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Abstract 27 

Recurrent fires can impede the spontaneous recruitment capacity of pine forests. 28 

Empirical studies have suggested that this can lead to a prolonged replacement 29 

of pine forest by shrubland, especially if shrub species are pyrophytic. Model-30 

based studies, however, have suggested that post-fire succession of pine forest 31 

under current climatic conditions will eventually tend towards the dominance of 32 

oaks, even under high fire recurrence. These previous modelling studies did not 33 

address the role of the various post-fire regeneration traits of the understory shrub 34 

species. Considering the dichotomy of obligate seeder vs. resprouter species, 35 

either obligate or facultative resprouter, we hypothesized that when the shrubs 36 

present are post-fire seeders, the oaks steadily occupy the forest, whereas 37 

resprouter shrub species might compete with oaks and delay or arrest post-fire 38 

succession. 39 

To test this hypothesis, we developed a dynamic, cellular automaton model for 40 

simulating post-fire successional transitions in pine forests, including shrubs, 41 

pines and oaks, and stochastic fires of regular frequency. 42 

Our results showed a strong tendency towards oak dominance as final model 43 

state and a very reduced role of fire recurrence in this final state, with low yearly 44 

acorn input delaying oak dominance. Most relevantly, and in line with our 45 

hypothesis, the trend towards oak dominance depended markedly on the two 46 

types of shrub species, being delayed by resprouter species, which extended the 47 

shrub-dominated succession stage for several centuries. Our simulation results 48 

supported the view that the type of understorey species should be a key 49 

consideration in post-fire restoration strategies aiming to enhance ecosystem 50 

resilience.   51 
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Abstract 88 

Recurrent fires can impede the spontaneous recruitment capacity of pine forests. 89 

Empirical studies have suggested that this can lead to a prolonged replacement 90 

of pine forest by shrubland, especially if shrub species are pyrophytic. Model-91 

based studies, however, have suggested that post-fire succession of pine forest 92 

under current climatic conditions will eventually tend towards the dominance of 93 

oaks, even under high fire recurrence. These previous modelling studies did not 94 

address the role of the various post-fire regeneration traits of the understory shrub 95 

species. Considering the dichotomy of obligate seeder vs. resprouter species, 96 

either obligate or facultative resprouter, we hypothesized that when the shrubs 97 

present are post-fire seeders, the oaks steadily occupy the forest, whereas 98 

resprouter shrub species might compete with oaks and delay or arrest post-fire 99 

succession. 100 

To test this hypothesis, we developed a dynamic, cellular automaton model for 101 

simulating post-fire successional transitions in pine forests, including shrubs, 102 

pines and oaks, and stochastic fires of regular frequency. 103 

Our results showed a strong tendency towards oak dominance as final model 104 

state and a very reduced role of fire recurrence in this final state, with low yearly 105 

acorn input delaying oak dominance. Most relevantly, and in line with our 106 

hypothesis, the trend towards oak dominance depended markedly on the two 107 

types of shrub species, being delayed by resprouter species, which extended the 108 

shrub-dominated succession stage for several centuries. Our simulation results 109 
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supported the view that the type of understorey species should be a key 110 

consideration in post-fire restoration strategies aiming to enhance fire resilience.  111 

 112 

Introduction 113 

In the past fifty years, Mediterranean landscapes experienced intense changes 114 

that led to abandonment of marginal croplands, on the one hand, and, on the 115 

other hand, to extensive afforestation with pine plantations (Pausas and others 116 

2004; Vallejo and others 2012 ab). These changes have contributed to 117 

intensifying fire regimes in the Mediterranean Basin, which in turn, can have 118 

pronounced effects on the composition and long-term resilience of its plant 119 

communities (Diaz-Delgado and others 2002; Vallejo and others 2012 ab). 120 

According to the classical view on succession, species replacement in the 121 

absence of disturbance is driven by facilitation mechanisms, with early 122 

successional species creating conditions that are less favourable for themselves 123 

than for late successional species (Clements 1916; Connell and Slatyer 1977). In 124 

line with this theory, undisturbed Mediterranean pine forests are considered to 125 

foster successional processes, in particular by creating conditions under their 126 

canopy that are favourable for the establishment of late successional species 127 

(e.g. Quercus ilex; Zavala and others 2000). Most Mediterranean plant species 128 

are well adapted to fire occurrence, responding to fire through three main 129 

regeneration strategies (also called plant functional types, PFT): i) plant survival 130 

through the resistance of below-ground buds  to fire, followed by resprouting of 131 

the above-ground tissues (obligate resprouters), and recruitment is produced in 132 

the intervals between fires (Keeley and others 2012), ii) plant mortality with 133 

survival of the seeds (obligate seeders) or iii) a combination of both mechanisms 134 
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(facultative shrub species; according to Pausas and others 2004 and Paula and 135 

