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Abstract 

Recent challenges in the pharmaceutical and biomedical fields require the development of 

new analytical methods. Therefore, the development of new sensors is a very important task. 

In this paper, we are outlining the development of molecularly imprinted polymer (MIP) 

based sensors, which belongs to important branch of affinity sensors. In this review, recent 

advances in the design of MIP-based sensors are overviewed. MIPs-based sensing structures 

can replace expensive natural affinity compounds such as receptors or antibodies. Among 

many different polymers, conducting polymers show the most versatile properties, which are 

suitable for sensor application. Therefore, significant attention is paid towards MIPs based 

on conducting polymers, namely polypyrrole, polythiophene, poly(3,4-

ethylenedioxythiophene), polyaniline and ortho-phenylenediamine. Moreover, many other 

materials, which could be imprinted analyte molecules, are overviewed. Among many 

conducting polymers, polypyrrole is highlighted as one of the most suitable for molecular 

imprinting. Some attention is dedicated to overview polymerization methods applied for the 

design of sensing structures used in various affinity sensors. The transduction of analytical 

signal is an important issue, therefore, physicochemical methods suitable for analytical signal 

transduction are also outlined. Advances, trends and perspectives in MIP application are 

discussed. 

 

Keywords: Molecularly imprinted polymers (MIPs); Affinity sensors; Immunosensors; 

Conducting polymers (CPs); Electrochemical deposition; Electrochemical sensors. 
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1. Introduction  

Among various types of systems, the pharmaceutical formulations and biomedical matrixes 

are the most complex. Consequently, the design of sensitive and selective analytical system 

is still rather challenging task. Various affinity sensors are a good choice in the purpose of 

simplifying the analysis and reducing expenses [1]. The combination of the different sensor 

types with different analytical signal registration methods leads to the sufficient sensitivity 

[2, 3]. The most common sample types in biomedical applications are: saliva, urine, blood 

serum, and some other biological liquids. Such samples contain biomarkers, which are 

marking some diseases. These biomarkers can be detected by sensors and biosensors, but the 

most of these biomarkers are determined or detected by affinity sensors [4, 5]. 

Various semiconductors-based structures are developed to increase the selectivity and 

sensitivity of chemical sensors and biosensors [6, 7], but conducting polymers (CPs) are used 

for this purpose the most frequently. The research articles describe many different approaches 

to deposit the conducting polymers on the electrode surface. Recently the conducting 

polymers are used for the development of sensing-structures useful for electrochemical 

applications, which increases the selectivity of the analytical system toward selected analytes 

[2]. Some polymers have several features that make them especially interesting for the design 

of sensors. These features are electrical conductivity [8], high electrical capacitance [9–11], 

good adherence on the surface of the electrodes, and the ability to form physically and 

chemically stable coatings [12, 13]. Ability to transfer electrical charges is characteristic for 

some CPs, therefore, they are used for charge transfer from some redox enzymes and some 

other biomolecules [14]. Due to aforementioned properties, CPs are used in the development 

of sensing structures in combination with various signal transducers. Polyaniline (PANI), 

polypyrrole (Ppy), poly(3,4-ethylenedioxythiophene) (PEDOT) and polythiophene (PTH) 

are CPs, which are the mostly applied in sensor and biosensor design [15–19]. These 

polymerization methods, which are the most commonly used for the formation of CPs, can 

be divided into four main types: chemical synthesis [20], enzymatic formation [21], 

electrochemical deposition [9] and/or microorganism assisted polymerization [22–25] . It is 

notable that only electrochemical deposition is the most preferred method when thin polymer 

film deposited on an electrode is needed. Meanwhile some other methods (chemical 

polymerization induced with hydrogen peroxide, FeCl3, etc., enzymatic polymerization or 

microorganism assisted polymerization) have advantages for the production of polymer 

based particles. Moreover, CPs can be used as immobilization matrixes for biomolecules that 

can selectively bind selected analytical-targets including DNA [26], receptors [27], 

antibodies [2], antigens [28], antibodies [21] and enzymes [29–31]. However, some of these 



  

4 

 

immobilized biomolecules are very expensive and are unstable, therefore, some alternatives 

are required. One of the most promising alternatives to native biomolecules is the design and 

exploitation of various ‘artificial receptors’ and/or molecularly imprinted polymers (MIPs) 

[32, 33]. It should be noted that conducting polymers can be used for the design of these 

structures [32–35]. In some investigations, it was shown that MIPs can be used for the design 

of biosensors for the detection of infection agents [36]. 

