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Abstract
The resource-use hypothesis, proposed by E.S. Vrba, states that habitat fragmenta-
tion caused by climatic oscillations would affect particularly biome specialists (species 
inhabiting only one biome), which might show higher speciation and extinction rates 
than biome generalists. If true, lineages would accumulate biome-specialist species. 
This effect would be particularly exacerbated for biomes located at the periphery of 
the global climatic conditions, namely, biomes that have high/low precipitation and 
high/low temperature such as rainforest (warm-humid), desert (warm-dry), steppe 
(cold-dry) and tundra (cold-humid). Here, we test these hypotheses in swallowtail but-
terflies, a clade with more than 570 species, covering all the continents but Antarctica, 
and all climatic conditions. Swallowtail butterflies are among the most studied insects, 
and they are a model group for evolutionary biology and ecology studies. Continental 
macroecological rules are normally tested using vertebrates, this means that there are 
fewer examples exploring terrestrial invertebrate patterns at global scale. Here, we 
compiled a large Geographic Information System database on swallowtail butterflies' 
distribution maps and used the most complete time-calibrated phylogeny to quantify 
diversification rates (DRs). In this paper, we aim to answer the following questions: (1) 
Are there more biome-specialist swallowtail butterflies than biome generalists? (2) 
Is DR related to biome specialization? (3) If so, do swallowtail butterflies inhabiting 
extreme biomes show higher DRs? (4) What is the effect of species distribution area? 
Our results showed that swallowtail family presents a great number of biome special-
ists which showed substantially higher DRs compared to generalists. We also found 
that biome specialists are unevenly distributed across biomes. Overall, our results are 
consistent with the resource-use hypothesis, species climatic niche and biome frag-
mentation as key factors promoting isolation.

K E Y W O R D S
bioclimatology, ecological specialization, macroecology, macroevolution, Papilionidae, 
resource-use, speciation
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1  |  INTRODUC TION

Geographical patterns of species distribution are determined by cur-
rent climatic conditions and by long-term historical and macroevo-
lutionary processes (Barnosky, 2001; Lomolino et al., 2016; Wiens 
& Donoghue,  2004). Climate shifts influence the expansion and 
contraction of biomes and the subsequent establishment or demise 
of ecological and geographic barriers, conditioning the evolution of 
life forms worldwide (Scheffers et al., 2016; Tian et al., 2018). Some 
theories point to these large-scale processes as major forces trigger-
ing faunal turnover, in contrast to biotic interactions (Benton, 2009). 
In this regard, the resource-use hypothesis (Vrba,  1980, 1987) 
highlights the role of biomes, and their fragmentation–expansion 
dynamics responding to global climatic changes, as arenas for 
macroevolutionary processes (i.e. speciation and extinction; see 
Hernández Fernández & Vrba, 2005). According to this hypothesis, 
large-scale environmental changes result in biome fragmentation 
and promote diversification, particularly among biome-specialist 
species (Maguire & Stigall, 2008). On the contrary, biome-generalist 
species might be less impacted by global changes.

Furthermore, the resource-use hypothesis predicts that biomes 
at the extremes of the climatic gradient should be more affected 
by global climatic changes and the associated fragmentation events 
(Hernández Fernández & Vrba,  2005; Vrba,  1992). If this is true, 
there should be an overrepresentation of biome-specialist spe-
cies as a result of vicariance and speciation processes (Hernández 
Fernández & Vrba,  2005). In this context, extreme biomes are 
the ones located at the extreme of the variation of the two major 
characterizing climatic variables, temperature and aridity. These 
include the ones that are traditionally considered as ‘harsh’ such 
as subtropical desert (warm-arid), steppe (cold-arid) and tundra 
(cold-humid) but also the evergreen equatorial rainforest, which is 

a warm biome located at the extreme of the precipitation variable 
(Hernández Fernández & Vrba, 2005). The rainforest, although it is 
usually considered as a very stable climate across time (Pennington 
et al., 2015; Whitmore, 1998), represents the warm-humid extreme 
of the Earth's climates and is greatly affected by climatic fluctuations 
and global aridity phases, which can lead to fragmentation of these 
forests (Brée et al.,  2020; Onstein et al.,  2018; Whitmore,  1998; 
Wüster et al., 2005).