Pausas 2008). Studies of post-fire dynamics have shown that plant communities 136 

dominated by resprouter species (which are usually late successional) are more 137 

resilient to both short and long fire intervals than communities dominated by 138 

seeder species (Keeley 1986), yet important questions remain on how the various 139 

plant functional types interact in shaping the post-fire community development. 140 

The resilience of pine forests to frequent fires is largely limited by pine seed 141 

production. This means that the occurrence of high recurrent repeated fires in a 142 

short interval of time or of a single fire in a young pine forest can cause the local 143 

eradication of pines (immaturity risk; Moreira and others 2011; De las Heras and 144 

others 2012). This eradication gives rise to the dominance of other species, which 145 

could either be early or late successional, depending on the species composition 146 

of the understory before the fire (Rodrigo and others 2004). In this context, 147 

several studies indicate that high wildfire frequency can favour the replacement 148 

of pine and oak forests by fire-prone shrublands (Acácio and others 2009, 2010; 149 

Santana and others 2010; Santana and others 2010, 2014). Furthermore, the 150 

colonization of late successional species, such as resprouter oak trees, in fire-151 

prone shrublands can be limited by several factors related to seed dispersal and 152 

micro-climate conditions (Acácio and others 2007; Pons and Pausas 2007). 153 

These recruitment limitations could arrest successional processes, locking the 154 

system in a shrubland state, i.e. plant communities that lack a tree layer and are 155 

dominated by fire-prone shrub species (Acácio and others 2007, 2009, 2010; 156 

Santana and others 2010). The dominance of fire-prone shrublands can markedly 157 

reduce the resilience of the ecosystem by, for example, increasing erosion risk 158 

and decreasing biodiversity (Mayor and others 2016; Van del Elsen and others 159 
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2020). Despite this, oak tree species can also become dominant in former pine 160 

forests where pines have been eradicated as a result of recurrent fires (Keeley 161 

1986; Torres and others 2016, Baudena and others 2020). 162 

Plant succession is expected to be modulated by factors such as fire severity 163 

(Díaz-Delgado and others 2003; López-Poma and others 2014), seed source, 164 

disperser preference, and the occurrence of safe germination microsites (Pons 165 

and Pausas 2006, 2007). The persistence of a litter layer after a fire, which largely 166 

depends on fire severity (Lamont and others 1993; Maia and others 2012), 167 

modifies the colonization probability of plants from different functional groups. 168 

Thick litter layers may selectively inhibit the germination and establishment of 169 

species with small seeds (Farrell and others 2012; Loydi and others 2013) as 170 

opposed to big seeds (Thompson 2000). This contrast in seed size broadly 171 

coincides with that in early vs. late successional Mediterranean species and, 172 

simultaneously, with that between obligate seeder shrubs vs. resprouter species 173 

(Cerabolini and others 2003). Also, by buffering temperature and moisture 174 

fluctuations, pine litter favours the establishment of late successional species 175 

over that of early successional species (Facelli and Picket 1991; Gaudio and 176 

others 2011). However, despite the important role of litter as modulator of the 177 

composition and structure of plant communities (Facelli and Facelli 1993; Xiong 178 

and Nilson 1999), its effects have not been included so far in the analysis of the 179 

successional dynamics of pine forests under different fire regimes. 180 

According to Baudena and others (2020), pine forests will be replaced by oak 181 

forests in the long run. However, the post-fire resprouting ability of oak trees can 182 

be hampered because of unfavourable environmental conditions, e.g., due to the 183 

predicted climatic changes; this can, in turn, lead to the dominance of fire-prone 184 
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shrublands instead of late successional oak forests. Furthermore, we expect that, 185 

under high fire recurrence, oak tree dominance will be delayed by reduced seed 186 

colonization (low seed entry). We hypothesise that facultative resprouter shrubs 187 

will likely delay oak tree dominance further than obligate seeder shrubs because 188 

facultative species exhibit both a positive fire feedback due to their high 189 

flammability and a high persistence after fire due to their resprouting capacity. In 190 

short, whereas frequent fires in a short interval can deplete seed banks of obligate 191 

seeder shrubs, facultative shrub species can persist by their resprouting capacity, 192 

thus delaying their replacement by late successional species. According to this 193 

hypothesis, the main objective of this study was to improve our understanding of 194 

the role of facultative resprouter shrubs in delaying succession, represented by 195 

