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Abstract

Mutualistic networks have attracted increasing attention in the ecological literature in the last

decades as they play a key role in the maintenance of biodiversity. Here, we develop an analytical

framework to study the structural stability of these networks including both mutualistic and com-

petitive interactions. Analytical and numerical analyses show that the structure of the competitive

network fundamentally alters the necessary conditions for species coexistence in communities. Us-

ing 50 real mutualistic networks, we show that when the relative importance of shared partners is

incorporated via weighted competition, the feasibility area in the parameter space is highly corre-

lated with May’s stability criteria and can be predicted by a functional relationship between the

number of species, the network connectance and the average interaction strength in the community.

Our work reopens a decade-long debate about the complexity-stability relationship in ecological

communities, and highlights the role of the relative structures of different interaction types.
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1 Introduction

Species rarely live in isolation, but constantly interact with other species with different interaction

types, such as predation, competition and mutualism [38]. Mutualism, in which different species

interact for their mutual benefit, is ubiquitous in terrestrial ecosystems [4]. Examples include, but are

not limited to, plants receiving effective pollination or seed-dispersion by offering rewards of nutrients

to their visiting animals, plants gaining resistance to insect herbivores by offering nutrients and shelter

to fungi or ants, and leguminous plants obtaining nitrogen by rewarding nitrogen-fixing bacteria.

Interspecific competition, where species within the same guild compete for shared mutualistic

partners, is one of the identified costs when progressing from two species mutualism to species-rich

mutualism [30]. This had already been reported in field experiments of mutualistic systems of plant

and pollinators by Charles Robertson [31] in 1895, which was then followed by extensive studies in

mutualisms of ants and plants, and of parrots and plants [12, 10, 15, 13, 30, 35, 7, 28]. Intra-guild

competition among plants is specifically recognized when common pollinators frequently visit pollen- or

nectar-rich species while reducing or avoiding the visitation to less-rewarding plants [27, 3, 39, 18, 17].

Extremely attractive species can become dominant in the long run (e.g. well-identified representatives

of Lythrum salicaria [8] and Impatiens glandulifera [11]), possibly threatening the persistence of less-

rewarding species.

Competition among pollinators is likewise relevant for the functioning of plant-pollinator com-

munities. In fact, for certain hummingbird species, interspecific competition may be as important

as mutualistic interactions in shaping the evolution of species that coexist in particular geographical

areas [19, 9]. More specifically, as a consequence of competition, hummingbird species may experience

morphological changes, such as in bill length, which improve the pollination efficiency or to expand

the diversity of pollinated flowers [19, 9]. A large amount of evidence suggests that morphological

specialization is also an evolutionary strategy to avoid or reduce inter- and intra-specific competition

in communities of bumblebees [40]. Yet the effects of competition are perhaps more perceptible on

shorter time scales. For instance, empirical studies reveal that competition for floral resources sig-

nificantly alters the feeding performance and the harvest of nectar in pollinator communities when

foreigner bees are inserted in a given environment [23, 33, 34]; the presence of invader bees is also likely

to affect the availability of food and nest sites, which in turn may undermine the abundance of native

species [16, 34, 41]. The immediate rearrangement of mutualistic interactions by some pollinators

after the intentional removal of competing species is another notable example of the key role that the

shared use of resources plays in the dynamics of ecological communities [30].

Main theories of biodiversity, however, have largely ignored the diversity of interaction types that

link species in nature and have instead focused on a small subset of well studied interactions, such

as predation, competition and mutualism, each of them being typically studied in isolation from the

others [24]. Decades of studies on these interactions have shown that ecological networks have a specific

architecture, which plays a key role for their dynamics and stability (e.g. [14, 29, 5, 36]). Mutualistic

networks – such as plant-pollinator networks, for example — have attracted increasing attention in

the ecological literature in the last decades [22]. These networks have been shown to be highly nested,

with more specialist species interacting with a subset of the species that interact with more generalist

species [5], which has been suggested to contribute to the maintenance of species diversity [37].
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Despite the tremendous contribution of these previous studies to the understanding of the link

between the structure and dynamics of ecological networks, the lack of studies explicitly incorporating

the diversity of interaction types has hindered the advancement of our understanding of the factors

that drive the number of species that can coexist in a given community, one of the oldest questions in

ecology [46].

In previous studies, competitive interactions between plants sharing pollinators were modeled as an

all-to-all connectivity pattern; that is, in a plant-pollinator scenario, all pollinators are considered to

compete equally for plants, and all plants are assumed to compete for pollinators regardless of the het-

erogeneous organization of the mutualistic interactions. However, in real ecosystems, it seems unlikely

that species would compete equally for shared partners without accounting for the structure of the

mutualistic links. To which extent homogeneous competition can predict species coexistence and how

variation in competition alters mechanisms that maintain biodiversity remains unknown. Given the

empirical evidence of the structure of mutualistic networks and the lack of empirical knowledge about

the structure of the associated competitive networks, it is of utmost importance to understand the

effect of different competitive network structures on the community stability of mutualistic networks.

Here, we investigate the effect of different assumptions regarding the assignment of competitive

links among plants and among pollinators (and thereby the structure of the competitive networks)

on the stability of ecological communities including competitive and mutualistic interactions. Real

network structures were used for the mutualistic part of the ecological communities. More specifically,

we investigate the “feasible area”, i.e. the set of conditions (parameters) under which all species coexist

and have a positive abundance. We develop a framework that predicts accurately the boundaries of

the feasible area. Furthermore, we find that different competitive network structures yield significantly

different feasibility patterns, showing that the structure of competitive interactions does have strong

implications for the species diversity of multilayer networks including competition and mutualism.

2 Population dynamics of competitive-mutualistic networks

To study the impact of interspecific competition on communities persistence, we begin by describing

dynamics between plant and pollinator species. We consider a plant-pollinator system consisting of a

set A of NA animal species that interact mutualistically with a set P of NP plant species, denoting

the total biodiversity by N = NP +NA. The mutualistic interactions are fully encoded in a NP ×NA

bipartite matrix K, where Kij = 1 if plant species i is pollinated by pollinator species j, and 0

otherwise. Each plant (resp. animal) species is characterized by the abundance sPi (resp. sAi ), whose

dynamics depend on the intrinsic growth rate αPi (resp. αAi ) and on the influence of competitive and
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Figure 1: (a) Illustration of the minimal mutualistic network that distinguishes the (b) full mean-

field, (c) soft mean-field and (d) weighted competition scenarios. For any other network with fewer

nodes than shown in (a), the competition interactions of the models in (b)-(d) become identical. For

the full mean-field, each layer is a complete, unweighted graph representing an entire inter-specific

competition with the same magnitude. For the soft mean-field, each layer is an unweighted graph

with connections (representing inter-specifies competition) only between pollinators (plants) who share

plants (pollinators). For the weighted competition scenario, each layer is a weighted graph with weights

representing the strength of inter-specific competition.

