concentrated on a few neighbours. This allowed an easier induction of regional scale catastrophic 332

shifts through a domino effect (even for degradation), as evidenced by the degradation and restoration 333

tipping points happening at respectively lower and higher harvesting intensity than in the other 334

landscape types. Interestingly, two other studies support this result: Hilt et al. (2011) modeled a 335

river as a strictly linear chain of discrete patches and found that hysteresis disappears entirely at 336

high dispersal rates, while Martı́n et al. (2015) showed that one dimensional systems tend to have 337

smaller hysteresis and smoother transitions than their two (and even three) dimensional counterparts. 338

The other landscape types (grid and RGGs) have no linear parts and an higher average degree 339

(4 neighbours on average). Because of this, the effect of local perturbations was split between 340

several neighbours and diluted in the metapopulation, making it more difficult to induce regional 341

scale shifts and resulting in a larger hysteresis. This was supported by our sensitivity analysis on 342

network connectivity (supplement S4): networks with a smaller average degree (Fig. S4.1) had a 343

smaller hysteresis while networks with a larger average degree (Fig. S4.2) had a larger hysteresis. 344

From these results, we expect large-scale catastrophic shifts with a pronounced hysteresis to be 345

more likely in well-connected and two dimensional systems (e.g., terrestrial systems, open ocean) 346

than in systems that are lowly connected or restricted to large linear stretches (e.g., rivers, coastal 347

ecosystems). 348

Lastly, we explored how the spatial structure of perturbations themselves could affect large scale 349

catastrophic shifts. We found that close-by restoration efforts, e.g., patches from a single module in 350

RGGs, are more likely to induce regional scale restorations and results in a smaller hysteresis size 351

than restoration efforts conducted randomly in space. This is because restoring close-by patches 352

concentrates the added biomass on a smaller area (e.g., the module where we restore patches in 353

RGGs) and limits the dilution of biomass in space. This makes it easier to trigger the large scale 354

restoration of the metapopulation. Studies in continuous space highlight a similar result: van de 355

Leemput et al. (2015) identifies a “minimal size of disturbance to initiate a travelling wave”. Several 356
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disturbances smaller than this size won’t initiate a large scale shift as they get diluted individually, 357

but grouping these disturbances over a single area will initiate a large scale shift. 358

On the other hand, the connectivity of perturbed patches slightly increased the hysteresis size in 359

Erdös-Rényi graphs and OCNs, and had surprisingly no effect in RGGs. This is probably because 360

sampling from low degree patches for the perturbations incidentally results in sampling far away 361

patches, which partially masks the effect of patch connectivity on hysteresis. 362

Conclusion 363

In conclusion, we showed that one can not extrapolate the bifurcation diagram of a single patch 364

to predict regional scale dynamics. Instead, we highlight that a metapopulation can exhibit large 365

scale catastrophic shifts and hysteresis, and that the position of its tipping points depends on both its 366

spatial architecture and its dispersal rate. We find that restoration after a large scale degradation is 367

easier with i) local restoration efforts concentrated on a restricted area and ii) intermediate dispersal 368

rates. Our findings differ markedly from the predictions established on regular one-dimensional 369

systems and show that we should consider the explicit structure of metapopulations or at least 370

their properties (dimension, average degree and degree heterogeneity) when trying to predict their 371

regional scale dynamics. 372
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Supplementary material 483

S1 Metapopulation model 484

We used a model of spatially structured population describing the dynamics of n patches linked by 485

the dispersal of individuals. The dynamics of the biomass (xi) inside the patch i are described by the 486

following differential equation: 487

dxi

dt
= f (xi)+g(xi,x·) (2)

where f (xi) is a function describing the local dynamics of the patch and g(xi,x·) describes the net 488

dispersal between the patch i and its neighbors. 489

Local dynamics We describe the local dynamics with a model coined by Noy-Meir (1975) that 490

exhibits bistability and catastrophic shifts between a null-biomass state (xi = 0) and a positive 491

equilibrium (xi = x∗) (Eq. 3). It describes the dynamics of a biotic resource xi (e.g., the biomass 492

of plants) that grows logistically with a growth rate r and a carrying capacity K. This resource is 493

harvested/consumed by a fixed consumer with a Holling type II functional response (with B the 494

maximal harvesting rate and A the resource biomass at which the harvesting is half of B): 495

f (xi) = rxi

(
1− xi

K

)
− Bxi

A+ xi
(3)

Although it was first coined to describe the dynamics of a plant biomass is a pasture grazed by 496

herbivores (Noy-Meir, 1975), this model is fairly general as logistic growth is commonly used to 497

model the growth of a wide range of organisms (but see Mallet (2012)), and type II functional 498

responses are the norm for numerous consumers (Jeschke et al., 2004; Kalinkat et al., 2013). This 499

system admits two tipping points (B = AR and B = Ar+K(1−AK)/4). It is bistable in this range 500