When considering a possible relationship between species 
biome specialization and diversification rates (DRs), it is important 
to consider the potential effect of species distribution areas. A rela-
tionship between the number of biomes occupied by a species and 
its distribution area is expected. The broader the range of a species, 
the more likely its range includes different biomes, while species 
with a narrower distribution are more likely to evolve as endemic 
of a single biome. Furthermore, several authors proposed a direct 
correlation between species age and area, where species would have 
increasing sizes of their distribution ranges the longer they persisted 
(Willis, 1922). In general terms, this idea has been rejected, as there 
are numerous examples of widely distributed young species and old 
species with very restricted distributions (Gaston, 2003), and most 
authors consider that range sizes expand relatively rapidly after spe-
ciation to, perhaps more gradually, decline as species age (Webb & 
Gaston, 2000). Nevertheless, other works have proposed that there 
is a positive correlation between species area and age, and therefore 
DR, at least among closely related species or genera (Miller, 1997; 
Taylor & Gotelli, 1994).

The resource-use hypothesis has been previously tested in dif-
ferent vertebrate groups showing a high prevalence of biome special-
ists (Cantalapiedra et al., 2011; Gómez Cano et al., 2013; Hernández 
Fernández et al., 2022; Hernández Fernández & Vrba, 2005; Moreno 
Bofarull et al.,  2008; Vrba,  1987) and a relationship between 
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bioclimatic specialization and higher speciation rates (Cantalapiedra 
et al., 2011; Menéndez et al., 2021). However, the large-scale bio-
geographic patterns of non-vertebrate groups are poorly explored 
and barely used as models to test macroecological rules.

The globally distributed swallowtail butterflies (family 
Papilionidae) constitute a species-rich group including 32 genera 
and more than 570 described species (Scriber et al.,  1995; Tyler 
et al.,  1994). Although most species are found in tropical regions, 
the ecological diversity of Papilionidae also includes some lineages 
adapted to temperate and even cold environments (Condamine 
et al.,  2012; Condamine, Nabholz, et al.,  2018). Moreover, as one 
of the best known and broadly studied insect groups, swallowtails 
are recognized as model organisms in evolutionary biology, ecol-
ogy, genetics and conservation biology (e.g. Collins & Morris, 1985; 
Condamine et al., 2012; Scriber et al., 1995). As statistical models and 
phylogenetic data become more available for studying evolutionary 
processes (Allio et al., 2021), they can be used to test the relation-
ship between DRs and climatic variables across their geographical 
range (e.g. Gómez-Rodríguez et al., 2015; Kozak & Wiens, 2010).

Here, we tested several predictions of the resource-use hypoth-
esis in swallowtail butterflies using a phylogenetic approach with the 
aim to test the universality of the global patterns observed in ver-
tebrates. Swallowtail butterflies, as ectothermic and strictly herbiv-
orous organisms, are expected to directly respond to global climate 
changes (Bale et al.,  2002; Clusella-Trullas et al.,  2011; Kingsolver 
et al., 2013). Thus, following Vrba's hypothesis, we expected to ob-
serve a high proportion of biome specialists. This proportion should 
reflect underlying higher mean DRs in biome specialists than in 
biome generalists. We also expected a higher proportion of biome-
specialist species in the biomes representing the extremes of the 
climatic gradient (rainforest, desert, steppe and tundra) explained 
by a hypothesized higher degree of contraction and fragmentation 
processes during the climatic fluctuations of the late Cenozoic. 
Specialist lineages associated with these biomes should also present 
higher mean DRs than specialists from other biomes. Finally, we will 
also test the relationship between species distribution area and DR 
to consider the effect of area as a possible alternative to the within-
biome specialization expected under the resource-use hypothesis.

2  |  MATERIAL S AND METHODS

2.1  |  Biome, area and phylogenetic data

We worked at a global scale and focused on the butterfly family 
Papilionidae (Lepidoptera: Papilionoidea), a well-known family with a 
worldwide distribution and occurring in most terrestrial environments 
(Condamine et al., 2012, 2013). We used the most complete phylogeny 
of Papilionidae to date (Allio et al., 2020, 2021), and considered the spe-
cies included in all Papilionidae genera and subgenera following sev-
eral studies (see Appendix S1 in Supporting Information). We focused 
our study on the current geographical distribution of species. Species 
distribution ranges, gathered from an extensive review of specialized 

literature from multiple sources containing distribution maps and infor-
mation at several scales (see Appendix S2 in Supporting Information), 
were digitized, georeferenced and summarized using the Geographic 
Information System software ArcGIS (ESRI,  2018) and QGIS (QGIS 
Development Team, 2018). In those cases with several sources contain-
ing information for the same species, we took in consideration the most 
updated one. Species distribution areas were quantified using the R soft-
ware version 4.1.0 (R Core Team, 2021) and the packages raster (v3.4-13; 
Hijmans, 2021); rgdal (v1.5-25; Bivand et al., 2021) and maptools (v1.1-1; 
Bivand & Lewin-Koh, 2021) under the equal-area Eckert IV projection.