In this paper methods used for the development of CP-based sensors and the formation 

of molecularly imprinted sites within these polymers are overviewed. It is very usual to 

classify MIPs according to the detection principle in the review articles of MIPs applications. 

Principally, MIPs are formed in such steps: (i) chemical or electrochemical polymerization, 

(ii) deposition on the electrode of the MIP structure, (iii) extraction of the template molecule. 

In the case of electrochemical polymerization of conducting polymer with imprints of 

template molecule, the deposition of polymer on the electrode is obtained simultaneously. 

After the last step of template molecule extraction, the MIP has the shape and structure, which 

is ready for interaction with target molecules. Such MIPs can be used in the design of optical, 

electrochemical, electrochromic, magnetic and other sensors. On the basis of the here-

mentioned attitude, this review confines the description and considerations about MIPs in the 

polymerization conditions, template molecule, and signal transduction in sensors. The first 

part of the review is dedicated to the description of polymerization conditions with an 

overview of chemical and electrochemical methods. Next part of the review is dedicated for 

the description of application of MIPs template with high and low molecular weight 

molecules. In the same part of the review, we found reasonable to summarize the findings 

about signal transducers applied in sensors based on molecularly imprinted polymers. The 

last part of the review is dedicated for the aspects of compatibility. We find particularly 

interesting the compatibility aspects regarding potentially growing interest of scientific 

community to the potential application of MIPs in the field of wearable sensors. 

 

2. Formation of conducting polymers for MIPs by chemical or electrochemical methods 

 

2.1. Chemical formation of conducting polymers based on redox processes  

Chemical synthesis is one the most suitable polymerization method for the formation of CP-

based nano- or/and micro-particles. Such nano-or/and micro-particles of conducting polymer 

with molecular imprints further are used in the design of chemical sensors, chromatographic 

systems and some other technological purposes [37, 38]. The application field of electro-

active polymers is not limited with sensor design [39, 40] but also are applied for various 

biomedical purposes including tissue regeneration [41]. 
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In order to fulfill recent technological demands, various conducting polymer synthesis 

methods have been elaborated. Chemical methods can be used for the formation of large 

amounts of CPs. Chemical polymerization is initiated using oxidants such as FeCl3, H2O2 etc. 

[42–44]. The application of H2O2 enables the synthesis of rather clean conducting polymers, 

while all excess of H2O2 turns into water and oxygen. Many types of monomers were 

polymerized in presence of H2O2 including polypyrrole [20, 44, 45], (Fig. 1), polythiophene 

[44, 46], poly-phenanthrenequinone [47], poly(pyrrole-2-carboxylic acid) [48],  

polyphenanthroline [14], azobenzene [49] and carbazole [50]. 

 

 

 

Figure 1. Glucose oxidase (GOx) assisted formation of polypyrrole H2O2 formed during 

enzymatic reaction initiated this polymerization reaction. Adapted from reference [51]. 

 

 

Chemical polymerization enables to form large amounts of CPs. During chemical 

polymerization, different nanostructures, biomolecules, organic and inorganic molecules and 

even various ions can be entrapped formed polymeric structure [31, 48, 55–57].  

Some redox enzymes (e.g. glucose oxidase (GOx)) can be used for the synthesis of 

conducting polymers[21, 31, 48, 55–57]. Such enzyme assisted formation of CPs can be 

performed in an aqueous media at ambient conditions [58]. Dissolved [55, 57] and 

immobilized [29, 31, 48, 56] enzymes can be applied for the synthesis of CPs and after 

encapsulation of enzyme within formed CP-based structure enzyme often retain some 

enzymatic activity. Such method can be applied for the adjustment of enzymatic 

characteristics (e.g. Michaelis constant (KM)) that is dependent on diffusion of reacting 

materials towards active site of enzyme embedded within CP. CP/enzyme-based structures 

are used in biosensor and biofuel cell design [2, 5, 59, 60]. 
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Some conducting polymers (e.g. polypyrrole) can be formed by oxidizing chemicals (e.g. 