mutualistic interactions as follows:

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j 6=i

sPj + γ0
MP
i

1 + hγ0MP
i

(Full mean-field competition), (1)

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j=1

APijs
P
j + γ0

MP
i

1 + hγ0MP
i

(Soft mean-field competition), (2)

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j=1

(
WP
ij

MP
i

)
sPj + γ0

MP
i

1 + hγ0MP
i

(Weighted competition), (3)
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where i = 1, ..., NP , and MP
i =

∑
k∈AKiks

A
k is the total abundance of pollinators interacting with

plant i. The first term in the right-hand side of the above equations corresponds to the intrinsic

growth of each species; the second and fourth are also identical in all models and correspond to the

intra-species competition and mutualistic interactions, respectively; and β refers to the intensity of

intra-specific competition. The intensities of inter-specific competition and mutualism are denoted by

β0 and γ0, respectively. Parameter h, known as the handling time, imposes a nonlinear saturation

effect on mutualism. What distinguishes the models in Eqs. (13)-(15) is the definition of the third term,

which accounts for the intra-guild competition. We highlight schematically the differences between

each competition scenario with Fig. 1. In the “full mean field” model, all species within a layer

compete equally with each other, i.e., all plants compete with all other plants with the same intensity

[see Fig. 1(a)], and all pollinators compete with other pollinators with the same intensity, irrespective

of the mutualistic links existing between plants and pollinators (this is the approach used in previous

studies; see, e.g., [6]). In the “soft mean-field” model, the homogeneous competition assumption is

relaxed by placing a competitive link between plants i and j (APij = 1) only if they share at least one

pollinator. The intra-guild competition links in this model are encoded in matrices AP and AA. Notice

that, in this scenario, the competitive links are not weighted (only present or absent). Finally, in the

“weighted competition” model, the intra-guild competitive links have the same structure as in the

“soft mean-field” model but are now weighted by the abundance of the shared partner [see Fig. 1(c)].

This weight is set via matrix WP , whose elements are given by WP
ij =

∑
k∈AKikKjks

A
k [equations for

the pollinator abundances sAi follow mutatis mutandis from Eqs. (13)-(15)]. Therefore, in the weighted

scenario, the higher the abundance of mutualistic partners, the stronger the competition among plants

which have common mutualistic connections. Notice also that the intra-guild competition terms in

Eq. (15) are asymmetric, since the biomass of shared species is normalized by the total biomass of

mutualistic partners
(∑

j∈P,i 6=jW
P
ij /M

P
i

)
. In other words, two plant species i and j perceive the

competition with one another differently according to the importance of their shared pollinators in

relation with their respective total abundance of pollinators.

In the Supplemental Material, we provide an exact and thorough bifurcation analysis of the toy

network depicted in Fig. 1. In the next section we present an analytical calculation of the solutions of

Eqs. (13)-(15) for arbitrary networks.

3 Structural stability conditions

Our goal here is to derive an analytical calculation for the feasible equilibrium solution of the nonlinear

population dynamics in Eqs. (13)-(15), i.e., the solution that corresponds to the maximum biodiver-

sity (sP,Ai > 0 ∀i). It is argued [32] that a specific parameterization can be inconclusive for empirical

networks due to the strong dependence of species coexistence on parameterization. Accordingly, we

investigate a range of parameter values termed feasible area under which all species coexist. Hence-

forth, we refer to the “feasible area” as the region in the space spanned by parameters β0 and γ0 in

which all species have positive abundances at equilibrium.
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Condition for the full and soft mean field competitions

We first address the solution for the full and soft mean-field models. By applying a linear approxima-

tion to the nonlinear mutualism term in Eqs. (13) and (14), we rewrite the population dynamics in a

matrix form as[
dsP

dt
dsA

dt

]
= diag

([
sP

sA

])([
αP

αA

]
−

(
βI + β0

[
AP 0

0 AA

]
− γ0

[
0 M̃P

M̃A 0

])[
sP

sA

])
, (4)

where AP,A and M̃P,A are the matrices that set the competition and mutualism interactions, re-

spectively; and sP,A are the vectors containing the individual abundances of plant and pollinators,

respectively. In the full mean-field model, we have APij = 1 for i 6= j, while in the soft mean-field

model APij = Θ
(∑

k∈AKikKjk

)
, where Θ(·) is the heaviside function. The elements of matrices M̃P,A

are obtained by applying the Taylor expansion for the mutualistic term in Eqs. (13)-(14), that is:

γ0Mi

1 + hγ0Mi
=

γ0 (M0)i
1 + hγ0 (M0)i

+

(
γ0Mi

1 + hγ0Mi

)′ ∣∣∣∣∣
Mi=(M0)i

(Mi − (M0)i), (5)

expanded around a point (M0)i close to a fixed point that is challenging to obtain without a prior

knowledge. We sometimes omit the subscript (M0)i when there is no ambiguity. After substituting

both the competitive and mutualistic terms, a feasible equilibrium (sPi , s
A
i > 0) can thus be obtained

by solving the following linear equation

[
αP

αA

]
=

βI + β0

[
AP 0

0 AA

]
−

 0 diag

(
γ0

(1+hγ0(MP
0 )

i
)
2

)
K

diag

(
γ0

(1+hγ0(MA
0 )

i
〉)

2

)
KT 0



[
sP

sA

]
− c,

(6)

where the vector c = h

((
γ0MP

0

1+hγ0MP
0

)2
,
(

γ0MA
0

1+hγ0MA
0

)2
)T

. Without a prior knowledge on the fixed

points of the system, the linearizion of the system near a fixed point appears to be challenging or

even unfeasible. We approach this challenge by analyzing the interplay between the mutualistic in-

teractions and the intra-guild competition, which separately lead to abundance gain and abundance

loss at equilibrium. When the mutualistic strength is equal to the competition strength, the species

abundance on average follows 〈si〉 = αi
βi

. Assuming the average abundance 〈sAk 〉 = 〈si〉 for all the

animal species pollinating plant i, we linearize the nonlinear population dynamics at
(
MP

0

)
i

= dPi 〈si〉
for each plant i, where dPi =

∑
kKik denoting the number of animals pollinating plant i. The fixed

point for animal species MA
0 is approximated similarly.