2.2  |  Bioclimatic characterization of the species

The biomes inhabited by a species were determined by the overlap be-
tween the reported geographical distribution of each species and the 
biome map (Hernández Fernández, 2001). Here, we consider a biome 
as inhabited by a species if it constitutes 15% or more of its geographi-
cal range. For the cases where the species overlapped isolated, small 
and distinct biome patches, we also recorded the presence of a spe-
cies in a biome if the species is present in 50% or more of that biome 
patch (Hernández Fernández, 2001). Furthermore, for those species 
with presence in mountain environments, following Moreno Bofarull 
et al. (2008) and Cantalapiedra et al. (2011), we considered the altitu-
dinal vegetation belts (ETOPO2v2, NOAA National Geophysical Data 
Center, 2006), which were not included in Walter's map (Figure 1). The 
overlap between species distribution ranges and biomes was calcu-
lated using ArcGIS software. These criteria allow to represent the ad-
aptation capacity of species while maintaining their climatic specificity 
and, at the same time, allow us to compare our results with previous 
works using the same methodology (Cantalapiedra et al., 2011; Gómez 
Cano et al.,  2013; Hernández Fernández et al.,  2022; Hernández 
Fernández & Vrba,  2005; Menéndez et al.,  2021; Moreno Bofarull 
et al., 2008). Then, we computed the biomic specialization index (BSI) 
defined by Hernández Fernández and Vrba (2005) as the number of in-
habited biomes by a species. Biome-specialist species were defined as 
those occupying only one biome, with a BSI = 1 (Hernández Fernández 
& Vrba, 2005). In turn, species with BSI >1 were considered as biome 
generalists, differentiating between ‘semi-generalists’ (1 < BSI < 5) and 
‘extreme generalists’ (BSI ≥5) (Hernández Fernández & Vrba, 2005).

2.3  |  Biome specialization

We tested the resource-use hypothesis, which predicts the uneven 
distribution of biome specialists and biome generalists across bi-
omes, against null models where biome specialization was randomly 
distributed. In addition to the analysis of the whole family, we parti-
tioned the data according to the recognized subfamilies (Condamine 
et al., 2012; Nazari et al., 2007). The monotypic subfamily Baroniinae 
was not considered because it is composed of the single Mexican 
species Baronia brevicornis (inhabitant of tropical deciduous wood-
lands), which was not enough for statistical purposes.
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We compared the observed proportion of biome-specialist and 
biome-generalist species with null models generated by 10,000 
Monte Carlo randomizations of the observed data (Gotelli,  2000). 
These data were coded as a binary matrix representing the presence 
or absence of every species in each biome. Since specific ecological 
features of each biome affect species richness (Jetz & Fine, 2012), 
the randomization we conducted placed species presences in bi-
omes randomly while constraining the overall observed species rich-
ness of each biome, which generates changes in the degree of biomic 
specialization of those species. Finally, simulated samples of BSI in-
cidence were obtained and the significance (p-value) of observed 
BSI distribution was calculated comparing observed and simulated 
proportions (Hernández Fernández & Vrba, 2005). All analyses were 
performed using the R environment (R Core Team, 2021).

2.4  |  Species-specific DRs and biome specialists

To assess the relationship between diversification and the level of 
biome occupancy, we estimated species-specific DRs, or ‘tip rates’. 
Tip rates are widely used to study DR variation in relation to geogra-
phy, ecology and phenotypes (Title & Rabosky, 2019). We calculated 
tip rates from a swallowtail phylogeny (Allio et al., 2021), which in-
cludes 391 swallowtail species (~70%), representing all genera and 
subgenera including the only Baroniinae species B. brevicornis, 75 
out of 76 Parnassiinae species, and 315 out of ~515 Papilioninae 
species.

