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Abstract
Aim: Discerning the relative role of geographical and ecological factors in promoting 
diversification is central to our understanding of the origin and maintenance of biodi-
versity. We explore the roles of geology and ecological tolerance in the diversification 
of a group of wingless beetles with low dispersal potential.
Location: Western Mediterranean (Iberian Peninsula and North Africa).
Taxon: Darkling beetles (Tenebrionidae: Misolampus).
Methods: We sequenced nine gene fragments from the mitochondrial and nuclear 
genomes in all extant Misolampus species to reconstruct their phylogeny, evaluate 
species boundaries and potential contact zones and estimate divergence times. We 
modelled species distributions for different time periods to infer ecological prefer-
ences and assess the effects of climatic changes since the last interglacial. We used 
a time-stratified process-based biogeographical model to estimate ancestral areas of 
origin and the evolution of geographical ranges.
Results: The palaeoclimatic model projections show contractions of favourable areas 
during the last interglacial period and mid-Holocene, and wide stretches of suitable 
areas during the last glacial maximum. Analyses of ancestral bioclimatic preferences 
reveal ecological adaptations in isolated lineages within three species. The phylog-
eny of Misolampus is strongly supported and unveils deep divergences within the six 
species. Two well-supported clades were recovered, one distributed in North Africa-
Balearic Islands and another in the Iberian Peninsula. The divergence between the 
North African and Iberian clades occurred during the early Miocene. Biogeographical 
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1  |  INTRODUC TION

The geographical ranges of species are dynamic, shaped by biotic 
(e.g. life history, demography, species interactions) and abiotic (e.g. 
tectonic events, climatic variables) factors that vary through space 
and time. This variation ultimately dictates differential patterns of 
population viability, connectivity and growth through time in dif-
ferent sections of species ranges, with important consequences 
for species diversification processes (Bellard et al.,  2012; Gouveia 
et al., 2014; Thuiller et al., 2005; Wiens, 2011). Following climatic 
changes, species can respond by contracting their ranges into cli-
matic refugia and/or dispersing to areas where their environmen-
tal preferences are maintained (niche tracking), by adapting to new 
environmental conditions in situ (niche evolution), and often by 
undergoing extinction in environmentally unsuitable areas (Kozak 
& Wiens,  2006; Yesson & Culham,  2006a). The fragmentation of 
ancestral distributions because of tectonic or climatic changes pro-
motes allopatric speciation, sometimes associated with niche evo-
lution, whereas demographic expansion of populations tracking 
climatic changes can lead to range fusion and admixture between 
formerly isolated population groups. Discerning the relative role 
of biotic and abiotic factors in promoting diversification is central 
to our understanding of the origin and maintenance of biodiversity 
(Wiens & Graham, 2005).

The ability of different taxa to track climatic conditions or 
evolve new adaptations depends on life-history traits like dispersal. 
Dispersal limitation can result in geographical isolation and ecolog-
ical specialization, by promoting species persistence in small areas, 
which could lead to some resilience to changing climatic conditions 
and might accelerate the consolidation of a species' ecological niche 
even at the population level (Baselga et al., 2011). Usually, local ad-
aptation to extrinsic ecological factors is initiated by the presence 
of a barrier to gene flow. Additionally, dispersal limitation may lead 
to ecological specialization and reinforce restrictions to gene flow, 
promoting speciation even in the face of future demographic pro-
cesses such as population contractions, fragmentations or expan-
sions (Wiens, 2004).

Addressing the question of how much lineage diversification 
is affected by range expansions/contractions through historical 

biogeography is often tackled by reconstructing ancestral range 
shifts using phylogenetic analyses (Ree & Smith, 2008; Ronquist & 
Sanmartín, 2011). However, the question often remains partially an-
swered because of the lack of information on the timing of range 
shifts regarding the speciation process itself (Recuero et al., 2012; 
Recuero & García-París,  2011). Robust, accurate estimates of di-
vergence times between species and intraspecific lineages are key 
to consider evolutionary processes at different temporal scales 
that lead to diversification, which is controlled by multiple extrin-
sic ecological factors and intrinsic organismal traits (Wiens, 2004). 
Therefore, assessing the temporal scale of demographic processes 
such as range contractions, fragmentations and expansions and their 
impact on lineage divergence provides decisive evidence to recon-
struct the evolutionary history of species.

Within a temperate region such as the Western Mediterranean, 
the influence of demographic processes under climatic oscillations 
has been well studied, providing evidence for two major evolution-
ary patterns. On the one hand, allopatric fragmentation, or demo-
graphic contraction into refugial areas during glacial periods have 
allowed species to persist as isolated populations over long peri-
ods of time (Gutiérrez-Rodríguez et al., 2017; Hewitt, 2004, 2011; 
Martínez-Freiría et al., 2020; Martínez-Solano et al., 2006; Recuero 
& García-París, 2011). On the other hand, during interglacial periods 
many species have expanded their ranges through newly available 
colonization routes, sometimes forming secondary contact areas 
with related species or lineages (Branco et al.,  2000; Gómez & 
Lunt, 2007; Gonçalves et al., 2009; Miraldo et al., 2011). These two 
scenarios involve periods without effective contact or gene flow be-
tween isolated populations, which has consequences on the process 
of lineage divergence. For instance, intraspecific divergence could 
be either indicative of allopatric cladogenetic events (cladogenesis), 
or ecological specialization (niche differentiation) (Hewitt, 2011).

