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Abstract: In this paper, we are relating a significant improvement of the SERS effect achieved with
assembled Au/ZnO nano-urchins. This improvement is realized thanks to an excellent capacity of
adsorption (denoted K) for thiram molecules on these plasmonic nano-urchins, which is a key point
to be taken into account for obtaining a SERS spectrum. Moreover, this outlook may be employed for
different types of plasmonic substrates and for a wide number of molecules. We studied the capacity
of the assembled Au/ZnO nano-urchins to be sensitive to the pesticide thiram, which adsorbs well on
metals via the metal–sulfur bond. For the thiram detection, we found a limit concentration of 10 pM,
a value of this capacity of adsorption (K) of 9.5 × 106 M−1 and a factor of analytical enhancement
equal to 1.9 × 108.

Keywords: SERS; sensors; plasmonics; gold; zinc oxide; thiram; adsorption

1. Introduction

Thiram is a sulfur-containing pesticide that is broadly employed in agriculture as a
protective agent for the production of vegetables and fruits [1,2]. Moreover, thiram is also
employed in soaps as bactericide and in the rubber industry [3]. In addition, the exposure
to thiram can engender various diseases or other health problems due to the liberation
of the carbon disulfide compound [4–7]. Moreover, thiram can also contaminate surface
and groundwater due to its transportation by diffuse pathways. During the last ten years,
different detection techniques have been employed for the detection of thiram, such as
fluorescence [8], colorimetry [9], electrochemistry [10], resonance Rayleigh scattering [11],
plasmonic absorption [3], and the localized surface plasmon resonance [12]. With these tech-
niques, the detection limits of the pesticide thiram vary between 10−9 M to 10−6 M. In addi-
tion, another technique is also used, which is the surface-enhanced Raman scattering (SERS).
This technique consists in the use of plasmonic or hybrid (metal/semiconductor) nanostruc-
tures/nanoparticles [13–19] in order to improve the SERS signal of biochemical analytes
via electric fields of the plasmonic or hybrid nanostructures/nanoparticles [20]. These
plasmonic nanostructures/nanoparticles can be fabricated by chemical synthesis [21–24] or
lithographic techniques [25–32]. Moreover, several groups have already investigated plas-
monic or hybrid nanostructures/nanoparticles for thiram detection by SERS with detection
limits varying from 10−8 M to 10−7 M [33–37]. Nevertheless, in these different investiga-
tions, this capacity of adsorption (K) has been not considered for obtaining a SERS spectrum.
The Langmuir model allows determining this adsorption constant (denoted K) [38–41].

The goal of this investigation is to exhibit a highly sensitive detection of thiram (model
pesticide) by using assembled Au/ZnO nano-urchins. This type of nanostructures will
permit producing: (i) huge electric fields inside nanogaps between the branches of one
same nano-urchin and also between each nano-urchin, and (ii) an excellent capacity of
adsorption for thiram on the gold part of these assembled nano-urchins.
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2. Experimental Details
2.1. Fabrication of the Assembled Au/ZnO Nano-Urchins