Equation (6) provides an approximated solution for the abundances of general networks in the full

and soft-mean field competition. Notice that Eq. (6) provides the equilibrium solution of the system,

but does not guarantee feasibility. In order to estimate the feasible area, one needs to solve Eq. (6) for

different parameters seeking solutions satisfying sP,Ai > 0. Equation 6 has the numerical advantage

that it allows one to scan the parameter space of ecological networks and delineate the feasible area

much more quickly than by evolving the original dynamics. Differently from the solutions assuming

h = 0 in [32], Equation (6) is applicable to any real h ≥ 0, thus enabling the investigation of various

mutualistic regimes.
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Figure 2: Feasible area patterns illustrated here for a real plant-pollinator network (MPL-16) from the

Web of Life platform [43], in the (left) full mean-field, (center) soft mean-field and (right) weighted

scenarios. A point (β0, γ0) is colored in blue if all species survive with a positive abundance in the

stationary regime of the simulations of Eqs. (13)-(15) for that parameter choice. Parameters: αi = 1∀i,
and β = 5. Diagrams in the upper panels have h = 0, while simulations in the lower panels are for

h = 0.1. Grid size: 100× 100. Solid lines are obtained by solving Eq. (6).

In Fig. 2(a,d) and (b,e) we compare the analytical predictions provided by Eq. (6) with direct

simulations of the systems in Eqs. (13)-(15) over the parameter space spanned by competition and

mutualism strengths, β0 and γ0, respectively. As it is seen, the analytical prediction delineates the

boundaries of the feasible area with remarkable accuracy for the soft mean-field model, for both h = 0

and h = 0.1. In the full mean-field model, reasonable precision is achieved for h = 0, while for

h = 0.1 the matching between numerical and theoretical boundaries is lost as competition strength

increases. In the Supplemental Material, we show that the approximate solution of Eq. (6) is successful

in predicting the feasible area for several real networks under the full mean-field and soft mean-field

competition scenarios.

Condition for the weighted competition

To analyze the impact of heterogeneity in the competitive strengths among intra-guild species, we de-

rive conditions under which species coexist for the dynamical model with weighted competition. The

weighted competition is reduced to the homogeneous competitive strength (soft-mean field competi-

tion) only when any pair of intra-guild species depend on and share exactly the same set of mutualistic

partners, corresponding to complete-like bipartite mutualistic networks.

In the dynamic model for weighted competition [Eq. (15)], the inter-specific competition interac-

tions are weighted by the relative importance of shared resources in a nonlinear form. To tackle the
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nonlinear inter-specific competition, we harness the microscopic perspective of intra-guild competition

induced by a single mutualistic plant-pollinator interaction. When plant i is pollinated by an ani-

mal k (i.e., Kik = 1), the inter-specific competition between plant i and the other plants j that are

pollinated by animal k reads
∑

j∈P,j 6=iKikK
T
kjs

P
j . Summing over all the pollinators k that pollinate

plant i yields the total inter-specific competition
∑

k

(∑
j∈P,j 6=iKikK

T
kjs

P
j

)
sAk for that plant i. Armed

with the view of a single mutualistic interaction, the nonlinear competition term in Eq. (15) can be

rewritten as ∑
j∈P,j 6=i

WP
ij

MP
i

sPj =

∑
k

(∑
j∈P,j 6=iKikK

T
kjs

P
j

)
sAk∑

kKiks
A
k

(7)

Analytical estimates can be obtained by reigning in the weighted competition terms. This can be

accomplished by using the mediant inequality (see SI material):

min
k

∑
j∈P,j 6=i

KikK
T
kjs

P
j ≤

∑
k

(∑
j∈P,j 6=iKikK

T
kjs

P
j

)
sAk∑

kKiks
A
k

≤ max
k

∑
j∈P,j 6=i

KikK
T
kjs

P
j (8)

Equation (8) allows reducing the complexity of species abundance from two-guilds into a single-

guild species abundance. After the complexity reduction, the weighted competition structure can be

encoded in a competition matrix ÃP (resp. ÃA) for plant (resp. animal) species, in analogy to the

competition matrix, incorporated in the unweighted adjacency matrix AP , for the soft mean-field case.

Additionally, Eq. (8) establishes lower and upper bounds for the competition term.

Seeking to find an accurate estimate for the competition term, it is appropriate to consider that

plant i competes with plant j mediated by sharing the animal k, whose degree is, over all pollinators of

plant i, the closest to the local average of pollinated plants. Specifically, the element of the competition

matrix ÃP can be written as

ÃPij =

1 if KikK
T
kj 6= 0 for k ∈ arg mink∈A

∣∣∣dAk − ⌊∑sKisd
A
s

dPi

⌋∣∣∣ ,
0 otherwise,

(9)

where dPi (dAi ) is the number of animals (plants) with which plant (animal) i interacts, meaning that

the weighted competition is approximated by an effective mutualistic partner k whose degree is the

closest to the average competitive species per mutualistic interaction.

Combining Eq. (9) with the corresponding mutualistic term into an expression analogous to Eq.

(6), the feasible solution for weighted competition model is eventually obtained by

[
sP

sA

]
=

βI + β0

[
ÃP 0

0 ÃA

]
−

 0 diag

(
γ0

(1+hγ0(MP
0 )

i
)
2

)
K

diag

(
γ0

(1+hγ0(MA
0 )

i
〉)

2

)
KT 0



−1([

αP

αA

]
+ c

)

(10)

The analytical prediction of Eq. (10) for the weighted model is also well confirmed by numerical

simulations on real mutualistic networks [Fig. 2(c) and (f)]. Besides checking the validity of our

calculations, Fig. 2 also allows us to highlight the marked differences in the dynamics yielded by the

three competition models. Notice, in particular, how strongly the shape of the feasible area changes

from the full mean-field to the soft mean-field and then to the weighted competition case: the mere
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Figure 3: Feasible area as a function of different network metrics for full mean field [(a) and (d)], soft

mean-field [(b) and (e)], and weighted [(c) and (f)] competition scenarios. Each dot corresponds to

a real mutualistic network from the Web of Life platform [43], with the size of dot proportional to

the network size. Parameters common in all panels: αi = 1∀i, h = 0.1 and β = 5. Feasible area was

calculated considering the same ranges of β0 and γ0 shown in Fig. 2.

inclusion of heterogeneity in the competition term in Eq. (13) shifts the region of occurrence of feasible

states from strong competition (full mean-field) to weak competition (soft mean-field, weighted).

Another noteworthy difference between soft-mean field and weighted competition is that the former

allows a wider feasible region for low competition and high mutualism, while the latter is favored by

modest values of both competition and mutualism. These results clearly demonstrate how crucial the

structure of the intra-guild competition networks is for the species coexistence and the diversity of

ecological communities.