the dominance of oak tree species, following wildfire. 196 

To test the role of shrubs in post-fire succession, we developed a dynamic 197 

successional model that simulates the population dynamics of three plant 198 

functional types simultaneously: pine, oak tree and either an obligate seeder or a 199 

facultative shrub species. The simulated temporal scale allowed species 200 

replacement and succession. Using this model, we studied the long-term 201 

vegetation dynamics of a mimicked Mediterranean pine forest under different 202 

understory functional composition (obligate seeder versus facultative species) 203 

and fire frequency conditions, and we analysed the dynamics of the transient 204 

period (until approximately 1000 years), by studying the time at which the late 205 

successional species (oak tree) attained relative dominance. Additionally, we 206 

studied how the oak tree colonization capacity (represented by the entry of 207 

acorns) and post-fire microsite conditions (represented by fire severity and litter 208 

depth) influence the progress of succession. 209 
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Material and Methods 210 

We implemented a stochastic cellular automata model (also called interacting 211 

particle systems; Durrett and Levin 1994), which allowed representing spatial 212 

processes at the landscape scale. Cellular automata consist of one lattice, in 213 

which each cell acquires a discrete and finite value, and of transition rules that 214 

control the temporal and spatial changes in the values of the state of the cells 215 

(Wolfram, 1984). In our model, the state variable was the plant functional type. 216 

The lattice had 100*100 cells (each cell being denoted by x in what follows), and 217 

each cell contained only one plant type, which could be interpreted as one adult 218 

tree but also of few small shrub plants. For simplification purposes, if the cell was 219 

considered as occupied by more plants, they were of the same type and age. The 220 

model considered three plant types (i=1-3), each representing a different 221 

functional group with contrasting seed size, seed production and life span. 222 

Namely, we modelled pines (i=1), either facultative or obligate seeder shrubs 223 

(i=2) and oak tree (i=3). The model species were inspired in Genista spp. 224 

(including formerly classified Pterospartum tridentatum (L.) Willk.) and Ulex 225 

europaeus L. for the facultative species, in Erica umbellata L., Ulex 226 

parviflorus Pourr. and Salvia rosmarinus Schleid. (formerly Rosmarinus 227 

officinalis L.) for the obligate seeder species, in Pinus pinaster Ait. for the pine 228 

and in Quercus robur L. for the oak tree ( Tavsanoglu and Pausas 2018; Paula 229 

and others 2009). The model included additional information concerning the age 230 

of the plant cell when occupied and the number of seeds produced per cell, which 231 

corresponded to realistic values from literature (Fig. 1). The time steps used were 232 

of one year (i.e. dt=1 yr). The simulations were performed by implementing a 233 

Matlab R2015b code. 234 
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Soil seedbank  235 

We kept track of the soil seedbank SBi at the plot scale (i.e., the whole lattice), 236 

for each plant functional type i, by computing both the production and the seed 237 

input from neighbouring areas. We assumed that the seeds were dispersed 238 

homogeneously across the plot, thus we multiplied each cell seed production 239 

rate, SPi(x), by the number of cells that were occupied by mature individuals in 240 

the whole lattice. For pines and shrubs, the average numbers of seeds per cell, 241 

Nseeds1,2(x), were then calculated as the number of seeds in the soil seedbank, 242 

SB1,2, divided by the total number of cells. In the case of oak tree, given the small 243 

number of seeds compared to the other species, the seeds locally produced and 244 

those arrived from elsewhere were randomly distributed across the cells in the 245 

lattice to calculate Nseeds3. In the following, we detail how we implemented seed 246 

production and storage in the seed bank. 247 

Seed production  248 

The annual pine seed production per cell SP1(x) was estimated at 100 seeds, 249 

which was calculated by considering that 10% of the average produced seeds 250 

would be available for germination after predation and seed loss (Vega and 251 

others 2008). Pine age of maturity (AM, the age at which a tree starts, on average, 252 

producing seeds) was defined as 10 years, as an approximation of the values 253 

reported for Pinus pinaster (Tapias and others 2001, Thanos and Daskalakou, 254 

2000). 255 

The shrub species (either obligate seeder or facultative species) produced 1000 256 

available seeds per occupied cell. It was considered that both the obligate seeder 257 

and the facultative shrub species started producing seeds after 2 years. 258 
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Finally, we defined that each mature oak tree produced 10 acorns per year that 259 

were available for germination (considering predation as well as seed and 260 

seedling loss, Gomez and others 2003). The oak trees reached maturity at 20 261 

years (average value between field observation by Pausas 1999a and the 262 

authors, unpublished). 263 

Seed Bank 264 

Depending on their specific strategy, each plant functional type was linked to 265 

different rules for the yearly seed bank update. Pines had a seed bank (serotinous 266 

cones) accumulating in the canopy over time (Vega and others 2008). We 267 

considered a degree of serotiny of 50%, which means that half of the seeds that 268 

were contained in serotinous cones before the fire were released after the fire 269 