Fe3+ or [Fe(CN)6]
3- ions) [61], which can be generated by metabolic processes that are 

occurring in living cells, therefore, some cell-induced redox processes can be used for the 

synthesis of CPs [22–25]. Structures based on PANI, Ppy with entrapped GOx and gold 

nanoparticles (AuNPs) PANI/AuNPs&GOx can be formed [62], which is suitable for the 

mass production of MIPs [63, 64]. Transducer surface can be covered by such conducting 

polymer based MIPs by solvent casting or some other reliable method [65]. It should be 

noted, that CPs can be not dissolved in conventional solvents, therefore, the deposition of 

CP-based structures on analytical signal transducer is rather challenging. Electrochemical 

deposition of conducting polymers can be applied in order to overcome this obstacle. 

 

2.2. Electrochemical methods applied for the formation of conducting polymer based 

structures 

Many different approaches are applied for the electrodeposition of CP-based layers [66]. 

Parameters used for the electrodeposition are significantly affecting the most important 

characteristics of deposited conducting polymer based structures. The electrodeposition is 

mostly controlled by: (i) the application of particular potential or current control techniques 

(e.g. potentiodynamic methods such as potential pulses, linear or cyclic potential sweeping 

can be applied), (ii) potential variation rate and critical voltages, [67, 68], (iii) the 

composition of polymerization- solution [69–71], and (iv) additional treatment by other 

conditions (e.g. application of ultrasound) [72]. Here mentioned factors are affecting the 

density, thickness, permeability and some other characteristics of electrodeposited CP-layers 

[28, 73, 74]. The analytical characteristics of CP-based layer is affected by the porosity of 

formed conducting polymer that can be tailored by the variation of above mentioned 

electrochemical setups [75–77]. It is remarkable that, the electrodeposition of CPs can be 

well tailored by the assessment of electrical current applied to electrode [28]. Polypyrrole [1, 

9, 12, 15, 16, 28, 32, 45, 78], polyaniline [62], poly-9,10-phenanthrenequinone [47] and 

polythiophene derivatives[42, 79], are these conducting polymers, which are mostly used for 

the electrodeposition. 

Different materials can be incorporated within electrodeposited layer of CP (Fig. 2) [51]. 

In order to design MIPs these materials can be removed from polymeric matrix by various 

solvents. Various polymerization methods are applied for the design of MIPs, but among 

them electrodeposition is the most beneficial [80, 81], because it enables to vary the 

thickness, morphology and doping/de-doping of formed CP-based structures. In addition, the 

overoxidation at electrode potentials, which are more positive than that required for 

electrochemical polymerization of corresponding monomers [51], is useful for the 

development of MIPs, due to formation of oxygen containing groups such as carboxyl, 
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carbonyl and hydroxyl, which all are able to form hydrogen bonds and to attend in various 

electrostatic interactions with imprinted molecules. After the removal of these molecules, 

formed carboxyl, carbonyl and hydroxyl groups are creating a complementary site, which 

selectively ‘recognizes’ imprinted molecule. Sometimes, overoxidation can be applied to 

facilitate the extraction of imprinted materials and/or regeneration of sensing structures after 

the measurement [82].Overoxidized polypyrrole deposited on glassy carbon electrode was 

used for the design of sensors sensitive to Adefovir [83] and Pemetrexed [84]. 

 

Figure 2. Electrochemical deposition of polypyrrole with simultaneously entrapped proteins 

using potential pulse-based technique, figure adapted from [51]. 

 

In previous studies, the polypyrrole was electrochemically deposited from pyrrole-based 

aqueous solutions for different electrochemical approaches [85]. The numerous researches 

on electrochemically formed polypyrrole based MIPs confirms significant advantages of the 

Ppy-based MIPs in sensor design. Moreover, the electrochemical polymerization is strictly 

controllable, and the predictability of the final structure provides opportunity for the 

modification with dopants or ‘decoration’ with various types of nanoparticles and/or other 

nanostructures. This process can be performed by computerized potentiostats [28]. 

Polypyrrole-based MIPs were applied in the design of sensors for the determination of 

dopamine [86, 87], theophylline [32, 88], caffeine [15, 16, 89], histamine [90], quercetin [91], 

gallic acid [92], bilirubin [93], sarcosine [94], tetracycline [85], microcystin-LR [95], 

sulfanilamide [96], adrenaline [97], ganciclovir [98], uric acid [99], serotonin [100], L-

aspartic acid [101], cysteine enantiomers [102], kanamycin [103], dibutyl phthalate [104], 
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epinephrine [105, 106], tryptamine [107], testosterone [108], fenvalerate [109] and NO3- ions 

[110].  