Au/ZnO urchin-like nanostructures are fabricated following our previously estab-
lished method (see reference [42]). Firstly, quartz substrates (1 × 2 cm2) covered with
indium tin oxide (ITO) are cleaned in a sequential fashion for a duration of 15 min in
acetone, then ethanol, and finally isopropanol. Lastly, the ITO/quartz substrates are dried
in a stream of air. After, a glass slide (25 × 75 mm2) is rendered hydrophilic with an
oxygen plasma treatment and is placed on the vertical edge of a Petri dish, which is full of
deionised (DI) water. We carefully add a solution composed of polystyrene (PS) spheres
(1:2 PS spheres/anhydrous ethanol) via a micropipette onto the slanted glass substrate
until all of the water surface is covered with PS spheres. Hereafter, we add a small vol-
ume (5 µL) of a sodium dodecyl sulfate solution to the surface of water for promoting
the tight packing of the PS spheres. An ITO/quartz substrate (rendered hydrophilic by
exposing it to an UV light for a duration of 15 min) is then introduced into the Petri dish
at an angle of 45◦ to transfer PS spheres towards the substrate. Once the substrates were
dry, they are introduced for 30 min in an oven set at a temperature of 100 ◦C to favor
the sphere adhesion. Next, PS spheres are exposed to an O2 plasma treatment to reduce
their dimension and form a non-close-packed arrangement. Afterwards, a 20 nm thin
film of ZnO is deposited on the PS spheres substrates with a home-made apparatus of
atomic layer deposition (ALD). The deposition is carried at 80 ◦C with diethylzinc (DEZ)
and H2O as precursors. Subsequently, ZnO nanowires are grown on the ZnO-covered PS
spheres with a three-electrode configuration consisting of the ZnO/PS spheres/ITO/quartz
substrate (working electrode), a Pt sheet of 1 × 1 cm2 serving as counter-electrode, and
an Ag/AgCl electrode serving as reference. These latter are introduced into an electrolyte
solution composed of ZnCl2 (0.05 mM) and KCl (0.1 M) and continuously bubbled with
O2 during the whole deposition. A constant electric potential of −1 V is applied for a
duration of 15 min in a potentiostat (VersaSTAT 3, Princeton Applied Research, Berwyn,
PA, USA) and the electrodeposition cell is kept at a temperature of 80 ◦C. Once the elec-
trodeposition was finished, the PS spheres are burned away from the substrate in an oven
(temperature = 600 ◦C) for a duration of 2 h in air. Lastly, a gold layer with a thickness of
50 nm is deposited with an electron beam evaporation equipment (350 UNIVEX, Oerlikon
Leybold, Cologne, Germany) running at a voltage of 10 kV and a pressure of 10−6 mbar.
A deposition rate of 0.3 nm s−1 was measured in situ with a quartz crystal microbalance
(QCM) monitor. This 50 nm Au layer allows the best enhancement of the SERS signal with
our assembled Au/ZnO urchins [42]. The morphology analysis of Au/ZnO nano-urchins
has been realized with a scanning electron microscope (Hitachi S-4800, Tokyo, Japan). The
structural characterization of assembled hybrid nano-urchins was realized with a diffrac-
tometer (PANalytical X’pert-PRO, PANalytical, Malvern, United Kingdom) equipped with
an X’celerator detector, which employs a Ni-filtered Cu Kα radiation.

2.2. Thiram Functionalization on Assembled Au/ZnO Nano-Urchins

To investigate the sensitivity of the assembled Au/ZnO nano-urchins, we employ the
pesticide thiram for its capacity to be grafted on the metallic surface via the gold-sulfur
bond [43–45]. In the first place, we realized thiram solutions (thiram + ethanol) whose
the concentrations were comprised between 10 pM and 1 mM. Next, we immersed the
substrates in the thiram solution for a duration of 24 h. Afterwards, the substrates were
thoroughly washed with pure ethanol to remove unbound thiram. After this step of wash-
ing, we thoroughly dried the assembled Au/ZnO nano-urchins by using a nitrogen gun.
In addition, we employed a thiram concentration of 1 mM for the reference experiment.

2.3. Raman Experiments

Concerning the Raman experiments, we employ a spectrometer (Labram, Horiba
Scientific, Kyoto, Japan) whose the spectral resolution is 1 cm−1. We choose a wavelength
of 785 nm for excitation, which allows the best enhancement of the SERS signal with our
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assembled Au/ZnO urchins [42]. We adjust the acquisition time at 10 s and the laser power
at 3 mW. Concerning to the SERS experiments, the laser beam is focused on the plasmonic
nano-urchins by a microscope objective (×100, N.A. = 0.9), then the SERS signal of the
pesticide thiram is collected by this same way. In addition, for the reference experiment
(a 50 nm-thick gold film without any ZnO nano-urchins), the same excitation wavelength,
acquisition time, and laser power were used.

3. Results and Discussion

The assembled Au/ZnO nano-urchins were fabricated following the process detailed
in Section 2.1, and a SEM image of these hybrid nano-urchins is presented in the Figure 1a.
Figure 1b displays the X-ray diffraction (XRD) pattern of our hybrid nano-urchins. The
XRD peaks located at 31.8◦, 34.4◦, and 36.4◦ correspond to the (100), (002), and (101) planes
of ZnO (hexagonal wurtzite), respectively. The XRD peaks located at 38.2◦, 44.5◦, and 64.6◦

are assigned to the (111), (200), and (220) planes of Au (face-centered-cubic), respectively.
Thus, all these XRD peaks successfully confirm the composite nature of our Au/ZnO
nano-urchins. The other XRD peaks are assigned to the ITO/quartz substrate.

Figure 1. (a) SEM image of assembled zinc oxide nano-urchins covered by the 50 nm-thick Au layer
(scale bar = 1000 nm). (b) XRD pattern of Au/ZnO nano-urchins.