(Table 1). Thus, every year, half of the seeds that were produced in each cell, 270 

SP1(x), were accumulated in the pine canopy bank (CB1) and the other half was 271 

released to the soil:𝑆𝑃!(𝑥) = 		DS ∗ 𝐶𝐵!(𝑥). The pine seeds remained viable in the 272 

soil for two years at most (de las Heras and others 2012): we simulated that 50% 273 

of the seeds died after the first year and the other 50% after the second year. In 274 

the case of the seeds of shrub species, the annual decay rate was set at 10%. 275 

Finally, the oak tree seed bank was re-set to zero yearly, due to the typical loss 276 

of viability during the first year of the seed (Hendry and others 1992).  277 

Litter accumulation 278 

The accumulation of litter was a spatially explicit process that took place in the 279 

cells occupied by a mature pine tree as well as in their surrounding eight cells 280 

(Moore neighbourhood). The litter content increased with an annual litter 281 

accumulation rate (Table 1), which was reduced to 20% of its value if the pines 282 

were not yet mature. The value obtained was the litter accumulation rate in the 283 



13 
 

cell that was occupied by a pine tree, while the eight neighbours of this cell 284 

received 50% of this value. In the model, each year, part of the litter was degraded 285 

(40%), so that for a monospecific plantation of pine, a maximum litter depth (6 286 

cm) was reached 20-30 years after pine plantation. All the litter values were 287 

based on field observations by experts. 288 

Transition rules: plant colonization and mortality 289 

The colonization of an empty cell was defined as a stochastic process that 290 

depended on the probability of establishment, ProbC, defined as: 𝑃𝑟𝑜𝑏𝐶" =291 

𝑃𝑟𝑜𝑏𝑆" ∗ 𝑃𝑟𝑜𝑏𝐿" for each species i (i=1-3). ProbSi depended on the number of 292 

available seeds and establishment capacity of species i and ProbLi depended on 293 

the microsite conditions, as represented by litter depth. 294 

Given the fact that the habitat conditions were equally suitable for all three 295 

species, the probability of establishment ProbSi(x) of species i in a cell x was 296 

defined as a function of the seed number in the cell, Nseedsi(x), following Cannas 297 

and others (2003): 𝑃𝑟𝑜𝑏𝑆(𝑥) = 	1 − 41 − !
#!
5	$%&&'%!()). Ei represented the number 298 

of seeds that under optimal conditions would guarantee the dominance of the 299 

species i in a cell. The values of Ei for the different species represented a 300 

competition factor for the seedlings, which considering the differences in seed 301 

size between species, was approximated to differ by a factor of 10 between the 302 

different species. This number was set to 2 for the oak trees, 10 for the pines, 303 

100 for the shrubs (i=2, 10, 100). For the oak tree, this value was established at 304 

2 rather than 1, because the latter would lead to an establishment probability of 305 

almost 100%. The relations between the number of available seeds in a cell and 306 

the ProbSi for each species are shown in Fig. 2.  307 
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Given the starting point of the system represented a pine plantation, the 308 

probability of establishment ProbLi in an empty cell was expressed as a function 309 

of litter depth, as we assumed that the increasing litter thickness over time would 310 

favour the relative dominance of the late successional species and, at the same 311 

time, inhibit the colonization of the early successional species (Fig. 3; please see 312 

the equations in the appendix). More specifically, the effect of litter thickness was 313 

defined as depending on seed size and thus on species regeneration strategy 314 

and successional stage. These assumptions were based on the following 315 

arguments: i) bigger seeds typically do not present dormancy, whereas smaller 316 

seeds do and the breaking of this dormancy require fluctuations in temperature 317 

that do not occur when the litter layer is thicker than 1 cm; ii) bigger seeds have 318 

higher elongation potential than smaller seeds and, thus, can establish 319 

themselves successfully under greater litter depths and iii) bigger seeds are more 320 

susceptible to predation and/or desiccation than smaller seeds and, therefore, 321 

can benefit more from the protective effect of litter (both by hiding the seeds and 322 

by buffering climatic extremes). The values of the contribution due to litter depth 323 

to probability of establishment ProbLi(x) for the three different functional types 324 

were based on the literature (e.g. Molofsky and Augspurger 1992; López-Barrera 325 

and González-Espinosa 2001; Fagundez and Izco 2004; Kostel-Hughes and 326 

others 2005; Fernandes and Rigolot 2007; Giertych and Suszka 2011; Egawa 327 

and Tsuyuzaki 2013). Seed sizes for the different functional types were estimated 328 

as follows: the obligate seeder (e.g. Cistus spp.) and facultative (e.g. Rosmarinus 329 

officinalis) shrub species have small seeds (<0.50 mg per seed, Thanos and 330 

others 1992, Fagúndez and Izco 2004; Vasques and others 2012); the pine tree 331 

(e.g. Pinus pinaster) had intermediate size seeds (~54 mg per seed, Garcia-332 
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Fayos 2001); the obligate resprouter tree (e.g. Quercus robur) had large seeds 333 

