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Abstract: Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as
recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are
well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis
methodologies now exist in the literature. Herein, this review evaluates recent advances in biological
approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are
explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the
environment, and human health are briefly discussed. Finally, we also provide a summary of the
current state of the research and future challenges on a biologically mediated Ag-nanostructures-
based effective platform for alleviating AMR.

Keywords: antimicrobial resistance; silver NP’s; green synthesis; environmental

1. Introduction

Microbial infections cause a variety of chronic diseases and account for around
10 million deaths each year, most of which occur in tropical nations. The developed world
is not immune either. Antibiotics have been utilized to treat bacterial infections because
of their cost-effectiveness and potent results. Antibiotic abuse and overuse, on the other
hand, have aided the development and spread of resistance mechanisms among bacteria,
resulting in the creation of multidrug-resistant (MDR) microorganisms. The annual cost of
multidrug-resistant (MDR) microorganisms in the United States is estimated to be around
$20 billion [1,2]. Clinicians have no effective alternative to treat infected patients due to the
development of multidrug-resistant bacteria and super bugs. Antibiotic overuse promotes
the emergence and evolution of strains with a wide range of genotypic and phenotypic
characteristics, jeopardizing antibiotics’ therapeutic value. The ability to form biofilms is
one of the most efficacious mechanisms available, which is associated with about 65–80% of
human infections. Bacteria can form a biofilm on a surface and proliferate as a colony where
cells aggregate together and surround themselves with a self-produced extracellular matrix
that makes cells 100–1000 times less susceptible to antibiotics than planktonic cells [3].
Antimicrobial drug resistance has been identified by the World Health Organization as one
of the top three global public health problems. According to WHO data, nearly 80% of MDR
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or XDR bacteria are caused by antibiotic abuse and overuse, and these infections are linked
to serious side effects [4]. As a result, alternative therapeutic approaches for microbial
pathogens are required. Nanoparticles have vital biological uses, such as antibacterial, drug
delivery, and bioimaging, because of their unique physicochemical characteristics, such
as high specific surface area, optical properties, antimicrobial activity, catalytic activity,
electronic properties, and magnetic properties [5–9]. Silver exhibits strong toxicity against
a wide range of microbes (anti-bacterial applications). Silver compounds are known to be
effective against both aerobic and anaerobic bacteria. Silver precipitates bacterial cellular
proteins and blocks the microbial respiratory chain system. Before silver nanoparticles,
silver nitrate was used as an effective antibacterial agent that follows various mechanisms
of action, including direct penetration inside the bacteria, inhibition of DNA by interac-
tion with bacterial membrane proteins, and an attack on an electron transport chain in
mitochondria [5,10,11].

Although there have been numerous papers written on this topic in the past [5,10,12]
and recently [10], this article presents the most up-to-date information with year-by-year
comparisons that are no more than three years old. Furthermore, it presents a toxicity
evaluation of Ag NPs with crucial future difficulties. As a result, given its comprehensive
scope and up-to-date analysis, this article will be extremely useful and serve as an effective
single platform for readers and researchers interested in the subject of nanotechnology.

Methods of AgNPs Synthesis

Traditionally, two approaches are used to synthesize nanomaterials: i. ‘Top-down’
and ii. ‘Bottom-up’ (Figure 1). The top-down approach generates nanoparticles using
size reduction of bulk materials techniques, i.e., pulse laser ablation, pulse wire discharge
method evaporation—condensation, ball milling, etc. In the bottom-up approach, chemical
and biological methods are used to synthesize NPs by a self-assembly phenomenon of
atoms to new nuclei that grow in the particles of nanoscale dimensions [11].
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Figure 1. “Top-down” and “bottom-up” approaches for the synthesis of nanoparticles.

In physical processes, the synthesis of AgNPs is achieved by evaporation–condensation
method, which operates tube furnace at atmospheric pressure. AgNPs are also being pro-
duced with laser ablation of metallic bulk materials in solution. The biggest advantage of
laser ablation over the conventional method is the removal of chemical reagents in solutions.
Hence, pure colloids can be created by this technique, which will be valuable for additional
applications [5]. Furthermore, for the preparation of Ag NPs, physical vapor deposition
methods such as sputtering are considered to be a green and safe option [12,13].
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Chemical reduction of metal salt solutions is one of the most common methods for
the synthesis of AgNPs [5]. For the most part, the chemical synthesis for AgNPs has three
fundamental components: i. reducing agents; ii. precursors; and iii. stabilizing/capping
agents. The resultant nanoparticles tend to nucleate and grow to produce a colloidal
solution (Figure 2) [14].
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Figure 2. Schematic of Ag-NPs synthesis by the chemical reduction method.