To estimate species-specific DRs, we used species-level lineage 
DRs (Jetz et al., 2012) using the evol.distinct function in the R pack-
age picante (v1.8.1; Kembel et al., 2010). DR is a summary statistic that 
infers speciation rates for all tips in the phylogeny without requiring 
a formal parametric inference model and is based on the mean equal 
splits measure of evolutionary isolation (Redding & Mooers, 2006). DR 
values were estimated according to the number of splitting events and 
the internode distances of those branches going from each tip to the 
tree's root, giving greater weight to branches and splitting events closer 
to the present (Jetz et al., 2012). When applied to extant species phy-
logenies (ultrametric phylogenies), DR analyses represent net diversifi-
cation (i.e. speciation minus extinction; Cantalapiedra et al., 2017).

We assessed the significance of the relationship between species 
DRs and the number of biomes occupied using phylogenetic gen-
eralized least squares (PGLS) to estimate the expected covariance 
in cross-species data while controlling for potential phylogenetic 
signal (Mundry, 2014). PGLS were performed using the R package 
caper (v1.0.1; Orme et al., 2018) and estimating the lambda param-
eter using the maximum likelihood function. We used phylogenetic 
analysis of variance (ANOVA) to test the existence of significant 
differences in biome-specialist DRs among the different biomes. 
Phylogenetic ANOVA test was performed using the R packages phy-
tools (v0.7-80; Revell, 2012) and geiger (v2.0.7; Pennell et al., 2014).

Moreover, we also explored the relationship between biomic spe-
cialization and diversification using the Hidden State Speciation and 
Extinction (HiSSE) model in the R package hisse (v1.9.19; Beaulieu & 
O'Meara, 2016). In addition to the trait of interest, which differentiated 

F I G U R E  1  World biomes distribution considered in this work (modified from Walter, 1970).
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between biome specialists and biome generalists (coded as 1 and 0,  
respectively), the HiSSE model allowed us to include unobserved fac-
tors (hidden states) that could affect diversification. We allowed un-
linked rates of speciation (λ0, λ1), extinction (μ0, μ1) and transitions 
(q01, q10) associated with the two trait states. For the HiSSE model, 
we set two hidden states (A, B) contained within each observed trait 
state (i.e. states 0A, 0B, 1A, 1B) so that speciation and extinction rates 
can vary independently across all four states. Transition rates be-
tween all observed and hidden states were also free to vary except for 
dual transitions (e.g. q0A to q1B, q1A to q0B). We optimized the fit of 
all models by maximum likelihood and evaluated model performance 
based on the corrected Akaike information criterion (AICc).

Finally, we explored the impact of species ranges on our results 
to assess whether a correlation between biome specialization and 
diversification in swallowtails could be a consequence of the size 
of the species distribution area. To this effect, we performed a vari-
ance partitioning to split the DR variance explained by species dis-
tribution area and/or by the number of occupied biomes, using the 
R package vegan (v2.5-7; Oksanen et al., 2020). Lastly, we tested the 
significance of the relationships between swallowtail DRs and spe-
cies distribution areas using a PGLS to consider the potential phylo-
genetic signal (Mundry, 2014). For the PGLS, the lambda parameter 
was estimated using the maximum likelihood function.

3  |  RESULTS

3.1  |  Distribution of the BSI

We collected the distribution ranges of a total of 593 swallow-
tail species from around the world. The group was represented in 
the 10 terrestrial biomes considered, and in all continents except 
Antarctica, where there is no evidence of their presence. No swal-
lowtail species inhabits all the 10 biomes, the maximum being the 
eight biomes occupied by Papilio polyxenes.

Our results showed that the frequency distribution of BSI was 
intensely right skewed, with a low mean BSI (BSI = 1.67) (Figure 2a). 
Overall, 323 species (54.5%) of Papilionidae species inhabit only 
one biome, and 186 species (31.5%) inhabit two biomes. Moreover, 
just 1.6% of Papilionidae (nine species) can be considered as ex-
treme biome generalists, inhabiting five or more different biomes 
(Table  S3.1). The American swallowtail (P. polyxenes) is the most 
biome-generalist species of the group, inhabiting eight different bi-
omes, being only absent in taiga and tundra environments.