4 Stability-complexity paradox

After investigating the impact of different choices of the structure of intra-guild competition networks

on biodiversity, let us now study how the feasible area relates with the topological properties of the

multilayer ecological networks. To do so, we consider a set of 50 real plant-pollinator networks retrieved

from the Web of Life platform [43] and, for each network in the database, we evolve Eqs. (13)-(15)

and calculate the corresponding feasible area for each intra-guild competition scenario.

We look at different components of complexity independently, namely species diversity, the average

interaction strength and connectance. Following May [46], we define the average interaction strength as

the average of the off-diagonal elements of the Jacobian matrices of systems (13)-(15); and connectance

9



is defined as the density of non-zero values of the Jacobian matrices (see Supplemental Material). As

shown in Fig. 3, the feasible area correlates positively with connectance and interaction strength in

the full mean-field, soft mean-field and weighted competition scenarios. In other words, the higher

the number of interactions among species and the stronger their intensity, the more likely that the

ecological community exhibits feasible states. This result actually points back to the long debated

diversity-stability paradox initiated by May [46]. In his work, May proved that the probability of facing

stable states converges almost certainly to zero for sufficiently large communities. In mathematical

terms, suppose that species i and j interact with probability C and via an interaction strength Jij ,

which is a random variable with mean E(Jij) = 0 and with variance given by Var(Jij) = σ2. Under

such conditions, and setting the self-interaction terms as constants, Jii = −d ∀i, May proved that the

dynamical system ds/dt = Js is almost surely stable if

√
NC <

d

σ
, (11)

in particular with d = 1, i.e. the condition for which the leading eigenvalue of J is negative. Conse-

quently, the increases in size, connectivity and interaction strength favor the dynamical destabilization

of the system. This finding triggered the aforementioned paradox because it seems in contradiction

with the high diversity of species observed in many natural communities [26].

At first sight, our results seem to violate the stability-diversity paradox, since they show a positive

correlation between feasible area and connectance, and between feasible area and interaction strength,

suggesting that more connected –and thereby more complex– networks tend to have a higher feasibility

area, meaning that such systems would tend to be more stable [Fig. 3, panels (a) and (c)]. However,

this conclusion is reached by looking at the different aspects of complexity independently, whereas a

closer inspection suggests that some of these aspects are related. For example, incorporating the third

element of May’s relation and inspecting the size of the networks, we realize that the networks with a

high connectance are also those that are the smallest networks in the database (Fig. 3, size of the dots

stands for number of species in the corresponding networks). What is more, by checking manually the

networks with connectance values & 0.12, one notices that they correspond to almost fully connected

bipartite matrices and, hence, to almost fully connected Jacobian matrices as well. Thus, the networks

with the highest possible values for the feasible area in Fig. 3 are in fact the networks with the less

“complex” structure in the data set, in consonance with the notion that complexity, as quantified by

this trade-off between system size and connectance, tends to destabilize ecological communities.

We now look more specifically at May’s criteria combining the three network metrics and explore

how the size of the feasibility area is related to that criteria. Our goal here is to check whether there

is a clear relation between the feasible area and the expressions in Eqs. (13)-(15). However, it is

noteworthy that May’s condition [Eq. (11)] is related to the probability that the ecological system is

stable for a particular set of parameters, whereas the feasible area results from a sum over different

parameter combinations. Therefore, to appropriately evaluate how the dependencies of the feasible

area on network properties relate with Eq. (11), we define the following quantity:

CMay = 〈〈Jii〉〉(β,γ) − 〈σ(Jij)〉(β,γ)

√
NC, (12)

where 〈·〉 corresponds to an average over the Jacobian matrix’s elements, and 〈·〉(β,γ) stands for the

average over the parameters β and γ considered in Fig. 3. The first term in Eq. (25), 〈〈Jii〉〉(β,γ), is the
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Figure 4: Comparison between feasible area and May’s stability condition [Eq. (25)] for several real

plant-pollinator networks considering (a) full mean-field, (b) soft mean-field and (c) weighted intra-

guild competition schemes. Parameters common in all panels: αi = 1∀i, h = 0.1 and β = 5.

average taken over the diagonal elements, since, contrarily to the random model considered by May, the

diagonal elements of the Jacobian, JP,A
ii , are not constant, but rather are heterogeneously distributed

over the diagonal (see Supplemental Material); the term 〈σ(Jij)〉(β,γ) is the average standard deviation

of the off-diagonal values of J. In practical terms, variable CMay defined in Eq. (25) quantifies how

distant a given network is from the critical point established by May’s stability condition, meaning how

stable it is according to that criteria. For each real network considered, we numerically calculate the

Jacobian elements evaluated at the stationary points, which in turn are obtained by evolving Eqs (13)-

(15) numerically. We visualize the dependence of the feasible area on CMay in Fig. 4. Interestingly, the

size of the feasibility area does not correlate with May’s criteria for the full and soft mean field scenarios,

but it is very strongly correlated to it in the case of the weighted competition scenario, despite the

fact that May’s criteria was formulated for much more idealized systems (Fig. 4). The patterns we

see in Fig. 4 also agree with the scatter plots in Fig. 3; i.e., there is a noticeable correlation between

network size and the value of the coefficient CMay. In particular, we observe that large networks tend

to exhibit low values for CMay, while “less complex” networks (in terms of size and connectivity) have

higher values of CMay.

This raises the question of why the weighted competition model adheres with May’s criteria better

than the full and soft mean-field scenarios. The answer lies in the expression of the Jacobian terms of

the different models in Eqs. (13)-(15). For the weighted competition scenario, the off-diagonal Jacobian

elements Jij are proportional to the terms 1/sP,Ai and 1/(sP,Ai )2 (see the SI material). This makes the

elements Jij to narrowly peak around an average value, thus making the standard deviation σ(Jij) less

significant than the average of the diagonal terms Jii (see SI material) and thereby creating a positive

correlation between feasible area and CMay. Comparing the models of heterogeneous competitive

interactions (i.e. soft mean-field and weighted in Fig. 4), one notices that the introduction of weights

in the competitive structure acts as a stabilizing factor in the dynamics, in the sense that networks

tend to exhibit a wider feasible area in the weighted scenario. The interplay of interaction types among

species, a well-defined structure, and interacting strength shows a markedly driving force in stabilizing

the system that is highly predictable and consistent with May’s criterion. Interestingly, the feasible

11



area of the weighted competition scenario correlates with May’s criterion as initially formulated by May

for random matrices, but no significant relation was observed with other, more recent stability criteria

formulated for random matrix models that incorporate features from predator-prey and mutualistic

interactions [44] (see SI material).