(AR < B < Ar+K(1−AK)/4) and admits two stable equilibria (xi = 0 and xi = r1) separated by 501

an unstable equilibrium (0 < r2 < r1). 502
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Spatial dynamics We consider that the individuals leave the patch i at a constant rate µ and are

equally split between its neighbours. The patch also receives individuals from its neighbours in the

same pattern which yields the following equation:

g(xi,x·) =−µxi +µ ∑
j ad jacent i

x j

Ne j

where Ne j is the number of neighbours of j. 503

Global dynamics of the system The dynamics of the system are thus described by a system of n 504

coupled differential equations, which can also be written in a matricial form: 505

d−→x
dt

= r−→x
(

1−
−→x
K

)
−B

−→x
A+−→x

+µ M−→x (4)

where −→x is the vector of local densities and M is a matrix describing the structure of the population: 506

the diagonal terms describe the emigration (Mii =−1) and the off-diagonal terms the immigration 507

(Mi j,i ̸= j = 0 if i and j are not neighbors and Mi j,i ̸= j = 1/Ne j if i and j are neighbors). 508

Two-patch system The two patch system we used for the analytical stability analysis of a simple

spatial system is a particular case of the model presented above, described by the following

equations:

dx1

dt
= rx1

(
1− x1

K

)
− Bx1

A+ x1
−µ(x1 − x2)

dx2

dt
= rx2

(
1− x2

K

)
− Bx2

A+ x2
−µ(x2 − x1)
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S2 Landscape design 509

We generated landscapes of n = 100 patches. We used four different landscape structures in order 510

to explore the effect of space on catastrophic shifts: regular graphs (e.g., patches arranged either 511

linearly or on a lattice), Erdős–Rényi graphs (where patches are connected randomly), random 512

geometric graphs (RGG, where patches are drawn randomly in space and connected depending on 513

their distance) and optimal channel networks (that are generated using geomorphological processes). 514

The main text analysis is made on networks where the patches have on average 4 neighbors each 515

(when possible), and we conducted sensitivity analysis on the connectivity by generating networks 516

with higher and lower connectivity (section S4). 517

Regular graphs Regular graphs are graphs in which all nodes have the same number of neigh- 518

bours: patches are either organized linearly on a cirlce (in 1-D) or on a regular lattice on a torus 519

(for 2-D system). These graph have been used extensively for modelling explicit space (Keitt et al., 520

2001; van Nes and Scheffer, 2005), so we chose to use them for comparison with existing studies. 521

They can be thought of as a null model of the most ordered spatial system possible. We used patches 522

on a 10*10 lattice with periodic boundary conditions and connections to the 4 nearest neighbours 523

for the main text. For the sensitivity analysis, we used patches on a 10*10 lattice with periodic 524

boundary conditions and connections to the 8 nearest neighbours (2-D system, mean degree = 8) 525

and 100 patches on a circle with connections to the 2 nearest neighbours (1-D system, mean degree 526

= 2). 527

Erdős–Rényi graphs Erdős–Rényi graphs are a class of graphs obtained by randomly connecting 528

nodes: each pair of patches is connected with a probability p. The expected number of links per 529

node (mean degree) is thus p∗ (n−1) where n is the total number of patches. We used Erdős–Rényi 530

graphs with n = 100 patches and a connection probability of p = 4/(n− 1) for the main text 531

(expected mean degree = 4, realized mean degree = 4). For the sensitivity analysis, we used 532

connection probabilities of p = 8/(n−1) (expected mean degree = 8, realized mean degree = 8) 533
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and p = 2/(n− 1) (expected mean degree = 2, realized mean degree = 2.7). After generating a 534

graph, we checked if it was connected (i.e., that there existed at least an indirect path between all 535

pairs of nodes) and discarded the graphs that were not connected. 536

Random geometric graphs Random geometric graphs (RGG) are obtained by drawing nodes 537

randomly in space and connecting the pair of nodes that are closer than chosen a threshold distance. 538

We generated each RGG by drawing 100 pairs of x and y coordinates uniformly in [0,1]. We then 539

determined the threshold distance that yielded the average degree the closest to a target degree 540

(main text: target degree = 4; sensitivity analysis: target degree = 8). We once again checked if the 541

graphs were connected and discarded those that were not connected. Note that the connectivity of a 542

RGG is constrained by the initial drawing of coordinates, so it was not always possible to reach the 543

targeted average degree. RGGs connectivity deviated a bit from the regular graph counterpart (main 544

text: realized average degree = 4.7; realized degree = 7.9) 545

Optimal channel networks Optimal channel networks are obtained by simulating geomorpholog- 546

ical processes and in order to capture the structural properties of riverine networks. We generated 547