The Western Mediterranean hunchback darkling beetles 
Misolampus (Tenebrionidae: Stenochiinae: Misolampinii) are well 
suited for studies on the contribution of geology-driven processes 
and ecological divergence to diversification in species groups with 
limited dispersal capacity. These flightless beetles are ecologically 
linked to woodlands and live mainly beneath the bark or inside dead 
logs of Pinus, Quercus and other tree species along a broad altitudinal 

analyses infer an ancestral range including the Iberian, Betic and Rifean Plates, with 
subsequent splits followed by dispersal events.
Main conclusions: Our results favour a dual role of vicariance and dispersal in driving 
the historical biogeography and diversification of Misolampus since the early Miocene. 
We also found evidence for incipient speciation events, underscoring the role of 
tectonic events and adaptation to local climatic conditions in the diversification of 
the group.

K E Y W O R D S
ecological niche modelling, historical biogeography, Misolampus, palaeogeography, phylogeny, 
speciation, Tenebrionidae, Western Mediterranean
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range (from sea level to >2000 m a.s.l.). The genus includes five spe-
cies endemic to the Iberian Peninsula (M. gibbulus, M. lusitanicus,  
M. ramburii, M. scabricollis and M. subglaber) with a patchy distribu-
tion and few cases of sympatry, and one species distributed through-
out Morocco, Algeria and the Balearic Islands (M. goudotii). Based on 
this distribution, we use molecular and climatic data to propose and 
test three hypothetical biogeographical scenarios that could explain 
current patterns of distribution and diversity in the genus.

On the one hand, Misolampus could have an ancient origin 
(Paleogene) and given sufficient evolutionary time, geological 
events in the Western Mediterranean Basin (Payros et al., 2016) 
could have led to geology-based vicariance of ancestral popula-
tions (Figure 1a). Subsequently, hybridization of these relict popu-
lations/new species in secondary contact areas would be prevented 
by the evolution of pre- and post-zygotic isolation mechanisms (in-
cluding ecological barriers). This scenario could be expected given 
the poor dispersal ability of these animals and their geographi-
cal distribution, which suggests a substantial role of allopatry as 

a main driver of diversification. Previous studies have suggested 
that the diversification of Iberian Misolampus could have entailed 
two vicariance events leading to speciation (Palmer, 1998; Palmer 
& Cambefort, 2000). On the other hand, Misolampus could be of 
recent origin (Pliocene), with less time to experience geological 
events, and diversification could be then largely attributed to dis-
persal events from their ancestral area to other areas (Figure 1b). 
This scenario might be facilitated by the broad climatic tolerance 
of Misolampus, which are also associated with tree species that are 
widespread throughout the Mediterranean Basin (Rosas-Ramos 
et al.,  2020). Finally, while it has been previously proposed that 
the ancestor of Misolampus originated in North Africa and sub-
sequently dispersed towards the Iberian Peninsula (Palmer, 1998; 
Palmer & Cambefort, 2000), an alternative scenario could invoke 
an intermediate origin (Miocene) and a dual role of vicariance and 
dispersal in driving the biogeographical pattern observed today 
(Figure 1c). In the Miocene, tectonic activity shaped the Western 
Mediterranean Basin, in particular the Iberian Peninsula, and 

F I G U R E  1  Three hypothetical biogeographical scenarios explaining the current diversity pattern in Misolampus. (a) Vicariant scenario 
with an ancient origin (Paleogene) and a widespread ancestral range splitting into smaller ones. (b) Dispersal scenario with a recent origin 
(Pliocene) in a smaller ancestral area that has fostered its current distribution through range expansion. (c) Intermediate origin (Miocene) in a 
smaller ancestral area with a dual role of vicariance and dispersal events in shaping current species ranges.
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2284  |    MAS-­PEINADO et al.

created temporary land bridges between Iberia and North Africa 
(Booth-Rea et al., 2018). Such a dynamic geological history could 
have split ancestral populations but also allowed range expan-
sions through dispersal, eventually followed by range fragmenta-
tion. For instance, current patterns of sympatry between Iberian 
Misolampus have been hypothesized to result from recent con-
tact between taxa expanding from their respective glacial refugia 
(Palmer & Cambefort,  2000; Rosas-Ramos et al.,  2020). Glacial 
cycles in the Pleistocene may have also influenced the diversi-
fication of Misolampus, as documented for many taxa (Gómez & 
Lunt,  2007). Under favourable climatic conditions, barriers sep-
arating allopatric groups of populations could vanish, potentially 
leading to demographic expansions, and eventually leading to 
sympatry and hybridization.

Here, we used molecular sequences, species records and climatic 
data to reconstruct the phylogeny of the group, test biogeographic 
hypotheses and explore the roles of geology and ecological toler-
ance in the diversification of Misolampus.

2  |  MATERIAL S AND METHODS

2.1  |  Taxon sampling and DNA sequencing

We sampled all species of Misolampus across their ranges, includ-
ing 108 individuals from 60 populations in the Iberian Peninsula, the 
Balearic Islands and Morocco (Appendix S1, Table S1). We also in-
cluded four species from the tribe Cnodalonini (Stenochiinae) and 
one species of Nalassus (subfamily Tenebrioninae) as outgroups.

Most specimens were captured by hand and preserved in ab-
solute ethanol at −20°C. Genomic DNA was extracted from leg 
tissue using commercial kits (Qiagen DNeasy). Polymerase chain 
reaction (PCR) was used to amplify fragments of three mtDNA 
genes: cytochrome b (cytb, 705  bp); cytochrome oxidase 1 (cox1, 
805  bp); and 16S rRNA (16S, 801  bp). We also amplified frag-
ments of six nuclear genes: wingless (Wg, 456 bp), histone 3 (H3, 
327 bp), ribosomal 18S and 28S (941 and 713 bp, respectively), and 
the internal transcribed spacers ITS1 and ITS2 (1265 and 574 bp) 
(Appendix S1, Table S2). Products were purified and directly se-
quenced at Macrogen Inc. (Macrogen).