The use of high temperatures, hazardous chemicals, and pressure, and the formation
of dangerous by-products, are all downsides of chemical-physical approaches for AgNPs
synthesis, necessitating the search for safer alternatives. The biological production of
NPs is gaining importance in this way. This list of disadvantages is continuous with
difficult separation procedures, high pressure, and energy requirement. Their large-scale
production is difficult, chemical purification of nanoparticles is needed, and controlling the
accumulating parameters is also hard to achieve [15,16].

To address these issues, scientists have been looking for greener alternatives, such
as naturally occurring sources and their products, that can be utilized to synthesize NPs.
The development of biological methods for the synthesis of Ag-NPs is becoming a major
branch of nanotechnology. The bioreduction of the Ag+ ions, which utilizes nitrate, can
be attained by metabolic processes. Nitrate is consumed as a main source of nitrogen by
cyanobacteria, as described in the following equations:

NO3
− + 2H+ + 2e− = NO2

− + H2O

NO2
− + 8H+ + 6e− = NH4

+ + 2H2O

It is suggested that Ag+ ions could also be reduced by an intracellular electron
donor [5].

The biosynthesis approach is cost-efficient and environmentally friendly. The purpose
of this review article is to disseminate information about the significance of biosynthesized
AgNPs to mitigate the contemporary AMR issue in the pharmaceutical industry. Moreover,
this study also involves the detailed concepts of biological approaches and explores the
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advantages of green approaches over the physical or chemical approaches, which foster
one to follow these cost-effective and benign biological approaches. We also collected
paper publication data from PubMed (Figure 3), which indicates the continuous increase of
interest of researchers in biological approaches for Ag NPs.
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2. Synthesis of Ag-NPs via Biological Methods

Green synthesis can be divided into two categories:

(a) The use of microorganisms such as yeasts, bacteria, fungus, and actinomycetes in the
production of chemicals; and

(b) Extract of different parts of plants.

The next sections explain biological synthesis employing bacteria, fungus, and
plant extracts.

2.1. AgNPs Synthesis via Bacteria

Bacteria can reduce metal ions and can produce NPs. Therefore, there are numerous
bacterial species that are being exploited for this purpose [17], for example:

• Geobacter spp., Arthrobacter gangotriensis;
• Bacillus cereus, Antarctica Bacillus amyloliquefaciens;
• Corynebacterium sp. SH09, and Shewanellaoneidensis;
• Pseudomonas proteolytica, Aeromonas sp. SH10 Phaeocystis;
• Escherichia coli, Lactobacillus case;
• Bacillus cecembensis, Enterobacter cloacae, and Bacillus indicus.

There are two methods for Ag NPs synthesis using microbes: i. intracellular method
and ii. extracellular method. The synthesis of Ag NPs via different bacterial species is
summarized in Table 1.
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Table 1. Synthesis of AgNPs from various bacterial species.

Year S/N Bacterial Species Method Size (nm) Morphology References

2021

1. Serratia nematodiphila Intracellular 10–31 Spherical [18]

2.
Cyanobacteria Spirulina platensis
and actinobacteria Streptomyces

spp. 211A
Intracellular 7–15 - [19]