Phenylenediamine-derivatives[111–113] are frequently applied in the formation of MIPs 

that are used for the determination of anticancer-drugs, e.g. ortho-phenylenediamine was 

molecularly imprinted by pemetrexed [114] and butyrylcholinesterase [115]. 

Electrodeposited MIP based on poly-meta-phenylenediamine molecularly imprinted by 

erythromycin was applied for the determination of erythromycin in water-based samples 

[111]. Poly-nicotinamide based electrochemical sensors for the determination of dopamine 

were developed [116]. Moreover, polyresorcinol molecularly imprinted by sulphanilamide 

[117], triphenylamine molecularly imprinted by poly(1-naphthylamine) [118] and azorubine 

imprinted 1-naphthylamine [119] have been developed. It was reported that, MIPs can be 

used for the determination of various medications [120]. 

Structures, which are based on CPs, which can be further modified in many different 

ways [29], e.g. by organics [121], some inorganic compounds [31, 48, 55–57], ions [125] and 

various biomolecules [44, 55, 57, 122, 123]. Such modified structures can be used in the 

design of sensors and biosensors [124].  

 

3. The applications of MIPs based sensors for pharmaceutical and biomedical 

applications 

 

3.1. Polymers imprinted by proteins and large biological compounds 

The health system has improved significantly due to innovative solutions and inventions in 

the field of pharmaceuticals and their monitoring by biomedical devices. However, the 

benefits of pharmaceuticals are effective if they are free of impurities and used in the right 

way. The biocompatibility is one of the most important aspect of pharmaceuticals before their 

application. Various chemical and instrumental methods, which are used for the evaluation 

of pharmaceuticals before assess their intended application, are regularly developed. 

Impurities in pharmaceuticals can appear during development, transportation, and storage 

stages. Therefore, pharmaceuticals and their components need to be detected and quantified 

during all these stages. Some of these goals can be achieved using MIP-based sensors. High 

number of immunosensors have been developed by immobilizing proteins within polymeric 

layers. The performance of immunosensors depends on the orientation of immobilized 

proteins, which recognizes the analyte, which in most cases is also a protein that is binding 

with immobilized one by forming corresponding immune-complex, and in such way it 

induces analytical signal [126]. Therefore, proper orientation of immobilized protein 

molecules is among key issues during the design of affinity-based immunosensors [27, 127, 
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128], because it is critical to achieve efficient target-protein binding [127]. Hence, analytical 

performance of immunosensors and some other affinity sensors depends on the orientation 

of immobilized antibodies [129], fragments of antibodies, which are generated by the 

reduction of disulfide bounds holding together polypeptides that are forming antibodies [127] 

or  receptors [27]. Proper entrapment of the proteins in the assembled polymer layer matrix 

can be achieved by the electrochemical methods, which can be used to form the conducting 

polymer based layers [28]. Molecular imprinting technology enables to design MIPs that 

have properly oriented binding sites [99, 130, 131]. Therefore, the application of polymers 

imprinted by proteins is very promising [132, 133] (Fig. 3), because it enables to replace very 

expensive antibodies [28] and receptors [27], which are used in affinity sensors, therefore, 

protein imprinted MIPs are frequently applied for the bioanalytical purposes [134–137]. 

During the entrapment and extraction procedures, proteins can undergo some conformational 

changes [138], and/or proper orientation of formed cavity within polymer can be achieved 

[139]. Therefore, MIPs often are called as ‘synthetic receptors’ or ‘artificial receptors’ [135] 

and ‘plastic antibodies’ [140, 141]. Various conducting polymers prepared by 

electrochemical deposition can form a polymeric backbone suitable for MIP formation, e.g. 

polypyrrole imprinted bovine leukemia virus glycoprotein was designed [135]; 