All sequences were compiled, assembled and edited using 
Sequencher 5.4.1 (Gene Codes Corporation), and then aligned au-
tomatically in MAFFT 7.0 (Katoh & Toh, 2008). The final alignment 
was manually revised and edited in Mesquite 3.04 (Maddison & 
Maddison, 2015).

2.2  |  Phylogenetic analyses and divergence 
time estimates

Phylogenetic analyses were performed with multiple specimens 
per species, to assess the possible presence of cryptic or incipi-
ent species. We define incipient species as a group of individuals 

(populations) that are about to become genetically isolated from the 
rest of the species, for instance because of a geographical barrier (as 
inferred from biogeographical analyses), though at this time can still 
reproduce with other populations of the same species. Phylogenetic 
analyses were carried out under both maximum likelihood (ML) and 
Bayesian inference (BI) (Appendix  S2, Table S4). Species delimita-
tion analyses were initially performed but resulted in a non-realistic 
number of species. We therefore relied on our expertise to assess 
species boundaries.

We estimated divergence times between lineages and their 
credibility intervals using relaxed molecular clock analyses im-
plemented in BEAST 1.8.4 (Drummond et al.,  2012). Given the 
absence of fossil record for Misolampus, we relied on the fossil 
record of the subfamily Stenochiinae, for which the most ancient 
and non-ambiguous fossil species †Pseudohelops groenlandicus 
provides a minimum age of 58.7 Ma for the crown group of the 
subfamily Stenochiinae (Nabozhenko,  2019, Appendix  S2, Table 
S4). Sensitivity analyses on the prior distribution for the fossil cal-
ibration were performed to evaluate the robustness of the time 
estimations.

All analyses were run in the CIPRES Science Gateway cluster 
using BEAGLE (Ayres et al., 2012; Miller et al., 2010).

2.3  |  Current climatic suitability and ancestral 
climatic preferences

We inferred climatically suitable areas for all Misolampus species 
under current and past climatic conditions using species distribution 
models (SDMs). Based on current occurrence data of Misolampus 
(Rosas-Ramos et al., 2020), we built SDMs with a total of 509 pres-
ence records (56 of M. subglaber, 133 of M. scabricollis, 30 of M 
ramburii, 13 of M. lusitanicus, 137 of M. goudotii, and 140 of M. gib-
bulus). The 19 bioclimatic variables available in the WorldClim 2.0 
dataset (Fick & Hijmans, 2017) were used as predictor variables to 
build models of environmental suitability under current and past cli-
mate conditions. We calculated the correlation coefficients among 
all the 19 climatic variables for the present time and the variance 
inflation factor (VIF) to reduce any potential multicollinearity using 
R package HH (Heiberger, 2016). We selected those variables with 
an appropriate temporal and spatial scale for our study, with direct 
or indirect influence with the occurrence of Misolampus and with 
values of poor spatial correlation with each other: R < 0.7 and VIF <3 
(Zuur et al., 2010) (Appendix S2, Table S3). We first built SDMs for 
the present and then projected these models towards different pe-
riods in the past to predict suitable areas based on palaeoclimatic 
simulations including the Last Interglacial period (LIG, 120,000–
140,000 years ago [ya]) in the Late Pleistocene, and three differ-
ent models (CCSM4, MIROC-ESM, MPI-ESM) for the Last Glacial 
Maximum (LGM, 19,000 ya) in the Holocene.

We used Maxent 3.3.3 k software (Phillips et al., 2006; Phillips 
& Dudík,  2008) to create species range maps with binary pres-
ence/absence data, including 10,000 random pseudo-absences. 
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    |  2285MAS-­PEINADO et al.

We built 10 replicate SDMs for each species, of which 20% 
corresponded to testing and 80% were used as training. Model 
performance was evaluated based on the receiver operating char-
acteristic (ROC) and its area under the curve (AUC), with AUC 
scores >0.7 indicating good performance (Fielding & Bell, 1997). 
Data preparation, modelling and calculations were performed 
using R packages dismo and raster.

We also inferred ancestral climatic preferences by analysing the 
uncorrelated climatic variables. Given all values for each species 
throughout their geographical distributions, we computed the mean 
and median values for each variable and for each species. Across the 
time-calibrated phylogeny of Misolampus, we inferred the ancestral 
state using R package phytools 0.7–70 (Revell, 2012). We computed 
variances and 95% confidence intervals for each node (‘fastAnc’ 
function) and plotted the ancestral state of each key variable onto 
the tree (‘contMap’ function). We replicated this in two different 
analyses, one including the six Misolampus species and another in-
cluding incipient species recovered in phylogenetic analyses (see 
Section 3).

2.4  |  Biogeographical analyses

We estimated the ancestral area of origin of Misolampus and 
its geographical range evolution using the dispersal-extinction-
cladogenesis (DEC, Ree & Smith,  2008) model as implemented 
in the C++ version (Beeravolu & Condamine,  2016). To infer the 
biogeographical history of the genus, we incorporated the time-
calibrated tree generated, a set of geographical areas according to 
the current distribution, and a time-stratified geographical model 
with the connectivity and the dispersal matrices for each time 
interval. The following areas were selected: [A] Iberian Plate, [B] 
Betic, [C] Rifean, [D] Atlas, [E] North Sahara, [F] Balearic Islands 
and [G] North Kabylia. We categorized the geographical distribution 
of Misolampus species as present or absent in each of these areas. 
The connectivity and dispersal changed between the following time 
bins: [I] 0 to 5.3 Ma (Pliocene to Present), [II] 5.3 to 11.6 Ma (late 
Miocene), [III] 11.6 to 16 Ma (middle Miocene) and [IV] 16 to 23 Ma 
(early Miocene). Based on the literature, we mapped the geological 
evolution of the predefined areas since the early Miocene including 
major tectonic changes, to represent them in a time-stratified 
geographical model defining the connectivity and dispersal matrices 
for each considered time bin. For the connectivity matrices, we 
coded 0 if any of two areas were not connected (non-adjacent) and 
1 if there was a connection in each time interval. For the dispersal 
matrices, we set up simple rules to define a dispersal scalar from 
area X to area Y as follows: d  =  0.5 when the areas are adjacent 
and connected (no barrier), d  =  0.25 when the areas are adjacent 
but separated by a barrier, d = 0.125 or 0.0625 when the areas are 
not connected and separated by another area Z (dXZ × dZY), and 
d = 0.01 for long-distance dispersal (more than two areas) (Figure 2). 
We reconstructed the biogeographical history of Misolampus in 
two different analyses: one including the six species of Misolampus 

described, and another including the cryptic or incipient species 
detected in phylogenetic analyses (see Section 3).