OCN of n = 100 patches using the R-package OCNet (version 0.4.0) (Carraro et al., 2020). Be- 548

cause the structure of OCN is constrained by the underlying generating process and generally 549

scale-invariant, we could not manipulate the average degree of these networks (average degree = 550

1.98). 551
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S3 Polynomial form of three classical desertification models 552

In this annex, we highlight the mathematical similarities between four classical models of bistable 553

systems — three models of desertification taken from Noy-Meir (1975), Klausmeier (1999) and 554

van de Koppel et al. (1997); and a model of logistic growth with an Allee effect. We argue that, 555

despite the fact that they are built on different mechanistic processes, they behave similarly as they 556

are all build from a simple third degree polynomial. In the first part, we conduct the exact stability 557

analysis of this third degree polynomial. We then show in the subsequent parts how to relate models 558

of desertification to this polynomial, and how it simplifies their stability analysis. 559

S3.1 Stability analysis of a dynamical model described by a third degree 560

polynomial 561

The most straightforward way to model bistability is using a cubic polynomial to describe the evolu-

tion of a quantity (number of individuals, plant cover, share of users adopting a new technology...)

in a closed system. Let us call P such a polynomial:

P : R→ R

x 7→ dx
dt

= α3x3 +α2x2 +α1x+α0

Realistically, α3 should be negative (otherwise dx/dt → ∞ when x is high, meaning the pop-

ulation is unbounded). Hence, α3 is restricted to negative values in what follows. In biological

systems, realism also imposes a restriction on α0: since the system is closed and x describes a

density of organisms that cannot be spontaneously generated, P(0) must be null, and hence α0 = 0.

Additionally, x can only be positive when describing a population, so P only needs to be defined on

R+.
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Hereafter, P refers to the previously defined polynomial with these additional restrictions:

P : R+ → R

x 7→ dx
dt

= α3x3 +α2x2 +α1x,

α3 < 0

Existence of alternative equilibria: Since α0 = 0, the system has an immediate equilibrium for

x = 0. The other equilibrium can thus be found by solving:

α3x2 +α2x+α1 = 0

This is a degree two polynomial with discriminant ∆ = α2
2 −4α3α1. If ∆ < 0 (i.e. 4α3α1 > α2

2 ),

the polynomial has no real root and 0 is the only equilibrium of this system (Fig.S3.1c)

If ∆ > 0, then there are two other roots to the system (that are only relevant when they are positive):

r1 =
−α2 −

√
∆

2α3

r2 =
−α2 +

√
∆

2α3

The nature of the system depends on the sign of these roots: if both are negative, then 0 is a stable 562

equilibrium and the only biologically significant equilibrium. If both are positive, 0 is still a stable 563

equilibrium but there is also a stable positive equilibrium (r1) separated from 0 by an unstable 564

equilibrium (r2) and thus the system is bistable (Fig. S3.1d). If only one of them is positive, then 0 565

is unstable and r1 is stable and the only positive equilibrium (Fig. S3.1e). 566
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Sign of r1: Since α3 is negative, r1 is of the same sign as α2 +
√

∆. Thus, r1 is positive iff

α2 >−
√

∆

⇔



α2 > 0

or
α2 < 0

and

4α3α1 < 0

Thus r1 is only negative when α2 < 0 and 4α3α1 > 0, i.e. in the top left corner of the α2 −4α3α1 567

plane (Fig.S3.1a). 568

Sign of r2: Similarly, the sign of r2 is that of α2 −
√

∆. r2 is positive iff α2 >
√

∆

⇔


α2 > 0

and

4α3α1 > 0

r2 is thus only positive in the top right corner of the α2 −4α3α1 plane (FigS3.1a). 569

These results are summed up in Fig.S3.1: 570

• if α1 is positive (crossed area in Fig.S3.1a), the system always reach a stable positive 571

equilibrium (r1, Fig.S3.1g) 572

• If α1 is negative, the behaviour of the system depends on the relative values of α2 and 4α1α3: 573

if α2
2 > 4α1α3 (white area in Fig.S3.1a), the system is bistable and can either reach 0 or a 574

positive equilibrium (r1) depending on its initial state (Fig.S3.1f). If α2
2 < 4α1α3, the system 575

has no strictly positive equilibrium and necessarily goes to 0. 576

577

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469221
http://creativecommons.org/licenses/by-nc/4.0/


Stability analysis and interpretation: One way to make light of this is to see that α1 drives the 578

system behaviour when x is close to 0 while α2 and α3 become more predominant at high x value, 579

thus: 580

• if α1 is positive, P is positive when x is close to 0 and thus 0 is unstable. Since P is negative 581

when x is high (because α3 is negative), P necessarily becomes null once (and only once) for 582

a x > 0 which is a stable equilibrium. 583

• If α1 is negative, P is negative around 0 and thus 0 is a stable equilibrium. In that case, either 584