(2-6 g per seed, Garcia-Fayos 2001, Giertych and Suszka 2011). This information 334 

was complemented by author observations of the elongation potential of the 335 

different seeds during the cotyledon phase during germination experiments. See 336 

Fig.3 for the relations between litter depth and ProbLi(x) for each functional type.  337 

To decide which species will colonize a certain empty cell, we followed a standard 338 

approach to assign species to cells in proportion to the respective establishment 339 

probability. The species colonization probabilities in each cell were compared to 340 

a random number (r) drawn from a uniform distribution between 0 and 3. If the 341 

random number was smaller than the probability of colonization of species 1 342 

(r<ProbC1), the cell was colonized by species 1. Otherwise, if the number was 343 

smaller than the sum of the probabilities of species 1 and 2 344 

(ProbC1≤r<ProbC1+ProbC2), species 2 colonized the cell. Species 3 colonized if 345 

ProbC1+ProbC2≤r<ProbC1+ProbC2+ProbC3, and otherwise the cell remained 346 

empty (Danet 2014). 347 

The annual mortality rate (AMOrate, of each species was defined as one over its 348 

life span (Baudena and others 2020). 349 

Fire 350 

Fire disturbance regime was defined stochastically, with the occurrence of fires 351 

expressed by an exponential distribution of return times (Kampen 1992; Baudena 352 

and others 2010). In order to study the response of the system to different fire 353 

frequency conditions, we selected three different average fire return times: seven, 354 

fifteen and thirty years, plus a scenario without fire. When a fire occurred, the 355 

species with resprouting ability (oak tree or facultative shrub species) continued 356 

to occupy the same cell, whereas pines and obligate seeder shrubs die. The fire 357 
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that was simulated was of high severity for which all the needles (crown) and litter 358 

(floor) were consumed. 359 

Model simulation settings 360 

The initial conditions of the model were those of a pine plantation that developed 361 

for 100 years without fires, until it reached a mature stage. It was assumed that 362 

the system was not managed after the initial pine plantation. This simulated 363 

extensive pine plantations on old fields and degraded land with low presence of 364 

oak trees. In all cases the model was run for 3000 years, with fires occurring after 365 

the initial 100 yr. For each fire recurrence regime, ten different fire series were 366 

used in the model experiments and each set of conditions was repeated 20 times 367 

to account for the stochasticity of the model.  368 

The model was initialized with a range of different initial conditions (e.g., variable 369 

initial pine density, number of shrub seeds and variable annual acorn input; not 370 

shown). After learning that the model was mostly sensitive to the variation in 371 

yearly acorn input, the initial conditions for the model runs were then selected as 372 

follows: initial pine plantation interval: 4 cells between pines; 100 shrub seeds per 373 

cell (produced on site during the early development of the pine plantation), 374 

number of oak seeds (acorns) across the plot given by the annual input, which, 375 

to obtain a broad spectrum, was simulated at 1, 5, 50 and 200 seeds.  376 

The differences in the time at which oak trees reached relative dominance (more 377 

than 50% of cover of the cells in the lattice) in the communities with either obligate 378 

seeder or facultative shrub species were recorded. This was done separately for 379 

each combination of fire frequency, fire severity and values of yearly acorn input.  380 
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Results 381 

In the absence of fire, the system attained a stochastically stable coexistence of 382 

the three plant types at steady state. This equilibrium was reached after about 383 

500-1000 years from the initial pine plantation state and included predominantly 384 

oak trees (~75%) with co-existing pines (~20%) and both shrub types (<5%) (Fig. 385 

4A-B).  386 

The shifts in the relative dominance of each plant functional type over time relate 387 

to the respective lifespan: during the first decades the short lived, early 388 

successional shrub species dominated (about ~100 years at most after 389 

plantation), then the intermediate lived species (pine) dominated, and finally the 390 

long lived, late-successional species (oak tree) dominated (at ~250 years). The 391 

increase of the oak tree population was slow, but steady. In the absence of fire, 392 

neither the time when the equilibrium occurs nor the species that is dominant at 393 

the equilibrium (oak tree) were sensitive to changes in the values of the initial 394 

conditions.  395 

The relative dominance of oak trees at steady state (i.e., cover values higher than 396 