3  |  RESULTS

3.1  |  Phylogenetic relationships and incipient 
speciation

The final matrix comprised 6277 bp, divided in seven partitions ac-
cording to ModelFinder (Appendix  S1, Table S1.5). Our analyses 
under ML and BI yielded identical topologies, supporting the mono-
phyly of Misolampus and of each of the six species with maximal node 
support (posterior probability, PP = 1; bootstrap support, BS = 100; 
Figure 3). Misolampus species are grouped into two well-supported 
clades, one that corresponds to M. goudotii (PP = 1, BS = 100) dis-
tributed in North Africa-Balearic Islands, and the other clade con-
taining the Iberian Misolampus species (PP = 1, BS = 100).

Misolampus goudotii includes four well supported lineages distrib-
uted as follows: along the Rifean region reaching the Larache area 
(goudotii1, PP = 1, BS = 99), throughout the High Atlas (goudotii2, 
PP  =  1, BS  =  100), in the Balearic Islands (goudotii3, PP  =  1, 
BS  =  100), and between the Southwestern Anti-Atlas region and 
the Western Sahara (goudotii4, PP = 1, BS = 100; Figure 3). Within 
Iberian Misolampus, the first split involved M. lusitanicus and the re-
maining taxa (PP = 1, BS = 100). Misolampus lusitanicus is currently 
restricted to the Northwest of the Iberian Peninsula. This split was 
followed by the split of M. subglaber from the other lineages (PP = 1, 
BS  =  100). Misolampus subglaber includes two supported lineages 
distributed: in the South-East of the Iberian Peninsula (subglaber1, 
PP = 1, BS = 100), and restricted in the Genal Valley in Málaga (sub-
glaber2, PP = 1, BS = 100) (Figure 3). Misolampus scabricollis split from 
the clade formed by M. ramburii and M. gibbulus (PP = 1, BS = 100), 
and diversified throughout the Central South-West of the Iberian 
Peninsula. Finally, M. ramburii and M. gibbulus are sister species 
(PP = 1, BS = 100). Currently M. ramburii is restricted to the South-
East of the Iberian Peninsula and the Balearic Islands, and M. gibbulus 
is distributed in Central and South-Western Iberia. Misolampus gib-
bulus contains three lineages: gibbulus1 (PP = 1, BS = 100) in central 
Iberia, gibbulus2 (PP = 0.97, BS = 96) in Sierras de Montánchez and 
Aracena, and gibbulus3 (PP = 1, BS = 100) in the southwest margin 
of its distribution in Portugal and Sierra de Aracena.

3.2  |  Current and Late Pleistocene climatic 
favourable areas

The four uncorrelated variables used in the SDMs were isothermal-
ity (BIO3, mean diurnal range/temperature annual range), tempera-
ture annual range (BIO7, max temperature of warmest month-min 
temperature of coldest month), mean temperature of wettest quar-
ter (BIO8), and precipitation of driest quarter (BIO17). Model pre-
dictions for the six species had good overall evaluation scores, with 
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AUC ≥ 0.96 in all cases (M. lusitanicus: 0.98; M. gibbulus: 0.97; M. gou-
dotii: 0.97; M. ramburii: 0.96; M. scabricollis: 0.98 and M. subglaber: 
0.96).

The potential distribution maps for the six species located high 
suitability areas largely matching their current ranges. In addition, 
other areas where Misolampus species are absent, including the 
Cantabrian Mountains, the Pyrenees and Sardinia, were recovered 
as potential suitable environments for some species (Appendix S2, 
Figures S2.1–S2.6). The general pattern inferred from palaeocli-
matic model projections shows contractions of favourable areas 
during the LIG and mid-Holocene, and wide expansions during the 
LGM (Appendix  S2, Figure S1.6). Both projections similar climatic 
refugia during climate fluctuations: the Galician Massif in the north-
west of Spain for M. lusitanicus, Serra da Estrela Mountains for M. 
scabricollis, and SW Iberia for M. gibbulus. The analyses also recov-
ered a large ecologically suitable area for M. goudotii throughout the 

North-Western African coast, Balearic Islands and Sardinia. Areas 
with unequivocal high suitability in the past in the Iberian Peninsula 
were not recovered for M. subglaber, whereas for M. ramburii a small 
suitable area in the Penibetic Mountain ranges was recovered, but 
with low probabilities (0.38–0.52). Species that could have been 
highly favoured during glacial periods (Appendix  S2, Figures S2.3, 
S2.4 and S2.6), at the present time have restricted distributions es-
pecially in the case of M. lusitanicus or M. ramburii.