5 Discussion

We investigated to which extent the incorporation of intra-guild competition alters the maintenance

of biodiversity in mutualistic systems. Compared to a scenario where all species from a guild homoge-

neously compete with each other, as commonly assumed in the literature, heterogeneous competition

leads to markedly different patterns for the feasibility area of plant-pollinator networks. Without

sufficient empirical data about intra-guild competition in plant-pollinator communities, deriving the

structure of the competitive links from the observed mutualistic interactions enables us to theoretically

explore how the structure of different intra-guild competition networks affects the structural stability

of mutualistic ecological communities.

Our results show that previously identified implications can be restricted to homogeneous com-

petition and cannot be readily generalized to heterogeneous competition. Specifically, we found that

feasibility patterns are dramatically modified when competitive interactions become heterogeneous.

This finding suggests that a series of important conclusions regarding the dynamics of ecological net-

works might have been overlooked given that theoretical models have been traditionally studied under

the assumption of homogeneous intra-guild competitive interactions. Therefore, getting information

on the structure of competitive networks in mutualistic systems is key to better understand what con-

strains the assembly of mutualistic communities during the dynamical coevolutionary process, which

could be an important driving force of coevolution [21].

Finally, by investigating the feasible area in terms of global network properties, we found that

smaller and less connected networks exhibited larger regions sustaining maximum biodiversity. Inter-

estingly, this result agrees with the long-standing May’s stability-diversity paradox, which states that

complex systems are more prone to be destabilized as their size, connectance and mean interaction

strength increase. Indeed, we have verified that the more structurally stable networks turned out to

be the “less complex” ones according to May’s criterion [46]. Our results therefore show that the com-

plexity introduced in the model by the weighted competition scenario yields a phenomenology which

is well predicted by a condition originally derived for random systems [Fig. 4(c)], whereas it is not the

case for the other competition scenarios. Importantly, the analysis on feasible solutions performed here

is not limited to the specific equations studied here, but can also be extended to ecological networks

with different types of interactions, such as facilitation [42], and predator-prey models [20].
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Supplementary Material

6 Exact solution for the structural stability of the minimal model

For the sake of clarity, let us briefly reintroduce the models discussed in the main text. We consider

plant-pollinator systems composed of NA animal species, which interact with NP plant species. The

matrix encoding the mutualistic is the NP × NA bipartite matrix K, whose elements are Kij = 1

if plant species i is pollinated by animal species j. The abundance of the ith plant is defined as sPi
(sAi , analogously for the animal species), and its time-depend dynamics is governed by the following

equations:

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j 6=i

sPj + γ0
MP
i

1 + hγ0MP
i

(Full mean-field competition), (13)

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j=1

APijs
P
j + γ0

MP
i

1 + hγ0MP
i

(Soft mean-field competition), (14)

1

sPi

dsPi
dt

= αPi − βsPi − β0

NP∑
j=1

(
WP
ij

MP
i

)
sPj + γ0

MP
i

1 + hγ0MP
i

(Weighted competition), (15)

where αP,Ai are the intrinsic growth rate; parameters β and β0 stand for the intra- and inter-specific

competition strength, respectively; and γ0 is the mutualism strength. Variable MP
i is given by

MP
i =

∑
k∈AKiks

A
k , where k denotes the indexes belonging to the pollinators set. Matrix APij of

the “Soft mean-field competition” scenario encodes the competitive connections within the plant-

guild: APij = 1 if plants i and j share at least one pollinator, and 0 otherwise. For the “Weighted

competition scenario”, the elements of matrix WP are defined as WP
ij =

∑
k∈AKikKjks

A
k , where sAk

is the abundance of the kth pollinator. The equations for dsAk /dt are obtained by interchanging the

labels P and A in the equations and by defining the terms AA, MA and WA accordingly.

In this section, we present the exact solution for the structural stability of the models in Eqs.(13)-

(15) considering the toy network shown in Fig. 1 in the main text. In order to determine which

regions of parameter space are actually accessible by a dynamical system one needs to consider both

the stability and the feasibility of the equilibrium solution. The feasibility alone is insufficient as

numerical simulations only allow the stable regions to be accessed. The feasibility conditions, that is,

positive abundances for all species, should therefore be considered as prerequisite for any equilibrium

solution, after which the stability of the equilibrium can be established.

For the minimal model illustrated in Fig. 1 in the main text, the governing equation for the

population dynamics can be written in a matrix form as

ds

dt
=
(
αT s− sTKs

)
, (16)

We first linearize the system (16) around the feasible equilibrium s∗. Let us denote a small perturbation

around the equilibrium as u = s− s∗. Substituting s = u+ s∗ to Eq. (16) yields

du

dt
= Keffu, (17)
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where the entries of matrix Keff are given by

Keff
ij = αI −Kijs

∗
i , (18)

where I is the identity matrix. By computing the eigenvalues of matrix Keff we can retrieve the

stability of the equilibrium. The stability changes when one of the eigenvalues crosses zero. Such

points can be found by setting the determinant of matrix Keff equal to zero.

In order to find the stability region of the feasible equilibrium of Eq. (16), with all si > 0, we

perform a stability analysis. That is we do not consider the equilibrium with one of the species

having zero (or negative) abundance. Taking matrix K of the full mean field as an example, feasible

equilibrium is given by the following expressions

s∗1 = s∗2 =
p1

q
, s∗3 = s∗5 =

p2

q
, s∗4 =

p3

q
(19)

with

p1 = 25 + 5β0 − 2β2
0 + 10γ0 − 2β0γ0

p2 = 25− β2
0 + 5γ0 − 2β0γ0 − γ2

0

p3 = 25− β2
0 + 10γ0 + γ2

0

q = 125 + 50β0 − 5β2
0 − 2β3

0 − 15γ2
0 + 2β0γ

2
0

With the feasible equilibrium s∗ and the competition matrix K, we construct the matrix Keff. Setting

the determinant of matrix Keff to zero, we find the expression for the curves with a vanishing eigen-

value. In the parameter space of β0 and γ0, the stability status changes at each time we across those

zero lines. From det
(
Keff

)
= 0, we obtain

γ0 = ± (5− β0)

γ0 = ±
√

125 + 50β0 − 5β2
0 − 2β3

0√
15− 2β0

which are the boundary curves for stability regions. Analogously, we describe the exact solution for the

feasible equilibrium and stability conditions for the soft mean-field and weighted competition models

as shown in Figure 5.

For the case of nonzero Holling term, h 6= 0, similar feasibility and stability analysis can be

established by applying the linear approximation of the mutualistic terms. Figure 6 illustrates the

analytical results of feasibility and stability conditions for the full mean-field, soft mean-field and

weighted competition scenarios, where panel (a) is for h = 0, and panel (b) is for h = 0.3. Figure 6

suggests an altered feasible area modulated by inter-specific competition for the mutualistic network

shown in Figure 5.