α2 makes a positive contribution high enough (meaning α2
2 > 4α1α3) for P to reach 0 two 585

more times (because P ultimately decreases to −infinity at high x) and the system is bistable 586

or α2 contribution is not enough (α2
2 < 4α1α3) to bring P to 0 again and thus 0 is the only 587

equilibrium. 588

An intuitive way to sum these relationships is by looking at the α2-4α1α3 plane (Fig. S3.1a): in 589

the area under the x-axis (in green), the system necessarily goes to a positive equilibrium. Over the 590

x-axis, the curve defined by y = x2 separates two areas: on the left (in red) where 0 is the only stable 591

equilibrium and the system goes to extinction. On the right (in orange), the system is bistable. By 592

increasing α2 (moving from left to right) or α1 (moving from top to bottom), we drive the system 593

away from extinction and towards either a positively stable domain (in green) or a bistable domain 594

(in orange) respectively. 595

S3.2 Application to biological systems: 596

While some theoretical studies chose to use a third degree polynomial as a simple way to obtain 597

bistable dynamics, models rooted in biological mechanisms are rarely expressed as third degree 598

polynomials — because cubic terms cubic terms are hard to intuitively link to a process. Instead the 599

dynamics of biological systems (dx/dt, usually expressing biomass or species density) are often 600

expressed as a combination of: 601

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469221doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469221
http://creativecommons.org/licenses/by-nc/4.0/


(c)

(d)

(e)

−2

0

2

−2 0 2
α2

4
α

1
α

3

a

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00

E
q

u
ili

b
ri

u
m

 d
e

n
si

ty
 (

x*
)

stable

unstable

b

−1.0

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

x

d
x/

d
t

c

−0.50

−0.25

0.00

0.25

0.50

0.0 0.5 1.0 1.5 2.0

x

d
x/

d
t

d

−5

0

5

0 2 4

x

d
x/

d
t

e

Figure S3.1: Description of P behaviour. (a) Phase diagram of P depending on α2 and 4α3α1. In
the red area, 0 is the only equilibrium in R+ and the system always goes to extinction (see panel c).
In the orange area, the system has three equilibrium in R+ ([0,r1,r2]) and goes either to extinction
or r2 depending on the initial x (see panel d). In the green area, 0 is an unstable equilibrium and
the system always goes to r1 that is stable (see panel e). The full line shows a transect happening
when increasing both α2 from 0.8 to 2.4 and α1 from -0.6 to 0.2 (α3 is fixed at -0.5) and the dots
show where the panels c, c and e where taken. (b) bifurcation diagram (equilibria of P(x)) along the
transect represented in the panel a (the x axis figures the position along the line: 0 is the point (c)
and 1 is the point (e)). (c) a monostable parameterization of P(x) resulting in extinction (parameters
values of the point (c) in panel a: α1 = -0.6; α2 = 0.8; α3 =−0.5. (d) a bistable parameterization
of P(x) (parameters values of the point (d) in panel a: α1 = -0.4; α2 = 1.2; α3 = −0.5. (e) a
monostable parameterization of P(x) resulting in a positive equilibrium (parameters values of the
point (e) in panel a: α1 = 0.2; α2 = 2.4; α3 =−0.5.
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Figure S3.2: Situation of 4 classical models in the al pah2-α1α3 plane (a: Noy-Meir, b: Klausmeier,
c: Rietkerk and Van de Koppel, d: Logistic growth with an Allee effect). Red lines are transect
obtained by varying mortality parameters, blue line are obtained by varying water input parameters.
(a) Effect of varying the grazing pressure (B in 40-60) in the Noy-Meir model (other parameters:
r = 2, K = 50, A = 25). (b) Effect of varying plant mortality (M in 0-1.1, red line) or the water
input (A in 0-10, blue line) in the Klausmeier model (other parameters: L = 0.5, R = 0.5, J = 0.5;
A = 3 for the red line and M = 1 for the blue line). (c) Effect of varying plant mortality (M in 0-0.1,
red line) or the water input (I in 4-7, blue line) in the Rietkerk and Van de Koppel model (other
parameters: q = 0.1, L = 1, U = 1, R = 1, K = 10, A = 5, B = 5; I = 4 for the red line and M = 0.1
for the blue line). (d) Effect of varying the Allee effect threshold (c in 0-1) in a logistic model with
an Allee effect (other parameters: r = 0.5).
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• linear terms (λ ∗ x) to describe density independent processes (e.g., death rate in birth-death 602

processes, growth in an exponential model). 603

• square terms to describe density dependent processes such as mass action law (e.g., intraspe- 604

cific competition in a logistic growth model: r(x− x2/K)). 605

• a quotient of low order polynomials (1 or 2) to describe saturating processes (e.g., type 2 606

functional response: n/(1+n)). 607

We found that a number of these models can be restated as a quotient of two polynomials:

f (n) :=
dx
dt

=
P(x)
g(x)

where P is the third degree polynomial described earlier and g is a strictly positive and monotonously 608

increasing second order (at most) polynomial (defined on R+). Because of these properties, P and 609

f share the same sign and roots despite f not being a polynomial. In the following section, we 610

illustrate this using three classical models of desertification as well as a model of logistic growth 611

with an Allee effect. We argue that: i) the stability analysis of these models is made much easier by 612

mapping f to P and using the stability analysis of P, for which we know the exact expression and 613

nature of its equilibria; ii) that expressing the parameters of P (α1, α2 and α3) as aggregates of the 614

parameters of f helps to understand the effect of biological parameters on the systems equilibria 615