3.3  |  Ancestral climatic preferences

Ancestral state estimation based on mean values of the uncorrelated 
variables applied in the SDMs (BIO3, BIO7, BIO8 and BIO17) showed 
phylogenetic signal in two cases: BIO17 and BIO8, except in M. ram-
burii and M. gibbulus (Figure 4, Appendix S2, Figures S13–S20). BIO17 

F I G U R E  2  Palaeogeographical evolution of the Western Mediterranean Basin since the early Miocene. A time-stratified geographical 
model represents the connectivity matrices (M1c, M2c, M3c and M4c) and dispersal matrices (M1d, M2d, M3d and M4d). In connectivity 
matrices, 0 indicates that any two areas were not connected (adjacent), and 1 indicates a past connection in the time interval. In dispersal 
matrices, dispersal rate from one area to another area is defined as follows: d = 0.5 for adjacent and connected areas (i.e. no barrier); 
d = 0.25 for adjacent areas but separated by a barrier; d = 0.125 or 0.0625 for unconnected areas and separated by another area 
(dXZ = dXY × dYZ); and d = 0.01 for long-distance dispersal (dispersal separated by more than two areas). Bottom right: The following 
biogeographical areas were selected: [A] Iberian Plate, [B] Betic, [C] Rifean, [D] Atlas, [E] North Sahara, [F] Balearic Islands, and [G] North 
Kabylia. Connectivity and dispersal changed between the following time bins: [I] 0 to 5.3 ma (Pliocene to present), [II] 5.3 to 11.6 ma (late 
Miocene), [III] 11.6 to 16 ma (middle Miocene), and [IV] 16 to 23 ma (early Miocene).
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showed values ranging from 120 mm in the case of M. lusitanicus to 
27 mm in M. goudotii, and BIO8 values ranged from 5.1°C in M. lusi-
tanicus to 11.12°C in M. ramburii (Table 1; Appendix S3, Tables S1).

Based on these results, analyses of the distribution of the vari-
ables (Appendix  S2, Figures S7–S12) reveal differences among 

isolated lineages within the species M. gibbulus, M. goudotii and  
M. subglaber (Figure  4). We conducted the same analysis for the 
twelve cryptic or incipient species within Misolampus following 
our phylogenetic results. This allowed us to recover phylogenetic 
signals that were previously masked for the four variables within  

F I G U R E  3  Molecular phylogenetic 
tree for Misolampus, based on the 
concatenated matrix. Support for each 
node is provided by posterior probabilities 
(PP) and bootstrap support values 
(BS), with outgroups removed. Right: 
Distribution maps for each species based 
on occurrence records compiled in Rosas-
Ramos et al. (2020).
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2288  |    MAS-­PEINADO et al.

F I G U R E  4  Origin, biogeographical and ecological processes explaining diversification in Misolampus. (a) Historical biogeography 
as inferred with DEC and the time-stratified model. Coloured squares at nodes represent the ancestral ranges, and symbols along 
branches represent biogeographical processes. In the right are depicted, for each species, the current geographical distribution with a 
red line indicating possible barriers to gene flow linked with incipient species, and the inferred past distributions for the last inter-glacial 
(LIG) and for the Last Glacial Maximum (LGM) based on MPI-ESM-P simulations. (b) Ancestral state reconstructions of key climatic 
variables (BIO17 = precipitation of driest quarter, BIO8 = mean temperature of wettest quarter, BIO7 = temperature annual range, and 
BIO3 = isothermality) showing the niche conservatism and niche evolution in Misolampus.
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M. goudotii, M. subglaber and less markedly within M. gibbulus 
(Figure 4, Table 1, Appendix S3, Tables S1).

3.4  |  Biogeographical history and divergence times

Including adjacency and dispersal matrices, the biogeographical 
analyses for the twelve incipient species recovered an ancestral 
range of Misolampus composed by the Iberian Plate [A], Betic [B], 
and Rifean [C] (relative probability = 0.461 for the 6-species tree; =​
0.514 for the 12-incipient-species tree) as the most likely ancestral 
range in the early Miocene (dispersal = 0.045, extinction = 0.012 
for the 6-species tree; dispersal  =  0.074, extinction  =  0.012 for 
the 12-incipient-species tree), splitting early into two lineages (one 
in North Africa and the other in Iberia) during the early Miocene 
~22.2 Ma (95% HPD: 16.4–29.6) (Figure  4, Table  1, Appendix  S3, 
Table S1).

DEC results support the dispersal of the ancestor of M. goudotii 
along the Atlas [D] and North Sahara [E], followed by local extinc-
tion events in the Betic area. According to the 12 incipient-species 
DEC analysis, the most likely ancestral area of M. goudotii occupied a 
range composed of the Rifean [C], the Atlas [D] and the North Sahara 
[E] (relative probability  =  0.802), where a vicariant event during 
Pliocene-early Pleistocene ~2.8 Ma (95% HPD: 1.5–4.1) may have 
promoted the isolation and divergence of the goudotii4 lineage in 
the North Sahara region. This was followed by dispersal along North 
Kabylia [G]. Subsequently, the split of three lineages during the 
Pleistocene was fostered by two vicariant events: goudotii3 in the 
North Kabylia also currently present in Balearic Islands [F] (relative 
probability = 0.907); goudotii2 in the High Atlas [D]; and goudotii1 
along the Rifean region reaching the Larache area (relative probabil-
ity = 0.964) (Figure 4).