3. Klebsiella pneumonia Extracellular 1–6 Spherical [20]

4. Bacillus indicus Extracellular - Spherical [21]

5. Bacillus subtilis (MTCC441) Intracellular 10–100 Spherical [22]

6. Endosymbiotic Bacterium Intracellular 10–60 Cubic, spherical, hexagonal,
crystalline, and oval [23]

7. Penicillium glabrum
(MTCC 1985) Extracellular 26–32 Spherical [24]

8. Bacillus strain CS 11 Extracellular 45 ± 0.15 FCC, Spherical [25]

2020

9. Marine Ochrobactrum sp. Intracellular 35–85 Spherical [26]

10. Exiguobacterium mexicanum Extracellular 5–40 - [27]

11. Actinobacteria Intracellular 5–50 Spherical [28]

12. Lactobacillus strains Intracellular 15–500 Cluster triangular, hexagonal,
and crystalline [29]

13. Pseudomonas proteolytica,
Bacillus cecembensis Extracellular 6–13 Spherical [30]

14. Rhodococcus sp. Intracellular 5–50 Spherical [26]

15. Bacillus sp. Extracellular 5–15 Crystalline [31]

16. Bacillus licheniformis Extracellular 8–63 Spherical [32]

17. Shewanellao neidensis Intracellular 4 ± 1.5 Spherical [33]

18. Gluconacetobacter xylinus Intracellular 40–100 Spherical [34]

19. Bacillus subtilis Extracellular 5–60 Spherical [35]

20. Nocardiopsissp.MBRC-1 Intracellular 45 ± 0.15 Spherical [36]

21. Pseudomonas stutzeri AG259 Extracellular 35–200 Cluster equilateral triangular,
and hexagonal [37]

2019

22. Klebsiella pneumonia, Escherichia
coli, and Enterobacter cloacae Extracellular 28–122 Spherical [38]

23. Aeromonas sp. THG-FG1.2 Extracellular 8–16 fcc spherical [39]

24. Escherichia coli DH5a Extracellular 10–100 Spherical [40]

25. Pseudomonas putida NCIM 2650 Extracellular 70 Spherical [41]

26. Vibrio alginolyticus Intracellular 50–100 Crystalline, spherical [42]

27. Lactobacillus casei Intracellular 20–50 Spherical [43]

28. Deinococcus radiodurans Extracellular 4–50 Spherical [44]

29. Bacillus pumilus, B. persicus, and
B. licheniformis Extracellular 77–92 Spherical [41]

30. Staphylococcus aureus Extracellular 160–180 Spherical [45]

2.1.1. Intracellular Method and Mechanism

The intracellular approach involves the deposition of silver within the cell, which
initiates the synthesis of Ag NPs while maintaining microbial growth. The live cells with
nanoparticles are retrieved after the bacteria have grown to their maximum potential.
To secrete the NPs, the collected cell requires special treatment. Bacterial extracellular
secretions are isolated and employed in the synthesis mechanism during the extracellular
process. Microorganisms that are resistant to silver ions are more likely to make AgNPs,
and the mechanism of resistance differs depending on the organism [46].

To exemplify intracellular synthesis, LactobacillusA09, where Ag+ reduction took
place on the bacterial cell surface, was used to explain intracellular synthesis. Lactobacillus
A09 bacteria have many anionic surface groups on their cell walls, which act as Ag-NPs
ions biosorption sites. The pH of the solution gradually fell after Ag+ adsorption on
Lactobacillus A09, and competition between proton and silver, which binds to negatively
charged sites, occurred. Due to an increase in pH, the monosaccharide rings in bacterial cell
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walls are disrupted, and the oxidized monosaccharide rings are converted to open-chain
aldehydes. Negatively charged Ag+ adsorption sites on the cell surface originate from the
dissociation of protons from protonated anionic functional groups (–RH). While forming
the aldehyde group, the two electrons are released from alcohol, which can reduce Ag+

ions to elemental Ag0. Few of the steps in the bacterial production of Ag-NPs are mediated
by the opening of the glucose ring (Figure 4) [47].
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2.1.2. Extracellular Method and Mechanism

Streptomyces sp.LK3 and Bacillus licheniformis are two bacteria that generate Ag-NPs
by reducing silver ion (Ag+) via an extracellular process driven by reduced nicotinamide
adenine dinucleotide (NADH)-dependent nitrate reductase. Nitrate ions (NO3) in silver
nitrate (AgNO3) are reduced to nitrite (NO2) by taking two protons and then releasing
two electrons and water during the reduction process. Elemental silver is formed when
the electrons liberated in this process are transferred to the silver (Ag0). This method
may be reliant on electron transport channels and enzymatic metal reduction activities
(Figure 5) [48].
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2.2. Synthesis by Using Fungi

The employment of fungi in the production of metal/metal oxide NPs is also a reason-
ably methodical strategy for producing monodispersed NPs with distinct morphologies
(Table 2). For the generation of metal and metal oxide nanoparticles, fungi are good biolog-
ical agents, due to the presence of numerous intracellular enzymes [9]. The advantages of
fungi over other microbes include large production of proteins and enzymes, and fast and
sustainable synthesis of nanoparticles. Fungi are frequently utilized as a stabilizing and
reducing agent due to their heavy metal tolerance and propensity to absorb metals. More-
over, the production of fungi on a large scale is easy (“nano factories”) and can produce
nanoparticles of desired size and morphology [40].