— in particular through the graphical analysis of the α2-α1α3 plane — and iii) that the models 616

we consider all share a common structure despite the fact that they describe different mechanistic 617

processes, which is encouraging for the transposability of studies made on one of these models. 618

S3.2.1 Noy-Meir model 619

The model we use in the main text of this study describes the dynamics of plants (whose biomass is 620

written x) grazed by a constant population of consumer (whose maximal grazing rate is B), as coined 621

by Noy-Meir (1975). The variations of plant biomass are expressed by the following differential 622
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equation: 623

dx
dt

:= f (n) = rx
(

1− x
K

)
− Bx

A+ x
(5)

In the absence of grazing, the plant biomass grow logistically with a growth rate r up to a 624

carrying capacity K (left term). On top of that, a fixed consumer harvest the plant population 625

following a Holling type 2 harvesting rate (right term) where B is the maximal harvesting rate and 626

A is the biomass of plants at which the per plant biomass harvesting rate is half of its maximal value 627

(half-saturation constant of the grazers): the grazing increases linearly with x at low plant biomass 628

then reaches a plateau as each harvesting agent reaches its maximal harvesting rate. 629

Polynomial form: We rewrite f (x) as a quotient of polynomial:

f (x) =

−r
K

x3 + r(1−A/K)x2 +(Ar−B)x

A+ x
=

P(x)
g(x)

Hence the coefficients of P(x) are: 630

Coefficient Expression
α1 Ar−B
α2 r(1−A/K)
α3 −r/K

Table S3.1: Coefficient of the polynomial P(x) describing the behaviour of the Noy-Meir model.

The main control parameter — grazing intensity (B) — is only found in α1. Varying this 631

parameter moves the system vertically in the α2-4α1α3 plane (Fig. S3.2a): it goes from the 632

domain with a single positive equilibrium (green area) to the domain with a single null equilibrium 633

(extinction, red area) through the bistable domain (orange area) as B increases. Note that in the 634

unlikely case where A > K (i.e., the grazing saturates at a biomass level greater than the carrying 635

capacity), α2 is negative so the system goes from a positive biomass to extinction without going 636

through a bistable phase as B increases. 637
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S3.2.2 Klausmeier model 638

This model coined by Klausmeier (1999) and describes catastrophic shifts in arid grassland, but

here the bistability arises from positive feedbacks between plant biomass (x) and water availability

(w):

dw
dt

= A−Lw−Rwx2

dx
dt

= RJwx2 −Mx

with the following paramters: 639

• A the water input 640

• L the water loss rate 641

• R the rate at which plants uptake water 642

• J a conversion rate from water mass to plant biomass (i.e., how much plant biomass is created 643

from 1 unit of water mass). 644

• M the plant mortality rate. 645

The water dynamics depend on a constant water input (A, e.g., the precipitation rate), water losses

that are proportional to the amount of available water (Lw, e.g., evaporation and infiltration in

deep soil layers) and a water uptake by plants (Rwx2) that is proportional to both the amount of

proportional to the amount of available water and the square of plant biomass (the square term

representing the facilitation between plants allows the system to be bistable). The plant dynamics

are described by a growth term that is proportional to the water uptake (RJwx2) and a death rate

proportional to plant biomass (Mx).

It is common to assume that water dynamics are way faster than plant dynamics in models describing
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plant-water dynamics. We can thus calculate the water equilibrium w∗ by solving the equation
dw
dt

= 0:

w∗ =
A

L+Rx2

By replacing w by its equilibrium w∗ in the expression of water dynamics, we can describe the 646

system using a single equation: 647

dx
dt

:= f (x) =
RJAx2

L+Rx2 −Mx

Polynomial form: Similarly to the Noy-Meir model, we can rewrite the equation above as a 648

quotient of polynomials: 649

f (x) =
−RMx3 +ARJx2 −LMx

L+Rx2 =
P(x)
g(x)

The coefficients of P(x) are: 650

Coefficient Expression
α1 −LM
α2 ARJ
α3 −RM

Table S3.2: Coefficient of the polynomial P(x) describing the behaviour of the Klausmeier model.