In order to evaluate the capacity of Au/ZnO nano-urchins to be sensitive, thiram
molecules were deposited on the nano-urchins by using the protocol detailed in the
Section 2.2. Hereafter, we realized SERS spectra of thiram on hybrid nano-urchins for
the wavelength of excitation of 785 nm, and Figure 2 shows these latter. We have chosen
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this excitation wavelength of 785 nm, because, in a previous work [42], we have demon-
strated a better enhancement of the SERS signal for a gold layer of 50 nm-thick and this
excitation wavelength of 785 nm. Indeed, in this work, we have studied the SERS activ-
ity for three thicknesses (10 nm, 30 nm, and 50 nm) of the gold layer deposited on ZnO
nano-urchins and for two excitation wavelengths (633 nm and 785 nm). We found the
best SERS signal obtained with the following parameter couple: a thickness of 50 nm for
the gold layer and an excitation wavelength of 785 nm. Thus, for this parameter couple,
the enhancement of the SERS signal can be remarkably improved due to the fact that this
excitation wavelength is nearer one plasmonic resonance for the thickest gold layer (see [42]
for more details). From the Figure 2a,b, two Raman peaks of thiram molecules [45–47]
are well-distinguished: the one at 1145 cm−1 is attributed to the mode of C–N stretching
(called: ν(CN)) and the mode of CH3 rocking, and the one at 1378 cm−1 corresponds to
the mode of C–N stretching (called: ν(CN)) and the mode of symmetric CH3 deformation
(called: δs(CH3)). We have chosen the vibration mode at 1378 cm−1 for its strongest SERS
intensity for assessing the capacity of Au/ZnO nano-urchins to be sensitive. We plot the
SERS intensity versus thiram concentration, as shown in Figure 2c. From Figure 2b,c, we
found a limit concentration (LOD) of 10 pM with a signal-to-noise ratio (S/N) > 3. For
thiram concentrations below 10 pM, no Raman peak is discernible (S/N � 3).

Figure 2. SERS spectra of the pesticide thiram recorded on assembled hybrid nano-urchins: (a) in
black, CThiram = 10−3 M; in red, CThiram = 10−5 M, and in blue, CThiram = 10−7 M; (b) in black,
CThiram = 10−9 M; in blue, CThiram = 10−10 M, and in red, CThiram = 10−11 M. (c) SERS intensity
as function of CThiram (=CS). The black circles represent the experimental points. The blue curve
represents the fitting curve with the expression of the Langmuir model. The orange curve represents
the fitting curve with the expression of the Hill model. (d) SERS spectrum of the pesticide thiram on
a 50 nm-thick gold film (without any ZnO nano-urchins) for a thiram concentration of 1 mM serving
as reference.

Moreover, this LOD is more sensitive than those obtained with other geometries of
nanostructures, such as Ag dendritic nanostructures (LOD = 10−7 M, [48]), Ag nanopar-
ticles on a flexible film (LOD = 10−7 M, [49]), Ag nanowires (LOD = 10−7 M, [50]), Ag
nanoshells (LOD = 10−8 M, [51]), Au@Ag nanoparticles (LOD = 8 × 10−11–10−7 M, [52–54]),
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Ag/CeO2 nanostructures (LOD = 10−9 M, [47]), and Au nanostars with fractal structure
(LOD = 10−10 M, [45]). In addition, the experimental results are fitted by using a Langmuir
model [38–41]:

I = Imax
KCS

1 + KCS
(1)

where CS is the thiram solution concentration. K represents the capacity of adsorption
(adsorption constant). Imax depicts the strongest SERS intensity when the thiram mono-
layer is completely formed, and I is the SERS intensity associated with CS. We note a
nice accordance between experimental points and the fitting curve calculated with the
expression of a Langmuir model, as shown in Figure 2c. Since the extraction of K of the
blue curve, we find K = 9.5 × 106 M−1. This latter points out a nice affinity of adsorption for
the pesticide thiram on the Au portion of assembled Au/ZnO nano-urchins. Moreover, the
experimental results are fitted by employing another model named Hill equation [55–57]:

I = Imax
1

1 +
(

k
CS

)n (2)

where I, Imax and CS are parameters identical to the previous model. n represents the
coefficient of Hill. k corresponds to the analyte concentration that produces a coverage
of 50%. We observe an excellent accordance between experimental points and the fitting
curve calculated with the expression of the Hill model, as shown in Figure 2c. Since the
extraction of k and n of the orange curve, we find k = 1.2 × 10−7 M and n = 0.51. This value
of 1.2 × 10−7 M for k corroborates the large affinity of thiram regarding the metal surface.
Nonetheless, the obtained n is less than 1, which indicates a decrease in the affinity of the
thiram molecules moving towards the metal surface that already has thiram molecules
grafted to its surface [55]. Finally, we calculate the analytical enhancement factor (AEF) of
the plasmonic nano-urchins at LOD, with the following expression [58]:

AEF =
ISERS
IRaman

× CRaman
CSERS

(3)

where CSERS (10 pM) is the thiram concentration for SERS experiment, and CRaman (1 mM)
is the thiram concentration for reference experiment. ISERS (see the red SERS spectrum in
Figure 2b) is the SERS intensity, and IRaman (see the blue SERS spectrum in Figure 2d) is the
Raman intensity. We obtain an AEF value of 1.9 × 108 (see Table 1).

Table 1. Parameters for the calculation of AEF using Equation (3).

Parameter Designation Parameter Values

Vibration mode (cm−1) 1378
ISERS (counts mW−1 s−1) 77
IRaman (counts mW−1 s−1) 40

CRaman (M) 10−3

CSERS (M) 10−11

To finish this investigation, we demonstrated a good uniformity of the SERS signal
obtained with assembled Au/ZnO nano-urchins over the whole substrate. For each
experimental point of the Figure 2c, SERS spectra have been recorded from ten randomly
chosen positions on the sample with identical conditions of excitation for the calculation of
the relative standard deviation (RSD).

Figure 3a shows the SERS intensity of the Raman peak at 1378 cm−1 recorded at
ten positions taken randomly on the substrate (RSD = 5.4%) for the thiram concentration
of 1 mM, and Figure 3b displays SERS spectra obtained from four completely opposite
positions on the substrate (for other thiram concentrations, see Figures S1 and S2 in
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Supplementary Information). As for the uniformity of the SERS signal on the whole
sample, the sample-to-sample reproducibility was studied by measuring the SERS intensity
of the same Raman peak (1378 cm−1) from three distinct samples. Figure 3c shows the
SERS intensity distribution of these three distinct samples for the thiram concentration of
1 mM with an average RSD < 9%, and Figure 3d represents the SERS spectra associated to
three distinct samples. Thus, we observed a good uniformity and reproducibility of the
SERS signal for our assembled hybrid nano-urchins with an average RSD < 9%.

Figure 3. (a) SERS intensity recorded for the Raman peak at 1378 cm−1 at ten positions taken
randomly on the substrate (the black dashed line represents the average value of the SERS intensity
with a RSD value of 5.4%). (b) SERS spectra for four positions of (a): in red at the position 8, in
black at the position 6, in blue at the position 3 and in pink at the position 2. (c) SERS intensity
distribution of the 1378 cm−1 peak for three distinct samples with an average RSD < 9%. (d) SERS
spectra associated to three samples: in red for the sample 2, in black for the sample 1 and in blue for
the sample 3.

4. Conclusions

We have shown the strong capacity of these assembled Au/ZnO nano-urchins to be
sensitive to the pesticide thiram. This latter adsorbs well on metals via the metal–sulfur
bond, and serves mainly as protective agent in agricultural production of vegetables and
fruits. For this detection, we obtained a LOD of 10 pM, a K of 9.5 × 106 M−1, and an AEF
of 1.9 × 108. This LOD of 10 pM was more sensitive than those obtained elsewhere on
the plasmonic nanostructures cited above in this paper. We also demonstrated a good
uniformity and reproducibility of the SERS signal for our assembled hybrid nano-urchins
with an average RSD < 9%, and that the adsorption capacity of the pesticide thiram on Au
surface was excellent thanks to the obtaining of a large value for K. Furthermore, this high
adsorption capacity of the pesticide thiram on Au surface of assembled nano-urchins was
corroborated by a value of 1.2 × 10−7 M for k. Finally, this approach can be employed for
different types of SERS substrate and for a wide number of molecules. Thus, it is important
to take into account the capacity of adsorption of molecules on the metal surface in order
to reach the highest value of SERS signal in addition to the usual considerations (as the
conception of plasmonic/hybrid nanostructures/nanoparticles).
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11092174/s1, Figure S1: SERS intensity of thiram recorded for the Raman peak at
1378 cm−1, for the concentrations from 10−4 M to 10−11 M at ten positions taken randomly on the
substrate, Figure S2: SERS spectra of thiram for the concentrations from 10−4 M to 10−11 M at two of
ten positions taken randomly on the substrate.
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