Table 2. Synthesis of metallic NPs from various fungal species.

Year S/N Fungal Species Method Size Morphology References

2021

1. Endophytic fungus Intracellular 10–25 Polydispersedspherical,
hexagonal, and spherical [49]

2. Trichoderma viride Extracellular 5–40 Spherical [50]

3. Schizophyllum commune Intracellular and extracellular 51–93 Spherical [51]

4. Humicola sp. Extracellular 5–25 Spherical [52]

5. Penicillium citrinum Extracellular - Uniform spherical [53]

6. Rhizopus stolonifer Extracellular 9.47 Spherical [54]

7. Cladosporium cladosporioides Intracellular 10–100 Spherical [55]

8. Fusarium semitectum Extracellular 1–50 Ellipsoid, polydispersed
spherical [56]

9. Filamentous fungus Extracellular 58.35 ± 17.88 - [57]

10. Aspergillus flavus Extracellular 8.92 - [58]

11. Cladosporium
sphaerospermum Extracellular 15.1 ± 1 Spherical [55]

12. Arthroderma fulvum Intracellular 20.56 Spherical [59]

13. Sclerotinia sclerotiorum
MTCC 8785 Extracellular 10–15 Spherical [60]

2020

14. Penicillium brecompactum Intracellular 23–105 Crystalline spherical [61]

15. Rhizoctonia solani Intracellular 2–22 Spherical [62]

16. Rhizopus nigricans Extracellular 35–40 Round [61]

17. Alternaria alternate Extracellular 32.5 Polydispersed, spherical [63]

18. Aspergillus niger Extracellular 1–20 Polydispersed, spherical [64]

19. Penicillium hrysogenumad
Aspergillus oryzae Extracellular 6–100, 14–76 Spherical [65]

20. Cryphonectria sp. Extracellular 30–70 - [66]

21. Penicillium sp. Extracellular 25–30 Spherical [67]

22. Penicillium sp. Extracellular 58.35 ± 17.88 - [68]

23. Aspergillus fumigates Extracellular 5–25 Spherical [69]

2019

24. Guignardia mngifera Extracellular 5–30 Spherical [70]

25. Cariolus versicolor Intracellular 25–75 Spherical [71]

26. Duddingtonia flagrans Extracellular 30–409 Spherical [72]

27. Isaria fumosorosea Extracellular 51.31–111.02 Spherical [73]

28. Penicillium purpurogenum Intracellular 8–10 Spherical [70]

29. Fusarium solani Extracellular 5–35 Spherical [15]

30. Trichoderma harzianum Extracellular 34.77 Ellipsoidal, spherical [74]

31. Aspergillus fumigates Extracellular 5–25 Spherical [72]

32. Endophytic fungus Extracellular 25–30 Spherical [75]

33. Phoma glomerata Extracellular 60–80 Spherical [15]

34. Trichoderma reesei Extracellular 5–50 Random [76]

35. Fusarium acuminatum Extracellular 13 Spherical [77]
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Mechanism of Synthesis

The specific mechanism of the synthesis of AgNPs using is still not known. However,
in general, the mechanism can be extracellular or intracellular. In the mycelial culture, the
metal precursor is incorporated in the biomass, in the intracellular approach. Following syn-
thesis, Ag-NPs extraction is required. To disrupt the biomass and liberate the nanoparticles,
the extraction technique includes centrifugation, chemical treatment, and filtering.

In extracellular synthesis, metal precursor is added to a filtrate that solely includes
fungal biomolecules in extracellular synthesis, leading to the generation of free NPs in the
dispersion solution. This method is widely utilized, and it eliminates the requirement for
AgNPs to be extracted from cells [40]. Extracellular nanoparticle formation is found to
follow processes in which Ag ions are converted to elemental silver (Ag0) by an enzyme
present in the fungal filtrate. [40]. Mainly reductases are involved in the fungal NP synthesis.
For example, Aspergillus flavus releases a 32-kDa reductase protein that lowers Ag+ ions
during the formation of Ag-NPs, as described in Figure 6 [47].
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In comparison to bacteria, several studies have demonstrated the appropriateness and
possibility of employing fungus for large-scale NP synthesis. AgNPs were recently created
utilizing A. flavus fungus and antibiotics to increase biocidal efficacy against multidrug-
resistant bacteria, resulting in antibiotics coupled with AgNPs being more effective [11].