7 Analytical prediction for the population dynamics of the weighted

competition model

To accurately predict the population dynamics of the weighted competition scenario, we derive the

weighted competition matrix. For an observed mutualistic network, and a given initial condition where

15



Soft mean-field: Feasibility conditions

s∗1, s
∗
2 =

p1

q
, s∗3, s

∗
5 =

p2

q
, s∗4 =

p3

q

p1 = 25− 2β2
0 + 10γ0 − 3β0γ0

p2 = 25− β2
0 + 5γ0 − 2β0γ0 − γ2

0

p3 = 25− 5β0 − 2β2
0 + 10γ0 − 2β0γ0 + γ2

0

q = 125 + 25β0− 10β2
0 − 2β3

0 − 15γ2
0 + 4β0γ

2
0

Stability conditions

γ0 = ±
√

5
√

5− β0

γ0 = ±
√

125 + 25β0 − 10β2
0 − 2β3

0√
15− 4β0

Weighted: Feasibility conditions

s∗1, s
∗
2 =

p1

q
, s∗3, s

∗
5 =

p2

q
, s∗4 =

p3

q

p1 = (5− β0) (5 + β0 + 2γ0)

p2 = 25− β2
0 + 5γ0 − 2β0γ0 − γ2

0

p3 = 25− β2
0 + 10γ0 − β0γ0 + γ2

0

q = (5− β0)
(
25 + 10β0 − β2

0 − 3γ2
0

)
Stability conditions

γ0 = ±
√

5
√

5− β0

γ0 = ±β0 + 5√
3

Figure 5: Feasibility and stability conditions for soft-mean field and the weighted competition model

for the minimal network.

one realization of population dynamics is sufficient, we derive the competition matrix as

ÃPij =

1 if KikK
T
kj 6= 0 for k ∈ arg mink∈A

∣∣∣dAk − ⌊∑sKisd
A
s

dPi

⌋∣∣∣ ,
0 otherwise,

(20)

where dPi (dAi ) is the number of animals (plants) with which plant (animal) i interacts. Term⌊∑
kKikd

A
k

dPi

⌋
quantifies the local average of plant competitors mediated by sharing pollinators over

number of pollinators dPi of plant i. Recall that in the weighted scenario the competition intensity

between two plants (pollinators) is directly proportional to the relative abundance of shared polli-

nators (plants). Therefore, the more abundant the mutualistic partners, the fiercer the intra-guild

competition among the members that have common mutualistic connections.

Figures 7 and 8 compare the simulation results of different networks with the analytical predictions.

As can be seen, for h = 0 (Fig. 7), the matching between the numerical results and our calculations is

remarkable, especially for the full and soft mean-field scenarios. Notice, in particular, how the detailed

contour of the feasible area in the latter scenario is almost exactly captured by the analytical curves.

As we can see in Fig. 7, the feasible area in the weighted competition case is slightly underestimated

by the theory, but nonetheless the general trends of the boundaries are reproduced very closely by the

solid curves. For the case h = 0.1 in Fig. 8 the analytical results accurately predict the feasible area

for a large range of mutualistic strength γ0, with exceptions at a high value of mutualism due to the

saturation effect. All in all, our analytical results work very well for a variety of real plant-pollinator

networks.
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8 Evaluation of analytical predictions on parameterization of pop-

ulation dynamics

To investigate the performance of our analytical predictions of the feasible area, in this section we

present results from extensive simulations considering several parameter combinations. Specifically,

we compare the analytical solutions derived in the previous section and in the main text for real

plant-pollinator networks under different choices for the intraspecific competition β and the Holling

term h.

8.1 Variation in the intraspecific competition β

Figures 9 and 10 show the numerical and analytical results when we increase or decrease the intensity

of intraspecific competition βi for the observed mutualistic networks M-PL-048 and M-PL-016. For

the population dynamics with soft mean-field competition, the analytical results accurately predict

the feasible area for both the increase and decrease of intraspecific competition β. For the weighted

competition scenario, the linear approximation captures well the changing behavior of species coexis-

tence.

8.2 Weak mutualism h� 1

Compared to the majority of the theories in ecology dealing with either weak mutualism (h � 1) or

strong mutualism h = 0, our theoretical framework fills the gap and covers the full range (0 < h < 1).

We proceed by presenting the feasible area in the extreme cases of h = 0 and h� 1.

For a strong mutualism h = 0, the dynamical model is reduced to Lotka–Volterra equations

with type II functional responses. Strong mutualism without saturation is often unstable leading to

indefinite and unbounded growth of species which is argued to be biologically unrealistic due to the

environmental constraints like carrying capacity [47]. However, strong mutualism at the same time

overpowers the inter-specific competition resulting in a cut-off of the mutualism intensity γ0.

For a weak mutualism h� 1, the mutualism term is saturated to a constant 1/h, i.e.,

lim
h→∞

γ0M
P
i

1 + hγ0MP
i

≈ 1

h
(21)

When the mutualism is saturated, the dynamical model is reduced to a linear model, and the feasible

equilibrium is obtained by solving[
sP

sA

]
=

(
βI + β0

[
AP 0

0 AA

])−1 [
αP + 1

hu

αA + 1
hu

]
(22)

where u is the all-one vector. For the weighted competition case, a linear approximation on the

matrices ÃP and ÃA is applied. The mutualism intensity γ0 is disentangled from affecting the feasible

area (which is confirmed by the numerical results in Fig. 11). Moreover, saturated mutualism, in

turn, imposes limitations on the intensity β0 of competition. Because without the compensation of

mutualism benefit, the intra-specific competition might be overly strong and eventually make species

go extinct.
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9 Structural stability and mutualistic network properties

In this section, we provide complementary results on the correlation between feasible area and network

architectures for dynamical models of full mean field, soft mean field and weighted competition. We

test two more network properties, namely, the variance of the degree sequence and the ratio of inter-

degree to intra-degree for both plants and animals. In addition, we test the maximum interspecific

competition β0 before losing any species and its relation to network architectures when the mutualism

is saturated.

Here, we provide the correlation between feasible area and network architectures for all the con-

sidered dynamical models. In particular, we consider the regimes of strong (h = 0) and saturated

mutualism (h 6= 0). For the strong mutualism regime (Fig. 12), global network properties, such as

the number of species and connectance, correlate strongly and negatively with the feasible area, with

goodness-of-fit of R2 = 0.83 and R2 = 0.81 for the soft mean-field competition. The maximum degree

shows a less strong correlation with the feasible area, and neither does nestedness show a clear de-

pendence on the same quantity. The same trends are observed for other competition scenarios in the

strong mutualism regime (see Fig. 12) as well as for the dynamics with saturated mutualism (Fig. 13).