Electrochemically formed poly-o-phenylenediamine/hydroquinone imprinted by human 

serum albumin (HSA) was applied for the determination of HSA in urine [142]; the surface 

of polydopamine layer was imprinted by immunoglobulin G [143];  molecularly imprinted 

hetero-structure based on PEDOT/PSS was also used for the detection of proteins [139]; 

synthetic receptor based on electrochemically formed polydopamine was applied for the 

determination of a prostate specific antigen in human blood plasma [144]; electrodeposited 

composite based on polypyrrole/(carbon nanotube) was imprinted by S-ovalbumin and was 

used for the detection of this protein in egg’s white [145]; electrochemically formed poly(o-

phenylenediamine) was imprinted by myoglobin [146]; electrodeposited MIPs based on 

polyscopoletin were exploiteded for the detection of HSA [147]; poly-scopoletin imprinted 

by cytochrome c (Cyt-c) was applied for the determination of Cyt-c [148]; copolymer based 

on hydroxyethyl acrylate and ethylene glycol dimethacrylate imprinted by lysozyme was 

developed [149]; poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-histidin-Cu(II)) 

imprinted by ceruloplasmin was synthesized by radical polymerization [150]; the SARS-

CoV-2 protein imprinted poly-m-phenylenediamine based electrochemical sensor was used 

for the determination of infection by SARS-CoV-2 [113]; MIP-based sensor for detection of 

follicle-stimulating hormone was designed [151]; electrodeposited ortho-polydopamine 

imprinted by alpha-fetoprotein, which was temporarily covalently immobilized on gold 

nanoparticle covered substrate , was applied in sensor design[152]; acrylamide/N,N0-

methylenebisacrylamide copolymers imprinted by both prostate-specific antigen and 
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myoglobin were applied for the determination of both these proteins [153]; sensor based on 

polyacrylamide imprinted by hemoglobin was developed [154]; and o-phenylenediamine was 

used for the determination of imprinted troponin T [155].  

Conducting polymer – polyaniline (PANI) is also rather often used in sensor design 

[Erreur ! Signet non défini.]. However, in the research based on molecularly imprinted 

polymers only a few reports related to PANI-based MIPs can be found: PANI-based MIP 

was applied for the determination of antibiotic azithromycin [156] and for some hydroxy 

acids and saccharides [157]. It should be noted that even inorganic compounds such as 

titanium dioxide (TiO2) can be molecularly imprinted by proteins, e.g.: TiO2 was imprinted 

by urease [158]. In some researches it was shown that peptides, which are serving as epitopes 

of some proteins, can be imprinted and such MIPs can be used for the determination of the 

‘parent proteins’ and this technology was applied for the design of electrochemical sensor 

based on MIP imprinted by N-terminal pentapeptide VHLTP-amide, which is an epitope of 

human hemoglobin (HbA) [159]. 

MIP-formation needs knowledge in organic and polymer chemistry [160, 161]. It was 

demonstrated that DNA [29] can be entrapped [26] and molecularly imprinted [162–164] 

within CP-based layers. Therefore, some investigations are dedicated to replace direct 

application of DNA-based sequences in analytical systems [165]. It should be noted that even 

relatively large objects such as whole bacteria [166, 167] (e.g.: Escherichia coli [168]) or 

spores (e.g.: bacillus cereus) [169] were imprinted within electrodeposited polypyrrole. 

Some polymers were imprinted by viruses [170] and bacteria [168, 171–174] and other living 

cells [175]. Such MIPs can be used for the determination of bacteria in various environments 

[36, 176]. 
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Figure 3. 1) The formation of molecularly imprinted polymer based sensor, 2) Molecularly 

imprinted polymer based layer in action. Figure adapted from [2]. 

 

3.2. Signal transducers applied in sensors based on molecularly imprinted polymers 

Some polymeric structures can selectively recognize and bind target molecules quite 

selectively and have much better resistance towards harmful environmental factors in 

comparison to that of native biomolecules, which are commonly used in the design of 

biosensors. Therefore, some molecularly imprinted polymers seem very promising [177, 178] 

even if the application of molecularly imprinted polymers is still rather challenging [179]. 

The most stable at room conditions are MIPs based on acrylic acid , methacrylic acid and 

acrylamide [180–184]. 