2.3. Synthesis of AgNPs by Using Plants

The utilization of plant extracts for AgNPs synthesis provides a number of merits
over chemical, physical, and microbiological approaches. The removal of hazardous
reducing and capping chemicals, radiation and high temperature, microbial strain, and
expensive media for microbial growth are just a few of the positives. The time required
for the synthesis of AgNPs is also less using plants. For example, when compared to
microbes, neem leaf extract is faster at removing metals. Plant-synthesized AgNPs
remain constant for a longer time and have application in the biomedical field. Different
factors such as temperature, pH, reaction period, changing ratio, and concentration of
plant extract and precursor (AgNO3) can be controlled to synthesize AgNPs on a large
scale with various shapes and sizes, which is difficult or impossible to do in microbial
synthesis (Table 3) [78].
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Table 3. Ag NPs synthesized from diverse plants.

Year S/N Plant Name Size (nm) Morphology References

2021

1. Phaseolus vulgaris 10–20 Spherical [79]

2. Ficus Benjamina 20–30 – [80]

3. Magnolia Kobus 50–500 FCC [20]

4. Pinus thunbergii 5–50 Triangular, hexagonal [81]

5. Ficus panda 12–36 Spherical [82]

6. Dalbergia sissoo 5–55 Spherical [83]

7. Musa balbisiana, Azadirachta
indica, and Ocimum tenuiflorum 100 Spherical, triangular, and cuboidal [84]

8. Buniumpersicum 20–50 Spherical [85]

9. Acalypha Indica 20–30 - [86]

10. Medicago Sativa 2–20 Spherical [87]

11. Sesuvium portulacastrum L. 5–20 Spherical [88]

12. Cyamopsis tetragonaloba 8 Spherical [89]

13. Pine, persimmon, ginkgo,
magnolia, and Platanus 15–500 _ [90]

14. Rosa Damascena - Spherical [91]

2020

15. Camellia Sinensis 4 Spheroidal [92]

16. Sorghum bicolor 10 Spheroidal [93]

17. Jatropha gossypifolia 62 Spherical [94]

18. Coffee Arabica 20–30 Spherical, Ellipsoidal [41]

19. Prunus yedoensis 20–70 Spherical and oval [95]

20. Emblica Officinalis 10–20 - [96]

21. Vitex negundo 10–30 Spheroidal [30]

22. Cinnamomum camhora 55–80 Triangular or spherical [97]

23. Mimosa pudica 25–60 Spherical [98]

24. Camellia Sinensis 20 Spheroidal [92]

25. Euphorbia lacteal 186 Spherical [99]

26. Azadirachta Indica 50–100 Spherical [100]

27. Morinda citrifolia 30–55 Spherical [101]

28. Jatropha curcas 10–20 Spherical [97]

29. Bauhinia variegate 38–65 Spherical, triangle, truncated triangles,
and decahedrons [102]

30. Pinus thunbergii 20–100 Spheroidal [103]

31. Pulicaria glutinosa 40–60 Spherical [28]

32. Nyctanthes arbor-tristis 50–80 Spherical [104]

33. Terminalia chebula 25 Spherical, ovoid [105]

34. Dioscorea bulbifera 8–20 FCC [106]

35. Elaeagnus latifolia 30–50 Spherical [107]

36. Vigna sp. L. 24.35 Spherical [108]

37. Piper nigrum 5–50 FCC [109]

2019

38. Musa acuminata - Agglomerated form [110]

39. Amaranthus retroflexus 10–32 Spherical [111]

40. Tribulus Terrestris L. 16–28 Spherical [112]

41. Cassia auriculata 20–40 Spherical [113]

42. Adenium obesum 10–30 Spherical [40]

43. Coleus aromaticus 40–50 Spherical [114]

44. Artocarpus heterophyllus Lam 10.78 Irregular [115]

45. Vigna radiate 5–30 Spherical, oval [116]

46. Zingiber officinale 10–20 - [117]

47. Lantana Camara 14–27 Spherical [118]

48. Aloe vera 20 Spherical [119]
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Table 3. Cont.

Year S/N Plant Name Size (nm) Morphology References

49. Hevea brasiliensis 2–100 Spherical [120]

50. Dodonaea viscosa 16 Spheroidal [121]

51. Murraya koenigii 20–35 Spheroidal [15]

52. Jatropha curcas 73 Spherical [122]

53. Pedilanthus tithymaloides 123 Spherical [46]

54. Euphorbia prostrate 25–80 Rod [123]

55. Syzygium aromaticum - - [124]

56. Tinospora cordifolia 55–80 Aggregated [125]

57. Solanum torvum 14 Spheroidal [126]