10 Analysis on the diversity-stability relation

May [46] has established a stability-diversity relation for a large ecological system whose stability is

characterized by dx
dt = Jx, indicating that a large system is less stable. In May’s assumption, each

element of the Jacobian matrix J is equally likely to be positive or negative, having an absolute

magnitude chosen from a random distribution with zero mean and standard deviation α. Matrix J

can also be written in the form J = B−I. Based on Theorem 1 for the largest eigenvalue of a random

matrix [45], the system is stable if

σ
√
NC − 1 ≤ 0 (23)

where σ is the standard deviation of the random variable from which the off-diagonal elements of the

Jacobian matrix J take value; N is the size of the network, and C denotes the network connectance [45].

Theorem 1. Let M be a random N × N real and symmetric matrix where elements mij = mji

are independent random variables. Assume that these random variables possess a common mean

E[mij ] = 0 and common variance Var[mij ] = σ2 and E[mii] = µ. Then the largest eigenvalue is upper

bounded by

max |λ1| ≤ 2σ
√
N +O(N1/3 logN) (24)

where σ is the standard variation.

Our goal now is to examine how the stability condition in Eq. 23 relates with the feasible area of

real plant-pollinator networks. However, as discussed in the main text, Eq. (23) is associated with

the probability that the system is stable given a particular set of parameters; the feasible area, on

the other hand, is defined for a set of parameters. Therefore, in order to establish a relation between

May’s condition and the feasible area, we define

CMay = 〈〈Jii〉〉(β0,γ0) − 〈σ(Jij)〉(β0,γ0)

√
NC, (25)
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where 〈·〉 is an average over the Jacobian matrix’s elements, and 〈·〉(β0,γ0) corresponds to the average

over certain ranges of parameters β0 and γ0. The first term in Eq. (25), 〈〈Jii〉〉(β0,γ0), is the average

taken over the diagonal elements, since, contrarily to the random model considered by May, the

diagonal elements of the Jacobian, JP,A
ii , are not constant, but rather are heterogeneously distributed

over the diagonal (see Appendix); the term 〈σ(Jij)〉(β0,γ0) is the average standard deviation of the

off-diagonal values of J.

The stability criterion by May is derived considering purely random interactions among the ele-

ments in a complex system, i.e., the Jacobian matrix is a random matrix without any constraints on its

elements. More recently, Allesina and Tang (AT) [44] generalized May’s stability analysis for random

matrix models that incorporate aspects of predator-prey, mutualisc and competitive interactions [44].

Seeking to verify how these more complex stability criteria relate with the feasible area of networks,

we define

CAT,Pred = 〈〈Jii〉〉(β,γ) − 〈σ(Jij)〉(β,γ)

√
NC

(
1−

〈
E2 (|Jij |)

〉
(β,γ)

〈σ(Jij)〉2(β,γ)

)
(26)

CAT,Mutu = 〈〈Jii〉〉(β,γ) − 〈σ(Jij)〉(β,γ)

√
NC

(
1 +

〈
E2 (|Jij |)

〉
(β,γ)

〈σ(Jij)〉2(β,γ)

)
, (27)

where CAT,Pred corresponds to the stability condition of random predator-prey matrices [44], and

CAT,Mutu is the analogous quantity for random matrix models that emulate the interplay between

competitive and mutualistic relationships [44]. Figure 14 shows the observed correlation of May’s and

Allesina and Tang’s stability with the feasible area for full mean-field, soft mean-field and weighted

competition scenarios. Interestingly, we do not observe a significant dependence of the feasible area

on conditions (25)-(27) for full and soft mean-field scenario. A pattern does emerge in the weighted

scenario, for which we have a positive correlation between feasible area and all conditions; however, it

is interesting to note that the strongest correlation occurs for CMay. The surprise about this result

resides in the fact that CMay is the condition derived for the simplest random matrix model. At first

sight, one would expect to observe a more significant dependence of the feasible area on CAT,Mutu,

which accounts for competitive and mutualistic networks, but what we have is the opposite: the

most complex model (weighted competition scenario) adheres best with the condition derived from

May’s stability criteria. As we argue in the main text, the explanation for the latter results lies in

the expression of the Jacobian elements (see Appendix). In the weighted competition scenario, the

off-diagonal Jacobian elements Jij depend on terms 1/sP,Ai and 1/(sP,Ai )2. Since the abundance values

are generally less than 1, the elements Jij end up being narrowly peaked around an average value, thus

making the standard deviation σ(Jij) to be less significant than the average off-diagonal terms Jii.

To exemplify this phenomenon, in Figs. 15 and 16 we show the distribution of elements in Jacobian

matrix for networks MPL-010 and MPL-048, respectively.

In order to get further insights into the dynamics of the three competition models, let us denote

the right hand side of Eq. (15) as f(sPi ). To determine the stability of the equilibrium point, we

analyze the Jacobian matrix J which can be written as

J = B − βI (28)
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where B can be expressed in the form of block matrix as

B =

[
(B11)NP×NP (B12)NP×NA

(B21)NA×NP (B22)NA×NA

]
(29)

Each element in B11 is calculated by (B11)iu =
∂f((s∗)Pi )

∂(s∗)Pu
, where s∗ is the abundance at equilibrium.

Each element in B12 is calculated by (B12)iv =
∂f((s∗)Pi )

∂(s∗)Av
. An analogous form can be obtained for B22

and B21 by replacing superscript P indicating plant species to superscript A representing pollinator

species and vice versa. We derive the expression of submatrices B11 and B12 for three cases of full

mean-filed, soft mean-field and weighted competition (see also Appendix A).

(i) Case of full mean-field competition: the submatrix B11 = β0JNP , where JNP is the all one

matrix. Therefore, all elements in Jacobian submatrix B11 are linearly correlated. Each element in

B12 is determined mainly by mutualistic interactions (B12)iv = γ0Kiv

(1+hγ0
∑

kKik(s∗)Ak )
2 . All the interacting

pollinators of plant i have the same value in Jacobian submatrix B12 and thus linearly correlated.

(ii) Case of soft mean-field competition: the submatrix B11 has an element of 1 whenever there is

competition which has the same value for all competed species. Each element in B12 is determined

mainly by mutualistic interactions (B12)iv = γ0Kiv

(1+hγ0
∑

kKik(s∗)Ak )
2 .