The selection of the most suitable polymer for the design of MIP is important 

technological issue [185]. Formed MIP should be able to establish hydrogen bonds, 

electrostatic and/or π-π interactions[186]. Moreover, all these interactions should be capable 

to dissociate easily[3, 183, 187], because it is important for both MIP-formation and the 

regeneration of sensor after the measurement. Solution theories, which were derived by Flory 

and Huggins [188, 189], Hansen [190, 191] and Hildebrand [192, 193], well explain the 

formation and action mechanism of MIPs . Shape of cavities formed within MIPs’ are 

changing during the swelling in applied solvents [194], and it significantly affect the ‘shape 

memory’ behavior of these MIPs [195]. In order to predict the most efficient structure and 

composition of MIPs molecular dynamics [196] and Density-Functional-Theory (DFT) [197, 

198] calculations have been applied. 

The determination of analyte binding with MIPs can be performed by direct and indirect 

electrochemical approaches. For direct assessment of analyte binding to MIP 
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potentiodynamic electrochemical methods [199], which are based on the determination of 

restricted diffusion of some ions [200], are applied. On the other hand formation of complex 

between analyte and MIP can be rearrange the electronic structure of polymeric backbone 

and this effect induces changes of electrical conductivity of MIP-layer [199]. Due to the 

above-mentioned effects, MIPs can be applied for the design of organic electrochemical 

transistors [201]. Doping compounds can induce p- or n-type conductivity to polyaniline 

[202], polypyrrole [28], and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) 

(PEDOT/PSS) [203]. However, doping and/or ‘de-doping’ of CP by various ions and 

materials in most cases is a reversible [202], therefore, it can be also exploited for the 

generation of analytical signal. However, mostly direct electrochemical detection has a major 

drawback because in this case, various nonspecific interactions are negatively affecting 

registered signal. For this reason, redox-probes are used, because they can and significantly 

increase the sensitivity of MIP-based electro-analytical systems [204, 205]. Moreover, the 

enhancement of analytical signals can be achieved using enzymes, namely tyrosinase [206], 

glucose oxidase [207], acetylcholinesterase [208], creatine kinase [209], cytochrome P450 

[210], hexameric heme protein [211], laccase [212], microperoxidase [213], horseradish 

peroxidase [213–215] and lactoperoxidase [213]). Some other catalytic features like catalysis 

by Pt/Cu-based nanoparticles [216] or the inhibition of enzymatic activity [217] can be also 

adapted for the amplification of registered sensor response. 

Signal transducing systems with quartz crystal microbalance (QCM) can also be applied 

in MIP-based sensor design, which are capable to detect: (i) low molecular weight chemicals 

[218, 219], namely: naproxen [220], histamine [221], S-propranolol [222], ibuprofen [223]; 

(ii) proteins [167, 224–226], trypsin [227], ribonuclease A [228] and oxidized-low-density 

lipoprotein [229]; and (iii) DNA [226, 230]. QCM-based determination of mass variations of 

MIP-based structures can be combined with some electroanalytical techniques (EQCM) [16, 

99, 231]. Recently the most advanced QCM method – QCM with dissipation (QCM-D) has 

been also applied in MIP-based sensors [232]. 

Some optical techniques such as photoluminescence [233, 234] and surface plasmon 

resonance (SPR) [235] have been also used in MIP-based analytical systems. Remarkable 

optical characteristics of CPs can be well applied in the design of sensors based on optical 

transducers [236, 237] and photoluminescence sensors [234, 238, 239]. Studies affirmed that 

conducting polymer – polypyrrole – has great photoluminescence quenching ability [234, 

238], which can be well exploited in the design of sensing devices and improve sensitivity 

and selectivity of biosensors [128, 240]. 

Optical analytical registration methods are used widely: MIPs were applied for the 

determination of organics such as estradiol and derivatives of this compound [241–243] were 

exploited. MIPs-modified by quantum dot nanoparticles modified by poly(ethylene-co-vinyl 
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alcohol) heterocomposite was used for optical detection of some salivary proteins [244]. 

MIP-based on Cu2+-metalorganic-framework, which was imprinted by tetrabromobisphenol 

A, exhibited enzyme-like catalytic activity towards the oxidation of tetrabromobisphenol A 

by hydrogen peroxide [245]. Microarrays based on poly-scopoletin imprinted by ferritin – 

have been electro-spotted on a gold-modified substrate and applied in surface plasmon 

resonance (SPR) based ferritin detection [246]. To improve optical capabilities MIPs can be 

combined with photonic crystals [247] and liquid crystals [248]. Very useful 

optoelectrochemical property of some conducting polymers is an electrochromic effect, 

which can be exploited in the development of sensing devices [202]. Electrochromism is a 

reversible change of optical absorbance during oxidation/reduction of electrochromic 

material (e.g. WO3 [249], PEDOT/PSS , Ppy , PANI , etc.) layer by the variation of electrical 

potential. Such electrochromic sensors based on conducting polymers can be applied for the 

determination of some ions (e.g. Cu2+ [202] or NH4
+ and CO3

2- ions) [79, 250, 251]. 