Our results showed a significantly high proportion of biome-
specialist species (BSI = 1) (Figure 2a; Table S3.1) while the frequencies 
of species inhabiting two (BSI = 2) and three (BSI = 3) biomes were 
significantly lower. The frequencies of species with BSI = 4–5 were not 
significantly different from those expected under random processes. 
Nonetheless, the frequencies of species inhabiting six to eight differ-
ent biomes (BSI = 6–8) were significantly higher than expected.

Both studied subfamilies showed similar distributions of frequen-
cies and proportion of biome specialization to the family species 
(Figure  S3.1; Table  S3.2). However, Parnassiinae showed a substan-
tially lower mean BSI (1.36) and a higher proportion of biome-specialist 
species (77.6%) than Papilioninae (1.71% and 51.0%, respectively). The 
frequency of species inhabiting two (BSI = 2) and three (BSI = 3) bi-
omes was significantly low in both subfamilies. Finally, extreme biome-
generalist species were scarce in both subfamilies, with less than 1.6% 
of Papilioninae and less than 1.4% of Parnassiinae inhabiting five or 
more different biomes, although the observed values in several of 
these BSI categories were significantly higher than expected by chance.

3.2  |  Proportion of biome specialists 
among biomes

Six biomes showed a higher proportion of biome-specialist spe-
cies than expected (Figure 2b; Table S3.3). Within the family, 331 
papilionid species occur in the equatorial rainforests, of which 

F I G U R E  2  Biomic specialization among Papilionidae: (a) Observed (bars) and simulated (dots) frequency distribution of the biomic 
specialization index (BSI) in Papilionidae. (b) Observed (bars) and simulated (dots) distribution of biome-specialist (BSI = 1) Papilionidae 
species across different biomes. While dots in both figures indicate the expected values by chance, symbols above or below the dots 
indicate whether observed results (bars) are significantly higher (above) or lower (bellow) than expected by chance with: ***p < .001; 
**.01 > p > .001; *.05 > p > .01; n.s. = not significant. Papilio demoleus picture by Fabien L. Condamine.
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43% (143 species) are restricted to it, against 25% expected. In all, 
101 biome specialists live exclusively in the tropical deciduous wood-
land, which constitutes around 30% of all the species present in this 
biome (25% expected). The sclerophyllous woodland hosts 34.8% of 
biome specialists, in contrast to 11.1% expected. The steppe is the 
biome with the highest degree of specialization, harbouring 69% of 
biome specialists, against 12% expected. Boreal coniferous forest 
houses six biome-specialist species, which constitutes around 26% 
of the total number of species inhabiting this biome, in contrast to 
7% expected. On the other hand, two biomes showed a lower pro-
portion of biome-specialist species than expected: broad-leaf decid-
uous forest and savannah, which also constitutes the single biome 
that hosts no biome-specialist species.

Papilioninae and Parnassiinae showed substantial differences in 
their frequencies of biome specialists (Figure S3.2; Table S3.4). Most 
papilionine biome specialists (about 93% of them) inhabit equatorial 
rainforest or tropical deciduous woodland, while the vast major-
ity of parnassiine biome specialists are found in the steppe, where 
biome-specialist species constitute 88.9% of all the inhabiting par-
nassians. To a much lesser extent, tropical deciduous woodland and 
sclerophyllous woodland, with around 50% of biome-specialist spe-
cies, also showed a high proportion of biome-specialist Parnassiinae 
species. Three biomes host no Papilioninae biome specialists: sa-
vannah, steppe and tundra. At the same time, three biomes host no 
Parnassiinae of any kind: equatorial rainforest, savannah and tropical 
desert. Moreover, both subfamilies showed a similar percentage of 
biome specialists in the taiga biome, which was significantly higher 
than expected.

3.3  |  DRs and biome specialists

The highest diversification values were those from the Papilioninae 
species Troides rhadamanthus and T. riedeli, while the lowest value 
corresponded to B. brevicornis, from the monotypic subfam-
ily Baroniinae (Figure  3). Among clades, tribes Leptocircini and 
Teinopalpini showed the lowest DR values among all Papilioninae, 
while genus Parnassius showed the highest DR values among 
all Parnassiinae. Regarding the species-rich genus Papilio (tribe 
Papilionini), the Pterourus clade as well as the memnon and aegeus 
species groups within the subgenus Menelaides also showed high 
DRs. When separated by subfamilies, Parnassiinae showed higher 
DR mean values than Papilioninae for every represented BSI.