The two main control parameters here are the plant mortality (M) and the water input (A). The 651

plant mortality is only present in the al pha1 and al pha3 so — similarly to the Noy-Meir model 652

— varying M moves the system vertically in the α2-4α1α3 plane (Fig. S3.2b): it goes from the 653

frontier between the domain with a single positive equilibrium (green area) and the bistable domain 654

(orange area) to the domain with a single null equilibrium (extinction, red area) as M increases. 655

The water input parameter (A) is only present in α2, so varying it moves the system horizontally in 656

the α2-4α1α3 plane (Fig.S3.2b): increasing A moves the system from the red domain (monostable, 657

extinction) to the orange domain (bistable). 658

Note that for this model, α1 and α3 are always negative (hence 4α1α3 is always positive) and α2 659
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is always positive. Thus the system is necessarily in the top-right quadrant of the α2–4α1α3 plane 660

and thus is either bistable or admits only the null equilibrium (it cannot reach the green domain in 661

the α2–4α1α3 plane). 662

S3.2.3 Rietkerk & Van de Koppel model 663

The third model of desertification that we examine was coined van de Koppel et al. (1997) and also 664

describes the dynamics of soil water (W ) and plant biomass (x): 665

dw
dt

= I
x+Aq
x+A

−Lw−Uwx
dx
dt

= rx(1− x/K)
w

w+B
−Mx

Water (w) enters the soil through an infiltration facilitated by plants presence (I(x+As)/(x+A), 666

with I the water input) and exits it through abiotic losses (−LW ) and plant uptake (−Uwx). The 667

plants (x) grow following a logistic term (rx(1− x)/K) multiplied by a saturating function of w 668

(w/(w+B)) describing how water affects plant growth; and they lose biomass at a constant rate 669

M (−Mx). Similarly to the Klausmeier model, we can find the water equilibrium w∗ by solving 670

dw/dt = 0: 671

w∗ =
I(x+Aq)

(L+Ux)(x+A)

We can inject this equilibrium (under the assumption that water dynamics are faster than plant 672

dynamics) into the expression of dx/dt to find: 673

dx
dt

:= f (x) = rx
(

1− x
K

) w∗

w∗+B
−Mx

Polynomial form: By developing this expression, we find that it is once again a quotient of 674

polynomials: 675
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f (x) =
P(x)
g(x)

with: 676

g(x) = A(Iq+BL)+ x(I +B(L+AU))+ x2BU

and: 677

P(x) = x3(−Ir/K −MBU)+ x2(Ir(1−Aq/K)− IM−MBL−MBUA)+ x(IAq(r−M)−MBAL)

whose coefficients are: 678

Coefficient Expression
α1 IAq(r−M)−MBAL
α2 Ir(1−Aq/K)− IM−MBL−MBUA
α3 −Ir/K −MBU

Table S3.3: Coefficient of the polynomial P(x) describing the behaviour of the model described by
Rietkerk and Van de Koppel.

This model is a bit more complicated than the previous ones and would warrant a lengthy 679

analysis of all its parameters and how they affect the systems equilibria. However, we will here 680

focus on two simple results: 681

Firstly, the polynomial form provides a simple way to analyse the system: while the model uses 9 682

parameters, we can reduce the complexity of its analysis through the three compound parameters α1, 683

α2 and α3. For any set of parameters, it is easy to compute the al pha and then i) to determine the 684

number and nature of the equilibria through the α2-4α1α3 plane (Fig. S3.2c) and ii) to determine 685

the exact values of these equilibrium through the analytical expresions of r1 and r2 that we derived 686

in the section S3.1. 687

Secondly, we can analyze the impact of varying a given parameter using the α2-4α1α3 plane. For 688

the set of parameters used in Fig. S3.2c, we can see that the two control parameters (mortality rate 689
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M and water input I) have a similar effect on the system. The system moves from a stable positive 690

equilibrium (green area) towards extinction (red area) through a bistable state (orange area) when 691

increasing the mortality (M, red line in Fig. S3.2c) or decreasing the water input (I, blue line). 692

S3.2.4 Logistic growth with an allee effect 693

Lastly, we focus on the model of a logistic growth with an Allee effect. For simplicity, we use a 694

model where x represents the species density rescaled to the carrying capacity (i.e., x is the species 695

density in proportion of the carrying capacity). This system is described by the following equation: 696

dx
dt

= rx(1− x)(x− c)

where r is the growth rate and c is the Allee effect threshold, i.e., the density under which the 697

species growth is negative. 698

Polynomial form: Here, the equation describing the system is already a third degree polynomial 699

(e.g., g(x) = 1) that we can express by developing the expression above: 700

dx
dt

=−rx3 + y2r(1+ c)− rcy

Hence the coefficients of the polynomial form are: 701

Coefficient Expression
α1 −rc
α2 r(1+ c)
α3 −r

Table S3.4: Coefficient of the polynomial P(x) describing a logistic growth with an Allee effect.