58. Murraya koenigii 10–25 Spheroidal [15]

59. Ocimum tenuiflorum 7–15 Spherical and ovoid [75]

Mechanism of Synthesis

Plants have various biomolecules (lcarbohydrates, proteins, terpenoids, flavonoids,
flavones, terpenes, phenolics, polysaccharides, saponins, tannins, alkaloids, and coen-
zymes) have the greatest capacity to convert metal salt to NPs. Several plants are used
for synthesis, including Coriander (Coriandrum sativum), Oat (Avena sativa), alfalfa (Med-
icago sativa), aloe vera (Aloe barbadensis Miller), Neem (Azadirachta indica), Mustard (Bras-
sica juncea), and lemongrass (Cymbopogon fexuosus), Tulsi (Ocimum sanctum), and Lemon
(Citrus limon).

Plant extracts have the ability to serve as both reducing and stabilizing agents during
the production of AgNPs. Phytochemicals include functional groups that can reduce Ag+

ions to AgNPs, such as hydroxyl, amino, ketone, carboxyl, and aldehyde groups. For
instance, the flavonoids naringin and kaempferol, as well as their glycosides, are found in
Punica granatum peel extract. All substances with hydroxyl (–OH) groups can cause Ag+

ions to be reduced, resulting in the creation of AgNPs, as illustrated in Figure 7 [47,48].
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2.4. Key Factors for Efficient, Economical, and Reliable Preparation of AgNPs

The proportions of plant extracts and metal salts, ambient duration, temperature, pH,
and other parameters all play a role in the quick, sustainable, and scalable manufacturing
of AgNPs. These variables also influence the form and size of obtained NPs.

Temperature and metal salt content impacted extracellular production of AgNPs
employing culture supernatant of Pseudoduganella eburnea MAHUQ-39, as per Huq [127].
The optimal conditions for the efficient and sustainable formation of AgNPs utilizing
P. eburnea were determined to be 30 ◦C temperature, 1 mM AgNO3 (final concentration),
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and 24 h incubation duration. The impact of temperature, ionic strength, and contact time
on the ecofriendly synthesis of AgNPs via bark extracts of A. indica and F. benghalensis was
studied by Nayak et al. [128], who found that an 80 ◦C temperature, a pH of 10, and a
30 min incubation time are the best conditions for quick and reliable production.

Mittal et al. [129] extracted the natural herb Potentilla fulgens for the ecofriendly synthe-
sis of AgNPs and discovered that assorted physicochemical variables such as plant extract
and metal ion concentration levels, incubation duration and temperature, and the pH of
the reaction time all had a significant impact on the rate of synthesis as well as the shape,
size, and yield. They tested various plant extract concentrations (1 to 200 mg in 50 mL
water) and discovered that 4 mg extract in 50 mL water produced the maximum quantity of
AgNPs. They additionally employed different concentrations of AgNO3 ranging from 0.5 to
5 mM and discovered that the production of AgNPs enhanced as the AgNO3 amount grew
from 0.5 to 1 mM, after which the absorbance dropped again. They discovered that 45 ◦C
is the optimal temperature for the highest yield, and that higher temperatures improved
the rate of synthesis of finer NPs. The pH of the precursor solution had an impact on the
synthesis. They discovered that finer NPs developed at an alkaline pH, while bigger NPs
emerged at an acidic pH.

Hamouda et al. [130] used an aqueous extract of Oscillatoria limnetica to analyze the
influence of plant extracts and AgNO3 doses on the synthesis of NPs. They found that
the quantities of the aqueous leaf extract of Oscillatoria limnetica and AgNO3 affected
the size and shape of obtained AgNPs. These characteristics have a substantial impact on
microbe-mediated synthesis, just as they do on plant-mediated synthesis.