Lineage-specific DR mean values through the different BSI 
groups (Figure  4; Table  S3.5) varied from 0.16 (BSI  =  1) to 0.08 
(BSI = 6). However, there was a high variability of statistical disper-
sion among categories, with BSI  =  1 and BSI  =  2 groups showing 
generally the smaller standard deviation values than groups of more 
generalist species.

The high correlation (R2 = .86) and the negative slope from PGLS 
analysis (Table  1) reflected the relationship between occupying a 
smaller number of biomes and higher rates of diversification among 
Papilionidae (p = .023; Table 1). Biome-specialist species of different 

biomes showed significant differences in their DRs (phylANOVA 
p ≤ .001; Table  S3.6 in Supporting Information), with tundra spe-
cialist species showing the highest DR values, followed by steppe 
specialists, while sclerophyllous woodland specialists showed the 
lowest DR values (Figure 4b).

The HiSSE analyses revealed that the model including a hidden 
effect on diversification of state 1 (biome specialists) was supported 
against the other SSE models (AICc = 3043.76 vs. AICc = 3058.76 for 
the second-best fitting model, ∆AIC = 15.0). Our result showed that 
biome-specialist species diversified twice as fast as biome general-
ists (0.187 vs. 0.099 events/lineage/Myr; Table S3.7 in Supporting 
Information) and indicated that the diversification of biome special-
ists was likely influenced by other unmeasured traits.

Based on the results of variance partitioning (Figure  5), the 
effects of BSI (number of biomes occupied by a species) had the 
most significant unique effect on swallowtail DRs (13.3%), whereas 
species area explained 6.6% of the total variability. The combined 
effects of BSI and area variables represented 2.2% of the total vari-
ability. The total variance explained by the two variables was 22.1%.

The results of the PGLS showed a negative linear relationship 
between species area and species DR, meaning that species occupy-
ing less area tend to have higher DRs. However, the relationship be-
tween species diversification and area, while significant (p = .002), 
had much lower explanatory power than the one showed between 
species diversification and the number of occupied biomes (BSI; 
Table 1).

4  |  DISCUSSION

4.1  |  Are there more biome-specialist swallowtail 
butterflies than biome generalists?

Globally, our results agree with the first prediction of the resource-
use hypothesis (Vrba,  1980, 1987), showing a high proportion of 
biome-specialist species (BSI  =  1) (Figure  2a). Apart from biome 
specialist, we also showed that extreme biome-generalist species in-
habiting more than five biomes were observed infrequently but still 
more than expected. These results are in line with the results previ-
ously obtained by Hernández Fernández and Vrba (2005) for large 
African mammals, Moreno Bofarull et al. (2008) for South American 
mammals, Cantalapiedra et al.  (2011) for ruminants worldwide, 
Menéndez et al.  (2021) for squirrels of the world and Hernández 
Fernández et al.  (2022) for world's mammals, which suggests that 
the resource-use hypothesis provides a common ground for the un-
derstanding of evolutionary processes triggered by climatic changes, 
irrespective of the studied taxa. Moreover, swallowtail butterflies 
showed a lower mean BSI (they inhabit fewer biomes) than most 
previously studied mammal groups. Papilionidae butterflies are her-
bivorous insects with highly specialized host-plant preferences (Allio 
et al., 2021; Condamine et al., 2012), and, therefore, their trophic 
niche could have made them particularly prone to biome specializa-
tion (Moreno Bofarull et al., 2008; Vrba, 1980).
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4.2  |  Are biome-specialist swallowtail species 
evenly distributed across biomes?

Not all biomes showed the same percentage of endemic species. 
Our results show that some biomes located at the extremes of 
the climatic conditions, namely tundra, steppe and rainforest 
have high percentages of biome-specialist species (more than 
33% of their species are endemic; Figure  2b). The rainforest 
biome stands out by its high number of biome-specialist species 
(n = 143). The rainforest is an old biome, with more than 60 million 

years of evolutionary history (Morley,  2011), and with a general 
pattern of hosting many species for most clades (Condamine 
et al.,  2012; Jaramillo & Cárdenas,  2013; Novotny et al.,  2006; 
Potts & Behrensmeyer,  1992). The steppe and the tundra are 
relatively modern biome, with less than 15 million years (Abbott 
& Brochmann,  2003; Barbolini et al.,  2020; Friesen et al.,  2016) 
that expanded in the late Neogene-Quaternary associated with 
global cooling and orogenic pulses (Horton et al.,  2010; Hurka 
et al.,  2019; Strömberg,  2011). The adaptation of the genus 
Parnassius to these biomes, where they are in the majority, should 