50%) was maintained under all recurrence intervals of high-severity fires (Fig. 397 

4C-F). The coexistence of all three functional types, however, was not observed 398 

when fires were simulated, since pines went extinct in all fire regimes, because 399 

of a combination of seed bank depletion and a reduction in empty sites available 400 

for pine establishment. Under high fire frequency conditions, obligate seeder 401 

species were also eradicated from the system (average fire return time of 7 years; 402 

Fig. 4H). Nevertheless, when the facultative shrub species was included in the 403 

simulations, a long-term co-existence of shrub and oak trees was reached under 404 

all fire disturbance regimes (Fig. 4C,E,G). The time at which pine trees were 405 
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eradicated from the system depended exclusively on the fire return time (Fig. 406 

4C,E,G). Pine cover was eradicated (0% of cover) fastest at the highest fire 407 

frequency, namely we observe eradication times of about 40, 130 and 265 years, 408 

for fire frequency of 7, 15 and 30 years, respectively. These values did not change 409 

for different values of oak trees seed input or regeneration strategy of the shrub. 410 

However, the time at which oak trees reached dominance was not only 411 

dependent on fire frequency, but also on the resprouting capacity of the shrub 412 

(Fig 4C-H). In particular, high fire frequency accelerated oak tree dominance 413 

when the shrub was an obligate seeder but delayed it when the shrub had 414 

resprouting ability (facultative shrub species; Fig. 4C-H). This result was 415 

observed for all the input rates of oak tree seeds. However, oak tree dominance 416 

was delayed substantially (up to 550 years) when acorn input rates were very low 417 

(1 seed.year-1, Fig.5).  418 

Thus, the time at which oak trees reached dominance was shorter in communities 419 

with the obligate shrub species than in those with the facultative shrub species 420 

for all the three fire frequency regimes, whereas no difference was observed in 421 

the absence of fire (as expected). 422 

Discussion 423 

We evaluated the role of plant characteristics, namely post-fire regeneration 424 

strategies of fire prone shrubs in influencing successional processes. Our model 425 

results indicated that the period of dominance of shrubs after fire is mostly 426 

dependent on their post-fire resprouting capacity, with a delay in succession 427 

caused by the resprouting capacity of the shrubs. This was due to spatial 428 

competition between species since a cell that is occupied by a resprouter shrub 429 

remained occupied after a fire, while a cell that was occupied by an obligate 430 
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seeder was empty after a fire. Field studies also suggested that the post-fire 431 

recovery of oak forests could be slow, with shrubland communities dominating in 432 

the first decades (Baeza and others 2007; Alvarez and others 2009). In short, we 433 

found that the facultative strategy (which regenerates both by seeds and 434 

resprouting) could delay succession for a considerable amount of time, in the 435 

order of centuries. This would likely lead to notable degradation, with increased 436 

erosion risk, reduced biodiversity, soil fertility, and potential for C sequestration 437 

(Mayor and others 2016; Van del Elsen and others 2020) and could be enhanced 438 

by climate change and aridity (Batllori and others 2017, 2019). In this context, the 439 

increase in the time of dominance of facultative shrub species that was observed 440 

in our model, highlights the importance of assessing the resprouter capacity of 441 

Mediterranean shrubs in response to recurrent fires. 442 

In the absence of fire, our results showed a stable coexistence between shrubs, 443 

pines and oak trees. The time of species relative dominance related to their life 444 

span, in the sense that short lived species dominated earlier in the succession, 445 

whereas long lived species dominate later on, in agreement with the theory of 446 

initial floristic model of succession (Egler, 1954). The relative dominance of late 447 

successional oak tree, such as Quercus robur, in the Iberian Peninsula during the 448 

last ten thousand years was confirmed by paleobotanical records (Alcalde and 449 

others 2006). These records also suggested a long presence of Pinus pinaster in 450 

the Iberian Peninsula, prior to their widespread plantation by humans. 451 

Furthermore, sporadic fires might be favourable to pine communities, by creating 452 

open areas for pine colonization (López-Sáez and others 2010). Thus, the 453 

prevailing vegetation before intensive human impacts in the landscape probably 454 

consisted of a mixed pine-oak woodland and not of the typical climax vegetation 455 
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suggested by the phytosociological model of Rivas and Martinez (1987), in which 456 

the tree layer was exclusively composed of oak species (Alcalde and others 2006; 457 