Much additional recent research has shown the influence of plant extract and metal salt
concentration, incubation duration, temperature, and pH on the quick and stable synthesis of
homogeneous AgNPs with a high yield employing both plants and microorganisms [131–133].

3. Antimicrobial Activity of Ag NPs

The fast growth of drug resistance to new antibiotics, as well as rapid mutations,
has resulted in the creation of antimicrobial substances and alternate therapies [46]. It is
reported that more than 70% of infections by bacteria are resistant to one or more antibiotics
that are used to treat the infection. Metals such as copper (Cu), titanium (Ti), silver (Ag),
gold (Au), and zinc (Zn) are known to show antimicrobial activity [134]. AgNPs can cause
structural damage, produce ROS, disrupt DNA replication, and react with the thiol group
of enzymes, among other biocidal effects (Table 4). The antagonistic AgNPs influence the
enzymes and proteins of bacteria regardless of their Gram characteristics, according to
these investigations. Antibiotics that target a specific method of microbial suppression,
on the other hand, do not have this problem [135]. Silver compounds are known to be
effective against aerobic and anaerobic bacteria by precipitation of cellular proteins of
bacteria, and the microbial respiratory chain system has been blocked. Antiviral activity of
AgNPs with a large surface-to-volume ratio (size ≤ 100 nm) against HIV-infected cells has
been demonstrated [46]. They are also effective against multidrug-resistant organisms such
as Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia
coli, Pseudomonas aeruginosa, and vancomycin-resistant Staphylococcus aureus [46].

3.1. Mechanism of Action

Antibacterial research on silver nanoparticles is generally done in vitro on solid media
or liquid cultures of microorganisms. The antibacterial mode of action of AgNPs, as well as
their influence on other bodily components, must be investigated in vivo. The antibacterial
activity of AgNPs produced from plant extracts has been well demonstrated; however, the
specific mechanism is unknown [97].

Despite this, a lot of studies have attempted to figure out how they work, and three
distinct processes have been postulated so far: damage to cell membranes and cell walls
penetrating and damaging cells within cells oxidative stress, as depicted in Figure 8.
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Table 4. Ag NPs prepared via bacteria, fungi, and plants.

Year S/N Organism Biological Entity Size (nm) Morphology Method References

2021

1. Fungi Penicillium sp. 25 Spherical Agar well diffusion method [53]

2. Fungi Arthroderma fulvum 15.5 Spherical Brothmicro-dilution method [18]

3. Fungi Penicillium aculeatum 4–55 Spherical Disk diffusion method [37]

4. Bacteria Acinetobacter baumannii 37–168 Spherical Broth micro-dilution method [136]

5. Plant Artocarpus altilis 20–45 Spherical Agar well diffusion method [81]

6. Plant Convolvulus arvensis 28 Spherical Disc diffusion and broth
macro-dilution method [137]

7. Plant Erythrina suberosa 15–34 Spherical Agar cup and broth
micro-dilution methods [37]

8. Plant Psidium guajava 20–25 Spherical Agar well diffusion 1method [89]

9. Plant Nelumbo Nucifera 12.9 Quasi–Spherical Broth dilution method [138]

10. Plant Boerhaavia diffusa 25 Spherical Agar well diffusion [20]

11. Plant Alpinia katsumadai 12.6 Quasi-Spherical Broth dilution method [104]

12. Fungi Curvularia lunata 64.3 Spherical Disk diffusion assay [139]

13. Fungi Pleurotus ostreatus 10–40 Spherical Disk diffusion and broth
micro-dilution methods [140]

2020

14. Fungi Rhodotorula glutinis 15–220 Spherical Agar well diffusion and
broth microdilution methods [109]

15. Bacteria Pseudomonas
deceptionensis 127 Spherical Agar well diffusion method [141]

16 Bacteria Acinetobacter baumannii 37–168 Spherical Broth micro-dilution method [142]

17. Bacteria Phenerochaete
Chrysosporium - Spherical and

oval Agar well diffusion method [143]