Because this model is very simple by design, the polynomial analysis is not very useful here. It 702

is however interesting to note that it fits into the same framework as the more mechanistic models 703

presented above. The figures S3.2d shows how this model is situated in the α2-4α1α3 plane as c 704

varies. 705
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S4 Sensitivity analysis on network connectivity 706

We conducted a sensitivity analysis on network conductivity by conducting the same simulations 707

as in the main text but on networks with higher or lower connectivity (see S2 for the generating 708

methods). We generated regular graphs where each patch had exactly 2 or 8 neighbours, which 709

respectively results in 100 patches on a circle with connections to the 2 nearest neighbours (1-D 710

system, mean degree = 2) and a 10*10 lattice with periodic boundary conditions and connections to 711

the 8 nearest neighbours (2-D system, mean degree = 8). We generated Erdös-Rényi graphs with a 712

target connectivity of 2 or 8, but because we constrained them to be connected graphs, this resulted 713

in an average connectivity slightly higher than 2 (2.7 on average) for the low connectivity networks. 714

We also generated RGGs with a target connectivity of 8 (which resulted in a realized connectivity 715

of 7.9 on average), but couldn’t make RGGs with a lower connectivity than in the main text because 716

of constraints on the generating process. 717

S4.1 General patterns 718

The general patterns observed in the main text stayed qualitatively unchanged (Fig. S4.1 and S4.2): 719

hysteresis size first decrease with dispersal rate (until µ ∼ 0.1) and then increased to a plateau. 720

The effect of landscape type on hysteresis was conserved for highly connected graphs (regular 721

graphs > Erdös-Rényi graphs > RGGs, fig. S4.2) We suspect that this is due to differences in 722

degree distributions: in regular graphs, all patches have the same degree (4 or 8 neighbours), which 723

explains their larger hysteresis. Erdös-Rényi networks and RGGs have some variance in their node 724

degrees, so the perturbations were likely to happen on a low degree node and to initiate a large scale 725

shift, explaining their hysteresis size in between that of regular graphs and of OCNs. The difference 726

between RGGs and Erdös-Rényi graphs could be also due to differences degree distribution: while 727

they have a similar average degree, RGGs have a wider degree distribution, making it more likely 728

that a pertubation happens on a low-degree node than in Erdös-Rényi graphs, hence their smaller 729

hysteresis. 730
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Hysteresis size was similar accross landscapes types for lowly connected graphs (Fig. S4.1), which 731

we conjecture is due to the very low degree heterogeneity at low connectivity. 732

733

Lastly, hysteresis size was smaller in less connected networks (Fig. S4.1) and higher in more 734

connected networks (Fig. S4.1), which is consistent with our interpretation that biomass dilution in 735

highly connected networks prevent the spread of local shifts. 736

S4.2 Perturbation modality 737

Lastly, the effect of perturbation modality was similar to what we observe in the main text. Targeting 738

clustered patches resulted in a smaller hysteresis than targeting patches dispersed over the landscape 739

in both lowly and highly connected networks (Fig. S4.3 and S4.4). 740

Targeting high or low degree node had only a marginal effect in lowly-connected Erdös-Rényi 741

networks and no effect otherwise (Fig. S4.5 and S4.6), similarly to what we observed in 4-degree 742