The MRCA for the Iberian Misolampus species dates to the 
middle Miocene ~15.7 Ma (95% HPD: 11.8–19.9) in the Iberian 
Plate [A] (relative probability  =  0.5072), followed by divergence 
between M. subglaber and the rest of the Iberian species 13.7 Ma 
(95% HPD: 9.6–17.9), and its dispersal along the Betic Region [B] 
(relative probability = 0.552). Later, during the late Pliocene-early 
Pleistocene, it split into two lineages (subglaber1 and subglaber2) 
from the Iberian Plate [A] and Betic regions [B] (relative probabil-
ity  =  0.801). Misolampus scabricollis differentiated in the Iberian 
Plate around the Middle Miocene 12.3 Ma (95% HPD: 8.2–16.4), 
[A] (relative probability  =  0.815), followed by the dispersal of 
the ancestor of M. ramburii and M. gibbulus throughout the Betic 
Region [B]. A vicariant event split these two species around the 
late Miocene ~8.1 Ma (95% HPD: 4.6–17.9) from the Iberian Plate 
[A] and the Betic region [B] (relative probability = 0.363), where 
M. ramburii would be restricted to the Betic region [B] and dis-
persed along the Balearic Islands [F], and M. gibbulus remained in 
the Iberian Plate [A] (relative probability = 0.992). Since the late 
Pliocene–early Pleistocene, M. gibbulus split into three lineages 
distributed in the Iberian Plate (M. gibbulus1, M. gibbulus2 and  
M. gibbulus 3; Figure 4).

4  |  DISCUSSION

4.1  |  Combining ecological niche modelling and 
historical biogeography

Understanding the evolution of a clade implies discerning the role of 
ecological factors and biogeographical processes in species diversifica-
tion. The combination of phylogenetic analyses, divergence times esti-
mation, ancestral ecological niche modelling and inference of ancestral 
areas provides a robust framework to reconstruct the evolutionary 
history of Misolampus. Our methodological approach, making use of 
within- and between-species molecular and ecological data, allowed us 
to infer their macroevolutionary history and identify putative cases of 
incipient speciation. This combination also provides a track of the bio-
geographical history and ecological tolerances of species and lineages, 
enabling the identification of convergent or divergent evolution associ-
ated with climate niche variables (Smith & Donoghue, 2010). Ancestral 
climate reconstructions can also provide testable hypotheses about 
the origin of lineages (Rivera et al., 2020; Yesson & Culham, 2006a). In 
fact, repeated phylogenetic patterns of climate characteristics across 
taxonomic groups have entailed the identification of shared environ-
mentally favourable areas, for instance regarding the formation of 
Mediterranean climate zones (Yesson & Culham, 2006b).

4.2  |  A dynamic biogeographical scenario in 
Western Mediterranean during the Miocene drove 
early speciation

Biogeographical analyses favour the hypothesis invoking a dual role 
of vicariance and dispersal driving the biogeography of Misolampus 
since the early Miocene (Figure  4; Appendix  S3, Figure S3.2). 
Interestingly, there is mixed evidence for each biogeographical 
scenario in previous works on beetle historical biogeography 
(Condamine et al., 2013; García-Vázquez et al., 2017; Mas-Peinado 
et al., 2018; Micó et al., 2009; Riccieri et al., 2017; Ruiz et al., 2012; 
Trichas et al., 2020; Trizzino et al., 2011). Our results reveal an ancient 
vicariance between the proto-Iberian Peninsula and North Africa 
that has led to an old divergence within the Western Mediterranean 
region of two isolated lineages.

Discrepancies with alternative hypotheses mainly involve the tim-
ing of speciation events. Our results contradict the idea that specia-
tion occurred mainly during the Pleistocene and cast doubts about 
the origin and dispersal of Misolampus from the Maghreb. Further, 
we did not recover a monophyletic clade comprising M. lusitanicus, M. 
subglaber and M. scabricollis, in contrast with previous studies (Palmer 
& Cambefort, 2000). Regarding the hypothesis of current sympatry 
because of recent secondary contact (Rosas-Ramos et al.,  2020), 
our ancestral ecological estimates discard the possible existence of 
niche overlap among species pairs of Misolampus found in sympatry 
(Figure  4). The TMRCAs between sympatric species like M. gibbu-
lus–M. scabricollis or M. subglaber–M. ramburii date back to the mid-
dle Miocene, in line with results in other tenebrionid beetles in the 
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Palearctic (Condamine et al., 2013; Mas-Peinado et al., 2018; Stroscio 
et al., 2011) and Nearctic Regions (Johnston, 2019), where sympatry 
usually involves highly divergent taxa within the same genus.

The dynamic palaeogeographical evolution of the Western 
Mediterranean, especially since the late Oligocene (Andeweg, 2002; 
Carminati et al.,  2012; Mas-Peinado et al.,  2018; Rosenbaum 
et al.,  2002; Appendix  S1), involved the emergence of land bridges 
in the middle Miocene and volcanic archipelagos in the Pliocene that 
probably had a decisive role in the evolutionary history of many flight-
less species (Condamine et al., 2013; Hidalgo-Galiana & Ribera, 2011; 
Mas-Peinado et al., 2018; Micó et al., 2009; Riccieri et al., 2017). The 
subsequent disappearance of these land bridges later contributed to 
the disjunct distribution of a variety of taxa, including beetles (Faille 
et al., 2014; García-Reina et al., 2014; Palmer & Cambefort, 2000).

The biogeographical history of hunchback darkling beetles displays 
four main stages: initial split in the early Miocene; speciation events 
within the Iberian Plate in the middle Miocene; speciation events within 
the Iberian Peninsula in the late Miocene; and lineage isolation driving 
incipient speciation events in the early Pleistocene. The Misolampus an-
cestor settled on the Iberian Plate-Betic-Rifean as the most probable 
ancestral region, with a vicariant event during the early Miocene trig-
gering the divergence of the two main lineages (Iberian and Moroccan) 
with no evidence of transcontinental dispersal since then.