4. Compatibility of conducting polymers with various biological compounds and 

immune system of mammalians as of forecasting application in the wearable sensors 

based on MIPs 

Implantable sensors and other biomedical tools are demanded for rapidly evolving field 

of biomedicine. Therefore, good compatibility of sensing elements is important for the 

development of implantable bioanalytical devices. However, since now, in almost all 

researches in this area, the biocompatibility of these structures is investigated rarely. In some 

researches, the biocompatibility of conducting polymers, which are forming sensing 

structures, only towards rather basic biological molecules (enzymes, DNA, etc.) is evaluated 

[29, 31, 48, 55–57]. It should be noted that such evaluation does not provide an estimation of 

the complex biocompatibility of these polymers, which is required for safe biomedical 

application [252]. Therefore, cell line and/or laboratory animal-based experiments are 

necessary for the evaluation of advanced biocompatibility. In several researches, it was 

shown that conducting polymers have a good biocompatibility with entrapped proteins [28, 

29, 31, 48, 55–57]. Research have demonstrated the biocompatibility of polypyrrole with 

stem cells derived from bone marrow [52], primary mouse embryonic fibroblast (MEF) and 

human T lymphocyte Jurkat cells [53], and differentiated neuronal cell [253]. It was also 

acknowledged that polypyrrole is not affecting the immune system of mammalians and their 

hematological parameters [54]. Among many composite structures hydrogels, which are 

based on conducting polymers, show a good biocompatibility due to the significant amount 

of water confined within the structure of these polymers [254]. It was demonstrated that, the 

biocompatibility of conducting polymer based structures can be advanced by incorporation 

of chitosan [255] and/or some other biocompatible polymers [256–258]. Moreover, some of 
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these additionally used polymers (e.g. chitosan) are suitable for the design of MIPs [259]. 

Outstanding biocompatibility of Ppy [52–54] and hydrogel-based polymers pave a way to 

exploit composite structures based on these materials in the development of attachable [260], 

wearable [261], and other [262, 263] sensors and biosensors. Hence, conducting polymer 

based composites are suitable for the design of scaffolds [264–266], incorporation of living 

cells and some other biomedical applications [267–270]. 

 

5. Conclusions 

Conducting polymers are frequently used in the design of chemical sensors and biosensors, 

as well as for many other technological approaches. Sensors based on MIPs are providing 

fast analytical responses, are operating at ambient conditions, and are characterized by good 

sensitivity and selectivity. Conducting polymers are appropriate for the formation of MIPs 

and these polymers can be designed by different polymerization methods. Electrochemical 

formation of CP-based structures can be controlled in many ways and enables to design of 

very different CP-based structures even from the same composition of polymerization-bulk 

solution, therefore, they are suitable for the development of a great variety of MIPs. Some 

conducting polymers can be overoxidized after the formation; this treatment is especially 

eligible for the development of MIP-based sensors because it can be applied for (i) the 

formation of oxidized radicals, which are increasing sensitivity/selectivity towards imprinted 

target molecules within MIP-based structure and (ii) the facilitation of template removal 

and/or regeneration of MIP-based layers. 

Polypyrrole is the most used conducting polymer and it is often applied in the formation 

of MIPs. Moreover, the advantages of the overoxidation of this polymer are the most 

frequently reported. Yet this application of overoxidized polypyrrole still has a lot of room 

for improvement and extension in the application of polypyrrole based MIPs, because 

polypyrrole can be easily synthesized by chemical and electrochemical methods from various 

solutions based on the most frequently used solvents and overoxidation of polypyrrole can 

be easily performed during the synthesis and/or after formation of Ppy-based layer. 

Moreover, polypyrrole shows great compatibility with various biological compounds and do 

not irritate the immune system of mammalians, therefore, is suitable for the development of 

implantable biomedical tools, such as sensors, biosensors and biofuel cells. 
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