networks. 743
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Figure S4.1: Sensitivity analysis: networks with an average degree of 2. Characterization of the
large scale dynamics for different spatial structures of metapopulation (purple: circular network;
green: Erdös-Rényi graphs). (a) Size of the hysteresis (computed as the area between the upper and
lower branches of the bifurcation diagram of the average biomass) as a function of the dispersal
rate. (b) and (c) large scale tipping points as a function of the dispersal rate: value of the harvesting
rate (B) at which the system loses (b) or gains (c) the most biomass. All quantities are computed as
the mean (full line) and standard deviation of 50 replicates.
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Figure S4.2: Sensitivity analysis: networks with an average degree of 8. Characterization of the
large scale dynamics for different spatial structures of metapopulation (purple: regular grid; green:
Erdös-Rényi graphs; brown: random geometric graphs). (a) Size of the hysteresis (computed as the
area between the upper and lower branches of the bifurcation diagram of the average biomass) as a
function of the dispersal rate. (b) and (c) large scale tipping points as a function of the dispersal
rate: value of the harvesting rate (B) at which the system loses (b) or gains (c) the most biomass.
All quantities are computed as the mean (full line) and standard deviation of 50 replicates.
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Figure S4.3: Sensitivity analysis: networks with an average degree of 2. Characterization of the
large scale dynamics for different types of perturbations (full line: clustered perturbations, dashed
lines: dispersed perturbations) and different spatial structures of metapopulation (purple: circular
network). (a) Size of the hysteresis as a function of the dispersal rate. (b) and (c) large scale tipping
points as a function of the dispersal rate: value of the harvesting rate (B) at which the system loses
(b) or gains (c) the most biomass. All quantities are computed as the mean (lines) and standard
deviation of 50 replicates.
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Figure S4.4: Sensitivity analysis: networks with an average degree of 8. Characterization of the
large scale dynamics for different types of perturbations (full line: clustered perturbations, dashed
lines: dispersed perturbations) and different spatial structures of metapopulation (purple: regular
grid). (a) Size of the hysteresis as a function of the dispersal rate. (b) and (c) large scale tipping
points as a function of the dispersal rate: value of the harvesting rate (B) at which the system loses
(b) or gains (c) the most biomass. All quantities are computed as the mean (lines) and standard
deviation of 50 replicates.
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Figure S4.5: Sensitivity analysis: networks with an average degree of 2. Characterization of the
large scale dynamics for different types of perturbations (full line: perturbation of high-degree nodes,
dashed lines: perturbation of low-degree nodes) and different spatial structures of metapopulation
(green: Erdös-Rényi graphs). (a) Size of the hysteresis as a function of the dispersal rate. (b) and
(c) large scale tipping points as a function of the dispersal rate: value of the harvesting rate (B) at
which the system loses (b) or gains (c) the most biomass. All quantities are computed as the mean
(lines) and standard deviation of 50 replicates.
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Figure S4.6: Sensitivity analysis: networks with an average degree of 8. Characterization of the
large scale dynamics for different types of perturbations (full line: perturbation of high-degree nodes,
dashed lines: perturbation of low-degree nodes) and different spatial structures of metapopulation
(green: Erdös-Rényi graphs; brown: random geometric graphs). (a) Size of the hysteresis as a
function of the dispersal rate. (b) and (c) large scale tipping points as a function of the dispersal
rate: value of the harvesting rate (B) at which the system loses (b) or gains (c) the most biomass.
All quantities are computed as the mean (lines) and standard deviation of 50 replicates.
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S5 Analysis of a two-patch system 744

At high dispersal (Fig. S5.1 a, b & c), the densities at equilibrium are the same in the two patches 745

because of the strong homogenization between patches: all equilibria are situated on the x1 = x2 746

plane. Spatial bistability — the stable coexistence of a high- and low-biomass states in the two 747

patches — is not possible, and biomass differences between the two patches can only exist as a 748

transient state towards an homogeneous stable state. The whole system behaves as a single bistable 749

unit with two stable equilibria ((x1,x2) = (0,0) and (x1,x2) = (r1,r1)) separated by an unstable 750

equilibrium ((x1,x2) = (r2,r2)) over the same range of harvesting rate as for an isolated patch 751

(50 < B < 56.25). 752

As dispersal decreases, the equilibria on the x1 = x2 plane keep their values and nature, but 753

branches appear outside of the x1 = x2 plane at high harvesting rates (right before the tipping point 754

toward the desert equilibrium) (Fig. S5.1 d, e & f). These branches appear from the unstable branch 755

((x1,x2) = (r2,r2)) that separates the desert equilibrium ((x1,x2) = (0,0)) from the vegetated 756

equilibrium ((x1,x2) = (r1,r1)) and are themselves unstable. At really low dispersal, spatial 757

bistability becomes possible (meaning the coexistence of patches with different plant biomasses in 758

the metacommunity) since part of the branches outside the x1 = x2 plane become stable (Fig. S5.1 759

g, h & i). These new stable equilibria are associated with strong differences in biomass between the 760

two patches, with one patch at a biomass really close to r1 while the other is close to 0. 761
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Figure S5.1: Bifurcation diagrams of a system of two patches connected through dispersal for
various dispersal rates: µ = 0.3 (top row), µ = 0.03 (middle row) and µ = 0.005 (bottom row);
diagrams in the n1 − n2 −B space (density in both patches 1 and 2, grazing pressure) in the left
column, and their projections on the B−n1 plane (middle column) and n1−n2 plane (right column).
Continuous lines depict stable equilibria and dotted lines unstable ones. The branches in black are
in the n1 = n2 plane (equal densities in both patches), the colored branches are outside of this plane.
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S6 Supplementary figures and tables referenced in the main 762

text 763

Parameter Value Biological meaning
r 2 resource growth rate
K 50 resource carrying capacity
A 25 half saturation of harvesting

Table S6.1: Constant parameters used for the Noy-Meir model.

a b c

Figure S6.1: Examples of three landscapes used in the main text analysis. (a) An Erdös-Rényi
graph, (b) a random geometric graph (RGG) and (c) an optimal chanel network (OCN).

Figure S6.2: Examples of a low-connectivity Erdös-Rényi graph used in the sensitivity analysis.
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a b

Figure S6.3: Examples of two high-connectivity landscapes used in the sensitivity analysis. (a) An
Erdös-Rényi graph, (b) a random geometric graph (RGG).
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