Throughout the early Miocene, along the East of Iberia, the 
back-arc stretched continental lithosphere in the Alpine-Betic 
foreland and in the South the back-arc stretched areas previously 
belonging to the Alpine-Betic belt. This extensional geodynamic 
framework has favoured the development of a wide Mediterranean 
Basin bordering Iberia to the East and South, and separated it from 
Africa (Carminati et al., 2012). Within this basin there were islands, 
some of them relatively large, but which unlikely acted as bridges 
between the two continental masses (Andeweg, 2002; Rosenbaum 
et al.,  2002). However, the Moroccan Misolampus lineage stayed 
since then isolated in North Africa. Within the Iberian Plate, because 
of the convergence of Africa and Eurasia, the development and lift-
ing of two mountain ranges progressed in a compressive regime: 
the Iberian Chain (Cadena Ibérica) and Sistema Central (De Vicente 
et al.,  2011; Guimerà et al.,  2004). Simultaneously, the formation 
of continental basins continued dominated by the development of 
extensive lake systems: the Duero Basin (between the Cantabrian 
Mountains through the West Pyrenees in the north and the moun-
tainous group Iberian Chain-Sistema Central in the south); the Tagus 
Basin (between the Iberian Chain and the Sistema Central), and the 
Ebro Basin (between the Pyrenees and the Iberian Chain) (Alonso-
Zarza et al., 2002; Calvo et al., 1993; De Vicente et al., 2011). This 
geological framework with a system of wide lakes and mountain 
ranges occupying the interior of the Iberian Peninsula entailed phys-
ical barriers to the displacement of flightless species as Misolampus. 
During the early Miocene, areas north of the Mediterranean Sea 
were mainly covered by forests, whereas southern areas were occu-
pied mainly by open vegetation (Suc et al., 2018). Within the Iberian 
Peninsula, the abundance of thermophilous species during the early 
Miocene suggests a main subtropical climate. Indeed, the north-east 

of the peninsula would have been dominated by herbaceous vege-
tation, with small-isolated areas within the regional steppic feature 
with local riparian forest (Jiménez-Moreno et al., 2010). These past 
conditions and vegetation composition, together with the formation 
of the Ebro and Tagus Basins, provide clues for the current absence 
of Misolampus in the region, yet with favourable areas like Iberian 
Chain (Rosas-Ramos et al., 2020). The southern area of the Iberian 
Peninsula was also characterized by herbaceous vegetation, even 
subdesertic flora implying dry and warm conditions, where meso-
thermic trees were probably in mid-or high altitudes. High altitude, 
characterized by an evergreen and deciduous mixed forest includ-
ing Quercus, Fagus, Ilex and Acer, would remain the only suitable 
area for Misolampus, being more abundant in the North and West 
of the Iberian Peninsula (Jiménez-Moreno et al., 2010). At the end 
of the Burdigalian, from 18 to 15 Ma, Iberia and Africa were con-
nected while Kabylia was colliding with Africa (Frizon de Lamotte 
et al., 2000). However, this does not seem to have entailed new con-
tact or gene flow between the two main Misolampus lineages.

During the middle Miocene, speciation events within the Iberian 
Peninsula may have occurred via peripatry in a relatively tectoni-
cally stable period, while the climate was warm and shrublands were 
more developed. Within the Iberian Plate, the compression regime 
of the Iberian Chain and the Sistema Central continued together 
with the Duero, Ebro and Tagus Basins (De Vicente et al.,  2011; 
Perea et al., 2021). This warm climate scenario could lead to the dis-
appearance of many forest areas in the Iberian Plate, isolating lin-
eages like the ancestor of M. lusitanicus in the North-West of the 
Iberian Peninsula around 15.7 Ma, the ancestor of M. subglaber in the 
South-East dating from 13.7 Ma, or the ancestor of M. scabricollis in 
the West around 12.3 Ma. The ancestors of M. gibbulus and M. ram-
burii dispersed along the Betic Region, while the Betic/Rif tectonic 
uplift occurred. Subsequently, the formation of the Guadalquivir 
Foreland Basin in the South of the Peninsula bordered by the Iberian 
Massif in the North and the Betic Orogenic Belt in the South (Garcia-
Castellanos et al., 2002; Sierro et al., 1996) likely constituted a major 
vicariant event for flightless beetles (Mas-Peinado et al.,  2018). 
During the early Tortonian, the Guadalquivir Basin reached its max-
imum development and was connected towards the West/South-
West with the Atlantic Ocean and towards the East/North-East with 
the Mediterranean Sea (Capella et al., 2020; Krijgsman et al., 2018). 
Therefore, this geographical barrier could entail the allopatric specia-
tion of these two species around 8.1 Ma (Appendix S3, Figure S3.1). 
The Tortonian stage was characterized by a generally humid and 
wooded biotope, with reduced presence of thermophilous plants. 
Species of sclerophyllous woods currently present in the South-
Western Mediterranean Region, for example Pinus and Quercus as-
sociated with open vegetation, were located in the northern part 
of the Sistema Central. Progressively, the connection between the 
Mediterranean and Atlantic became limited, culminating with the 
Messinian Salinity Crisis (MSC, 5.96–5.33 Ma) (Krijgsman et al., 2018). 
The MSC could have promoted the last dispersal event within Iberian 
Misolampus, when M. ramburii reached the Balearic Islands from the 
Betic Mountain Ranges (Dumitru et al., 2021).
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4.3  |  Ecological and geological factors involved in 
incipient speciation

We detected three possible cases of incipient speciation, under-
scoring the role of both geology-based vicariance and potential 
adaptations to local climatic conditions. These results lend sup-
port to a scenario of multiple refugia for Misolampus in the Western 
Mediterranean Area, with range expansions–contractions since the 
end of the Pliocene potentially linked with speciation.

Palaeoclimatic projections display a general pattern of expan-
sion of environmentally favourable areas during the LGM and sug-
gest range contractions during the LIG and mid-Holocene. This 
scenario implies a different temporal perspective in analyses of di-
versification in Tenebrionidae (Condamine et al., 2013; Mas-Peinado 
et al., 2018; Trichas et al., 2020), which considers the possible role 
of glaciations in driving incipient speciation. Under this perspective, 
allopatric isolation may be followed by adaptation to new environ-
mental conditions in relatively short periods of time, counteracting 
phylogenetic conservatism, which tends to counter ecological niche 
divergence (Pyron et al., 2015).