(iii) Case of weighted competition: the submatrix B11 has elements computed by

(B11)iu = β0

∑
kKikK

T
ku (s∗)Ak∑

kKik (s∗)Ak
(30)

For each pollinator u of plant i, the value in Jacobian submatrix is varied, in contrast to the same value

of 1 in the case of full mean field and soft mean field. Each element in submatrix B12 is computed by

(B12)iv =
β0
∑

jKivKvj (s∗)Pj
∑

k 6=vKik (s∗)Ak(∑
kKik (s∗)Ak

)2 +
γ0Kiv(

1 + hγ0
∑

kKik (s∗)Ak

)2 (31)

The second term in the right hand side of Eq. (31) is introduced due to mutualistic interactions and

shows an analogous pattern to the full mean field case and soft mean field case. However, the first term

uniquely appears in the weighted competition scenario. In addition, the value is varied for different

pollinators v, determined by the number of introduced plant competitions
∑

jKivKvj (s∗)Pj mediated

by sharing a common pollinator v. Weighted competition reduces the correlation between elements in

each row of the Jacobian submatrix B12 and, therefore, shows a well agreement with May’s stability

criteria, which is built upon the assumption of independence among elements of the Jacobian matrix.

In the Appendix A we provide the complete expressions for the elements of the Jacobian matrix.

A Expressions for the Jacobian matrix elements

The Jacobian matrices of the models considered in the main text can be expressed as follows

J =

(
JP JPA

JAP JA

)
. (32)

In the sequel we write the expression for each competition scenario.
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Figure 6: Feasible domain of the minimal model for full mean-field, soft mean-field and the weighted

competition. Panel (a) shows the theoretical results for h = 0, and (b) shows the approximation result

for h = 0.3. Other parameters are taken as αP1 = αA2 = 1, βP = βA = 5.

A.1 Full mean-field competition model

∂ṡPi
∂sPi

≡ JPii = αPi − 2βsPi − β0

NP∑
j 6=i

sPj + γ0
MP
i

1 + hγ0MP
i

, i ∈ P. (33)

∂ṡPi
∂sPj

≡ JPij = −sPi β0, i, j ∈ P. (34)

∂ṡi

∂sAk
≡ JPAik = sPi γ0

Kik(
1 + hγ0MP

i

)2 , i ∈ P, k ∈ A. (35)

A.2 Soft mean-field competition model

JPii = αPi − 2βsPi − β0

NP∑
j 6=i

APijs
P
j + γ0

MP
i

1 + hγ0MP
i

, i ∈ P. (36)

JPij = −sPi β0A
P
ij , i, j ∈ P. (37)

JPAik = sPi γ0
Kik(

1 + hγ0MP
i

)2 , i ∈ P, k ∈ A. (38)

A.3 Weighted competition model

JPii = αPi − 2βsPi − β0

∑
j∈P,i6=jW

P
ij s

P
j

MP
i

+ γ0
MP
i

1 + hγ0MP
i

, i ∈ P. (39)

JPij = −β0
sPi
MP
i

WP
ij , i, j ∈ P. (40)
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Figure 7: Feasible area patterns for several networks from the Web of Life platform [43], in the (left)

full mean-field, (center) soft mean-field and (right) weighted scenarios. Parameters h = 0, β = 5, and

αP,Ai = 1 ∀i.
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Figure 8: Feasible area patterns for several networks from the Web of Life platform [43], in the (left)

full mean-field, (center) soft mean-field and (right) weighted scenarios. Parameters h = 0, β = 5, and

αP,Ai = 1 ∀i.
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Figure 9: Analytical prediction (black curve) for the soft mean-field, considering different values for the

inter-specific competition strength βAi = βPi = β. The system in Eq. (14) was numerically integrated

with the Heun’s method, considering total simulation time T = 2000 and time step dt = 0.01. The

simulation result (shaded area) is obtained with parameters αPi = αAi = 1 and h = 0.1.

JPAik = −sPi β0Kik

[
MA
k

MP
i

− sPi
MP
i

−
∑

j∈P,i6=jW
P
ij s

P
j(

MP
i

)2
]

+ sPi γ0
Kik(

1 + hγ0MP
i

)2 , i ∈ P, k ∈ A. (41)
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Figure 10: Analytical prediction (black curve) for the weighted competition scenario, considering

different values for the inter-specific competition strength βAi = βPi = β. The systems in Eqs. (15)

was numerically integrated with the Heun’s method, considering total simulation time T = 2000 and

time step dt = 0.01. The simulation result (shaded area) is obtained with parameters αPi = αAi = 1

and h = 0.1.
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Figure 11: Performance of analytical predictions (black lines) in the weak mutualism regime (h� 1).

Other parameters: αPi = αAi = 1, β = 5, and h = 103. The systems in Eqs. (14) and (15) were

numerically integrated with the Heun’s method, considering total simulation time T = 2000 and time

step dt = 0.01.
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Figure 12: Feasible area and network architecture. Simulations are performed on 50 real-world mu-

tualistic networks. Parameters to compute the feasible area are α = 1, β = 5, h = 0, β0 ∈ [0, 1] and

γ0 ∈ [0, 1].
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Figure 13: Feasible area and network architecture. Simulations are performed on 50 real-world mu-

tualistic networks. Parameters to compute the feasible area are α = 1, β = 5, h = 0.1, β0 ∈ [0, 1] and

γ0 ∈ [0, 1].
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Figure 14: Correlation of feasible area with (a)-(c) May’s stability criterion [Eq. (25)], (d)-(f) stability

criterion by Allesina and Tang [44] for Predator-Prey models [Eq. (26)], and (g)-(i) criterion by

Allesina and Tang for random matrices with competitive and mutualistic interactions [Eq. (27)]. Dots

correspond to the real plant-pollinator networks with indexes between 01 and 50 retrieved from the

Web of Life database [43]. Size of the dots is proportional to the network size. The dynamics of

all networks was numerically integrated with the Heun’s method, considering total simulation time

T = 1000 and a time step dt = 0.01. The feasible area was calculated over a β0×γ0 grid with 100×100

points, where β0, γ0 ∈ [0, 1]. Other parameters: h = 0.1, αi = 1 ∀i, β = 5. Solid lines correspond to

the linear least-square regression, and R2 is the correlation coefficient.
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Figure 15: Distribution of the elements of the Jacobian matrix for network MPL-10 for (upper row)

h = 0 and (lower row) h = 0.1. Parameters α = 1, β = 5, β0 = 0.1, γ0 = 0.2.
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Figure 16: Distribution of the elements of the Jacobian matrix for network MPL-48 for (upper row)

h = 0 and (lower row) h = 0.1. Parameters α = 1, β = 5, β0 = 0.1, γ0 = 0.2.
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