F I G U R E  3  Diversification rate (DR) estimations for Papilionidae as inferred using the DR metric (Jetz et al., 2012). Dots indicate the 
presence (full) or absence (void) of each species in the considered biomes. Butterfly pictures by Fabien L. Condamine.
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have happened during the late Neogene, meaning that tundra- and 
steppe-adapted endemic species should be relatively young (Allio 
et al., 2021; Figure S3.2).

However, our results do not support that the desert biome host 
many biome-specialist species (one single endemic species out 
of seven species inhabits desert environments). This biome, char-
acterized by wide inter-annual fluctuations in precipitation and 
by hampering plant–water relationships (Schowalter et al.,  1999), 
constitutes an unfavourable biome for phytophagous insects, like 
butterflies (Larsen, 1995). In agreement with that idea, a single swal-
lowtail species, P. saharae, has specialized in this biome.

Moreover, some non-extreme biomes also showed high percent-
ages of biome-specialist species. The prevalence of biome-specialist 
species in the tropical deciduous woodlands was pointed out in 
previous works on mammals (Cantalapiedra et al., 2011; Hernández 
Fernández et al., 2022; Hernández Fernández & Vrba, 2005; Moreno 
Bofarull et al., 2008). Even though this biome cannot be considered 
a climatic extreme, it is a markedly heterogeneous environment 
whose historical dynamic is closely associated with rainforest fluc-
tuations (Dexter et al.,  2018; Haffer,  2008; Hoorn et al.,  2010). 
These dynamics could have provided patches and refugia that pro-
mote speciation (Vrba,  1992). In this regard, there are several lin-
eages among Papilionidae characterized by the presence of closely 
related specialists in the equatorial forests and the tropical decidu-
ous woodlands (Figure 3). Sclerophyllous woodlands and shrublands 
showed a high proportion of biome specialists related to the high 

F I G U R E  4  Biome specialists have higher diversification rates (DRs). (a) DRs estimated using the DR metric (Jetz et al., 2012), and grouped 
by species' biomic specialization index (BSI) for all Papilionidae present in the phylogeny; (b) diversification rate estimated for biome-
specialist species (BSI = 1) present in the phylogeny, divided as a function of the biome they inhabit; Savannah and subtropical desert are not 
included as there are not specialist species in these biomes. Coloured dots indicate the mean values. Bars correspond to 95% CI. Significance 
levels (p) are provided for phylogenetic generalized least squares and phylogenetic ANOVA analyses of DRs for BSI and biome, respectively. 
ANOVA, analysis of variance; CI, confidence interval.
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variation explained by the full model.
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number of species from the Parnassiinae subfamily in this biome 
(Figure S3.2; Table S3.4), which could be related to the role of the 
Mediterranean peninsulas as Pleistocene refuges for isolated pop-
ulations (Dapporto, 2010; Zinetti et al., 2013). Finally, the taiga also 
showed more specialists than expected (Figure 2b). In this case, taiga 
specialist swallowtails are linked to mountain systems, which are 
usually recognized as biodiversity hotspots (Menéndez et al., 2021; 
Rahbek & Graves, 2001). With these results, we do not find a con-
sistent pattern supporting that, only lineages adapted to extreme 
climatic conditions show a pattern of increasing endemism because 
additional geographic factors appear to be acting as determinants of 
ancillary biome specialization.

4.3  |  Is DR related to biome specialization?

Biome specialists showed the highest mean DRs, while biome gen-
eralists presented decreasing DR as the number of inhabited biomes 
increases. Finally, extreme biome-generalists (those occupying five 
or more biomes) showed a large variation among species, related to 
the relatively small number of species in this category. Our results 
on DR are consistent with those retrieved from the HiSSE analyses 
that showed that biome specialists diversified faster than biome 
generalists (Table S3.7). In addition, HiSSE results showed the ef-
fect of a hidden variable on diversification. Thus, significant effects 
of other variables, abiotic (e.g. tectonic; Badgley et al., 2017) of bi-
otic (e.g. hostplants; Allio et al., 2021; Muto-Fujita et al., 2017), are 
expected.