López-Sáez and others 2010). As expected, in the absence of fire, no differences 458 

between different shrub strategies were found since for modelling purposes only 459 

differences in post-fire regeneration strategy were considered. Previous model 460 

studies confirmed that in the absence of fire, the vegetation was dominated by 461 

early successional species, mainly Pinus spp. and with the passage of time this 462 

vegetation became dominated by later successional tree species (Quercus spp.). 463 

However, when early successional communities were affected by recurrent fires, 464 

plant succession can be arrested or delayed through a positive flammability-fire 465 

feedback loop, hence hampering fire resilience (Baudena and others 2020). A 466 

single fire is sometimes enough to change Pinus spp. forests into alternative 467 

stable states dominated by shrub communities. This trajectory deviation is more 468 

likely under high fire frequency regimes where the vegetation changes to dwarf 469 

shrubs and herbs (Santana and others, 2010, 2014). In this line, post-fire 470 

recovery is expected to be faster in communities that are already dominated by 471 

oak trees before the fire than in communities that are dominated by pine or shrubs 472 

(Calvo and others 2003). 473 

In our model, we observed the eradication of pines as a result of high frequency 474 

of severe fire. In fact, pine was eradicated at relatively low fire frequencies (30 475 

years average fire return) as a result of some fire events occurring within 10 years 476 

after each other, because of the stochastic fire return time. This was caused by 477 

a combination of the depletion in the pine seed bank and by a reduction of empty 478 

sites available for post-fire pine establishment (competition). We expected that 479 

the eradication of pines would only occur at fire recurrence intervals shorter than 480 



21 
 

the age of maturity of the pines, i.e., 10 years (Eugenio and others 2006), 481 

however, the stochastic variations in fire return time that were simulated in the 482 

model (with a possibility for events of short fire recurrence intervals than the 483 

average frequency that is observed) can also be observed in nature. 484 

According to our model results, oak trees also reached dominance under high fire 485 

frequency. In particular, oak trees were dominant at equilibrium in all the 486 

scenarios of fire disturbance, and this final outcome was not sensitive to changes 487 

in other model parameters, such as low acorn availability. These results agree 488 

with previous works (Baudena and others, 2020) that found oak tree dominance 489 

in the long-term independently of the regime of fire occurrence. This pattern can 490 

be explained by the very high resprouting ability and long-life span of oak trees. 491 

Conversely, the other species tend to lose dominance over time, either because 492 

of having a short life span (shrubs) or a regeneration strategy that depends on 493 

local seed banks (pine and obligate seeder shrubs). Our results also agree well 494 

with the initial floristic model of succession (Egler, 1954), according to which post-495 

fire conditions tend to attain a similar state of equilibrium than the one that would 496 

be achieved in the absence of fire (Trabaud, 1987). Furthermore, previous field 497 

studies suggested that oak tree species generally resprout rapidly and vigorously 498 

after fire under a wide set of conditions (Espelta and others 2003, Pausas 1997). 499 

Similar results were found under a frequent fire regime (Lloret and others 2003; 500 

Konstantinidis and others 2005), even after a period as short as three years after 501 

the last fire (Delitti and others 2005). These studies concerned forests that were 502 

already dominated by oak tree species, so that colonisation by oak tree species 503 

was not a limiting factor. In many instances, however, oak tree seed sources are 504 

distant, and there are few oak stands in the region, leading to very low acorn 505 
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inputs from the surrounding areas, hence absolutely delaying the post-fire 506 

succession of pine forests (Acacio and others 2010; Urbieta and others 2010). 507 

Unfavourable environmental conditions for the regeneration of oak tree species, 508 

such as steep slopes and cold or dry sites have been previously linked to the 509 

persistence of pine populations, however such conditions were not simulated in 510 

our model (López-Sáez and others 2010). We have found that oak tree 511 

dominance under optimal conditions for oak establishment was accelerated by a 512 

higher yearly input of acorns, as expected.  Previous research, however, has 513 

shown that the relative abundance of oak tree species depends strongly on their 514 

colonization potential and on the establishment success of oak seedlings 515 

(Sheffer, 2012). Our model showed that a very small initial oak tree population 516 

and a small but steady yearly supply of 1 or 2 acorns per hectare could lead to 517 

oak tree dominance within 200 years, at least in the absence of fire. This outcome 518 

was altered by frequent fire regimes, which led to a delay in oak tree dominance 519 

of a few centuries in cases of very low acorn supply (1 acorn per hectare per 520 

year). At yearly acorn supply values of 50 per hectare, frequent fire regimes no 521 

longer delayed oak tree dominance. In the field, acorn inputs strongly depend on 522 

the distance from seed sources, e.g., on the presence and distribution of mature 523 

oak trees in the landscape. Since a low seed input has shown to influence the 524 

speed of oak tree dominance, we can expect that, understanding and 525 

manipulating the potential and effective dispersal of oak trees to the area can 526 

increase the presence of oak trees in the landscape. To do this, the promotion of 527 

acorn dispersers, such as the jay (Garrulus glandarius L.) could be considered 528 