Our results support ecological adaptation in the incipient spe-
cies (Figure 4; Table 2). The four selected bioclimatic variables for 
the ancestral state estimations showed a strong phylogenetic sig-
nal, particularly marked in the case of precipitation of driest quarter 
(BIO17) and mean temperature of wettest quarter (BIO8, Figure 4; 
Table 1). The recent history of isolation across populations with obvi-
ous patterns of morphological differentiation within M. gibbulus and  
M. goudotii (Rosas-Ramos et al., 2020) were confirmed by our anal-
yses. These species, characterized by high levels of intraspecific di-
versity, are distributed in the southwest of the Iberian Peninsula and 
in Morocco, regions previously identified as climatic refugia across 
a variety of taxa (Abellán & Svenning, 2014; Gutiérrez-Rodríguez 
et al.,  2017; Martínez-Freiría et al.,  2020; Miraldo et al.,  2011; 
Sánchez-Montes et al., 2019).

Mountain massifs in Northwest Africa have been documented 
as refugia for Mediterranean plants during interglacial periods, 
subsequently dispersing to neighbouring regions in cooler periods 
(García-Aloy et al., 2017), a pattern shared with M. goudotii, where 
allopatric incipient speciation was likely driven by geological factors 
(three successive vicariant events) and ecological adaptations linked 
to Pleistocene climate oscillations (Figure 4). Since the late Miocene, 
the ancestor of M. goudotii dispersed along the Atlas and North 
Sahara and underwent local extinction in the Betic. A vicariant event 
during the late Pliocene-early Pleistocene involved the divergence 
of goudotii4 from the other three lineages as an isolated lineage in 
the Northern Sahara, North-East of Drâa River, another previously 
described climatically stable area (Martínez-Freiría et al.,  2017). 
Following this, the lineage that reached North Kabylia (goudotii3) 
split from the rest, and the isolation between the Rif and Atlas 
Mountains promoted the differentiation of goudotii2 and goudotii1.

During the late Pliocene, the Western Mediterranean was already 
similar to the current Mediterranean (Andeweg,  2002; Rosenbaum 
et al., 2002; van Hinsbergen et al., 2014), with the Betic orogenic belt 

(“Alpine-Betic belt”) in the South of Iberia and the Rif-Tell-Kabylides 
belt (“Apennines-Maghrebides Belt”) in the North of Africa, separated 
both by the Sea of Alboran and linked to the West by the Arch of 
Gibraltar (formed since the Tortonian). The Alboran volcanic archipel-
ago vanished (Booth-Rea et al., 2018; Capella et al., 2020; Krijgsman 
et al., 2018), and possible land bridges between Iberia and Africa dis-
appeared. The distribution of M. subglaber throughout the Betic area, 
suggesting the isolation of subglaber2 in the Penibetic with a sub-
sequent ecological adaptation to warmer conditions, and the “long-
range” dispersion of the Cuenca population from the main range of 
the species (subglaber1) (ca. 280 km) suggests a recent population 
expansion (Figure 4). Recent studies of flightless saproxylic beetles 
alludes that distributions were shaped by habitat limitation instead 
of dispersal limitation, and were able to recolonize recent forests 
(Cateau et al.,  2018; Janssen et al.,  2016). Within the Guadalquivir 
Basin, between the Iberian Massif and the Betic Orogenic belt, ma-
rine influence remained limited to a small Western area, considered as 
a physical barrier to dispersal. This barrier did not allow a new contact 
between M. ramburii and M. gibbulus, and currently represents the 
southeast boundary of the M. gibbulus range. Both M. ramburii and 
M. gibbulus retained quite similar ancestral ecological characteristics 
(niche tracking). Within M. gibbulus, these similarities seem to be cir-
cumscribed to gibbulus3 (the most divergent lineage) distributed in 
the Southwest of the Iberian Peninsula. Recent range shifts may have 
favoured secondary contact between gibbulus1 and gibbulus2, as sug-
gested by phylogenetic analyses of nDNA sequences. Indeed, both  
M. scabricollis and M. gibbulus display a star-haplotype network within 
the Sistema Central, suggesting a recent population expansion event to 
the Sierra de Aracena and Picos de Aroche (Western Sierra Morena), 
which could have functioned as refugia for both species. The popu-
lation of M. scabricollis from Huelva remains isolated, while waiting 
to confirm if recent distribution data in Badajoz (Barreda et al., 2021) 
could be assigned to the isolated lineage or there is gene flow.

Our results support the dual role of geological and ecological 
factors driving speciation in Misolampus, and extinction could have 
played a role that is not studied here in detail. However, it remains 
unknown how Misolampus was resilient to climatic fluctuations since 
the early Miocene, and how such an ancient origin coupled to a long-
term isolation that hinder gene flow have led to a few extant spe-
cies of Misolampus today. We hypothesize that their microhabitats, 
beneath barks or inside dead logs, could have favoured tolerance 
for dry and warm conditions during climatic fluctuations of these 
flightless species. Due to the dead-wood association, although the 
exact food source remains unknown (Rosas-Ramos et al.,  2020), 
mycobiota association may influence its preferences. Recent global 
analysis alludes to the main role of precipitation determining the 
fungi community (Tedersoo et al., 2014), and new evaluation of bee-
tle and fungus assemblages confirmed that beetle host identity may 
affect the fungal communities between trees beyond environmental 
variables (Miller et al., 2019). We believe it is necessary to deepen 
into microhabitat conditions and perhaps symbiotic relationships 
that have entailed its resilience linked to woodlands against climatic 
fluctuations for long periods of time.
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