It is important to note that estimating DRs from extant species 
phylogenies is challenging (Burin et al., 2019; Louca & Pennell, 2020). 
Even more because of the relative incompleteness of species sam-
pling in some tropical regions. Additionally, estimation becomes 
particularly complex when the group is ancient because there is 
an increasing probability that any possible diversification episode 
may have been veiled due to extinction wiping out entire lineages 
(Marshall, 2017).

Vrba hypothesized that biomes located at the extremes of the 
climatic conditions would be more impacted by global climatic 
changes, increasing their fragmentation rates, and thus, favour-
ing extinction and speciation events, with a net increase in diver-
sification. Results from swallowtail butterflies show that steppe, 
tundra and tropical deciduous woodland biomes have the highest 
DRs among biome-specialist swallowtails (Figure 4b; Table S3.6 in 
Supporting Information). Steppe and tundra biomes are mainly oc-
cupied by the genus Parnassius, which showed some of the highest 
DRs among swallowtail butterflies (Figure 3). Nevertheless, our esti-
mation for the DR of rainforest specialists was not as high as in other 
extreme biomes (Figure 4b). This could be related to a biotic process, 
or to the fact that the sampling for rainforest species for the phylog-
eny of the family covers ~55% of all rainforest specialists (Figure 3). 
The sclerophyllous woodland and shrubland showed the lowest DR 
values among all biome-specialist swallowtails. Most of these biome 
specialists occupy the Mediterranean area. This region, because of 

its geography consisting of several islands and peninsulas restricted 
northwards by high mountain ranges, could have acted as refugia 
for temperate species during the glacial maxima of the Pleistocene, 
favouring the development of endemism (Bilton et al., 1998; Todisco 
et al., 2012; Zinetti et al., 2013). Their low DR values could mean that 
some sclerophyllous woodlands specialists may be considered as rel-
icts, survivors of once more speciose clades that suffered extinc-
tion events during the glacial–interglacial alternation (Brown, 1995; 
Condamine, Rolland, et al., 2018).

4.4  |  The effect of species distribution areas on 
diversification

Both Variance Partitioning and PGLS results showed a stronger rela-
tionship between swallowtail DRs and their degree of biome special-
ization in comparison to species area. Biome specialization is about 
twice as explanatory as distribution area when studying swallow-
tail DRs in both analyses (R2 adjusted = .133 vs. R2 adjusted = .066; 
Figure 5) and PGLS (R2 = .810 vs. R2 = .487). These results confirm 
that species with large areas can be young, and species with small 
areas can be old (Gaston, 2003) and can reflect that, although swal-
lowtail species diversification might be somehow related to disper-
sal capabilities, it is much more related to niche adaptation. The 
differences in explanatory power observed between variance parti-
tion and PGLS approaches are most probably related to the phylo-
genetic nature of the PGLS, suggesting that the correlation between 
variables is stronger within clades, getting diluted when swallowtails 
are studied altogether. These results agree with previous works that 
found these age–area relationships among closely related species 
(Gaston, 2003).

5  |  CONCLUSIONS

The swallowtails lineage presents a greater number of biome spe-
cialists and a lower number of biome generalists than expected. 
We show that this pattern stems from differential diversification of 
lineages: substantially higher DRs were detected among biome spe-
cialists compared to biome generalists. We also found that biome 
specialists are unevenly distributed across biomes, suggesting 
that past fragmentation events shaped the degree of biomes spe-
cialization Overall, our results are consistent with the resource-use 
hypothesis, which states that global climatic changes, and the hy-
pothetically subsequent biome fragmentation, promote divergence 
and speciation events in biome-specialist lineages. Distinguishing 
the role of biomes as a main barrier for species expansion, and thus 
a main constraint conditioning the evolutionary pathways of line-
ages, is an open question yet to be answered. New analyses and 
simulations need to be conducted to measure the role of disper-
sal, species climatic niche and biome fragmentation as key factors 
promoting isolation. Our results point out the relevance of future 
conservation policies to maintain the ecological and evolutionary 
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diversity within this family. Special effort should be placed into the 
identification and preservation of areas including specialist spe-
cies with significantly high DRs (extreme biomes, mountain ranges) 
because fragmentation of such areas under the current and future 
situation of global climatic change will continue to foster the diver-
sification of the group.
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