(Ouden and others 2005). In this context, it is important to note that the type of 529 

plant community species dominance can interact with the colonization capacity 530 
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of oak trees, as pine stands foster seed arrival, whereas shrublands are usually 531 

avoided by the jay because open areas usually lead to a higher exposure to 532 

predators (Pons and Pausas 2006). These mechanisms could inhibit oak tree 533 

colonization in highly dense shrublands, which could, in turn, lock the system in 534 

an early successional phase, especially when pines are eradicated from the 535 

system. This would agree well with the findings of Acacio and others (2007) who 536 

found seed arrival to be one of the limitations of oak tree establishment in 537 

shrublands.  538 

Another factor that can lead to a decrease in oak tree numbers after a fire is 539 

resprouting failure, due to factors such as environmental stress, drought or age 540 

(Pausas and others 1999b; Baudena and others 2020). Pratt and others (2014) 541 

found a high mortality of facultative shrub species as a result of the combined 542 

action of frequent fires and post-fire drought. Furthermore, it is expected that 543 

resprouter species will have lower resprouting capacity and high mortality in dry 544 

areas (Ojeda and others 2005: Pausas and others 2015), which could undermine 545 

their dominance. If other factors such as drought were to be analysed, oak tree 546 

species might experience a greater reduction in abundance under likely climate 547 

change scenarios than pine or shrub species (Torres and others 2016; Batllori 548 

and others 2015, 2019; Baudena and others 2020), promoting shifts in species 549 

dominance as a result of high fire frequency. To further understand the effects of 550 

climate change scenarios on vegetation dynamics, research on the impacts of 551 

likely future climate conditions in oak tree establishment success as well as in 552 

resprouting capacity of the shrubs is needed (Enright and others 2015). 553 

The model presented here assumed resprouting behaviour of the main shrub 554 

species and the oak trees as a binomial feature, i.e., a species either does or 555 
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does not resprout after fire. However, it is presently known that post fire 556 

resprouting capacity is actually a continuum, in terms of both the individual and 557 

the community response to a disturbance (e.g. fire or herbivory) (Moreira and 558 

others, 2012, Nicholson and others 2017). In spite of the high relative abundance 559 

of resprouting species in several ecosystems around the globe and on their 560 

tendency to become numerous in less productive sites, a focus on the role of  561 

resprouters in community dynamics has been underrepresented in previous 562 

modelling and successional studies (Midgley 1996; Bond and Midgley 2001). 563 

The plantation of extensive areas with pines in the Iberian Peninsula did not only 564 

target wood production interests, but also aimed to foster ecological succession, 565 

with pines as a pioneer species promoting the subsequent colonization by more 566 

resource-demanding late successional species (Zavala and others 2000). 567 

However, several studies have shown that, pine stands have largely failed to 568 

harbour late successional species, possibly because of their high planting 569 

densities (Maestre and Cortina 2004; Gavinet and others 2015). In this context, 570 

the use of mixed pine plantations including late successional species has been 571 

proposed to increase the resilience of pine forests to frequent wildfires as well as 572 

to foster and accelerate succession (Pausas and others 2004; Vallejo and others 573 

2009; Santana and others 2018). Our model results suggest that the composition 574 

of the understory of pine stands should be considered, in particular regarding the 575 

resprouting capacity of fire-prone shrubs, as it can play an important role in 576 

constraining successional processes after pine has been eradicated from the 577 

system. Further research on the post-fire competitive effect of other facultative 578 

species with invasive behaviour in Portugal, such as acacia (Acacia spp.) and 579 

Hakea sericea Schrader is needed since, according to our results, their potential 580 
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to delay the establishment of oak tree populations could be enhanced by their 581 

regeneration strategy.  582 

Conclusion 583 

Our model indicated that the final succession state of pine-oak tree-shrub 584 

ecosystems is not influenced by fire frequency. The steady state dominated by 585 

oak trees is nearly insensitive to differences in initial model conditions. However, 586 

the time until oak tree dominance was reached was strongly delayed by the post-587 

fire resprouting ability of understorey shrub species. Our results showed the 588 

importance of considering the resprouting ability of understorey shrubs in the 589 

assessment and management of pine forests that are subject to frequent fires, 590 

as a high post-fire resprouting capacity could inhibit plant succession for several 591 

centuries, especially under low levels of acorn yearly input, which could, in turn, 592 

lead to extensive post-fire erosion and degradation. 593 
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