18. Bacteria Bacillus endophyticus 4.8–6.6 Spherical Agar well diffusion method [144]

19. Plant tea 10–20 Spherical Disk and broth dilution
methods [145]

20. Plant Eucalyptus globules 1.9–4.3 Spherical Agar well diffusion and
broth dilution methods [109]

21. Plant Mimusops elengi 55–83 Spherical Disk diffusion method [146]

2019

22. Fungi Saccharomyces cerevisiae 5–50 Spherical Brothmicro-dilution method [147]

23. Fungi Guignardia mangiferae 5–30 Spherical Agar well [70]

24. Fungi Penicillium polonicum 10–15 Spherical Agar well diffusion [148]

25. Fungi Raphanus sativus 4–30 Spherical Disk diffusion method [149]

26. Fungi Ganoderma applanatum 133 Spherical Agar welldiffusionmethod [150]

27. Bacteria Weissella oryzae 150 Spherical Disk diffusion method [43]

28. Bacteria Ochrobactrum anthropi 38–85 Spherical Agar well diffusion method [46]

29. Plant Elephantopus scaber 37 Spherical Agar well diffusion method [46]

30. Plant Ocimum sanctum ~15 Spherical Disc and dilution approach [151]

31. Plant Musa paradisiacal 23.7 Spherical Agar well diffusion and
broth dilution approaches [46]

32. Plant Dalbergia spinosa 18 Spherical Disk diffusion and broth
microdilution methods [15]

33. Plant Emblica officinalis 15 Spherical Disk diffusion method [152]

3.2. Damage to the Cell Wall and Membrane

The fundamental purpose of the cell wall and membrane is to protect microorganisms
from external threats and to maintain homeostasis while allowing nutrients to be trans-
ported within the cell. AgNPs exhibit high antibacterial activity against Gram-negative
bacteria as compared to Gram-positive bacteria because the peptidoglycan layer present in
the Gram-positive bacterial cell wall, which acts as a natural barrier, is thick and thus averts
the diffusion of the NPs. Due to adhesion between AgNPs and microorganisms, interaction
occurs between the microbial cell wall and the surface of the Ag-NPs. The electrostatic
attraction between the negative charge on the microbial cell membrane and the positive
or less negative charge on AgNPs determines the outcome of this interaction. Following
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such attraction and contact, the NPs produce morphological changes in the membrane’s
structure, resulting in membrane permeability and respiratory functions being disrupted
by membrane depolarization, which ultimately disrupts cell integrity and cell death. It was
found that when membrane permeability increases and the cell wall is disrupted, cellular
content such as DNA, enzymes, organelles, ions, metabolites, and the energy reserve seeps
into the environment. As a result, damage to cell membranes and cell walls, intracellular
penetration and damage, and oxidative stress, as depicted in Figure 8 [46].

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 24 
 

 

 

29. Bacteria Ochrobactrum an-
thropi 

38–85 Spherical Agar well diffusion 
method 

[46] 

30. Plant Elephantopus scaber 37 Spherical Agar well diffusion 
method 

[46] 

31. Plant Ocimum sanctum ~15 Spherical Disc and dilution 
approach 

[153] 

32. Plant Musa paradisiacal 23.7 Spherical 
Agar well diffusion 
and broth dilution 

approaches 
[46] 

33. Plant Dalbergia spinosa 18 Spherical 
Disk diffusion and 

broth microdilution 
methods 

[15] 

34. Plant Emblica officinalis 15 Spherical Disk diffusion 
method [154] 

 

3.1. Mechanism of Action 
Antibacterial research on silver nanoparticles is generally done in vitro on solid me-

dia or liquid cultures of microorganisms. The antibacterial mode of action of AgNPs, as 
well as their influence on other bodily components, must be investigated in vivo. The an-
tibacterial activity of AgNPs produced from plant extracts has been well demonstrated; 
however, the specific mechanism is unknown [97]. 

Despite this, a lot of studies have attempted to figure out how they work, and three 
distinct processes have been postulated so far: damage to cell membranes and cell walls 
penetrating and damaging cells within cells oxidative stress, as depicted in Figure 8. 

 
Figure 8. Silver nanoparticles’ antibacterial mechanism of action is described in general terms [79]. 

3.2. Damage to the Cell Wall and Membrane 
The fundamental purpose of the cell wall and membrane is to protect microorgan-

isms from external threats and to maintain homeostasis while allowing nutrients to be 
transported within the cell. AgNPs exhibit high antibacterial activity against Gram-nega-

Figure 8. Silver nanoparticles’ antibacterial mechanism of action is described in general terms [79].

3.3. Intracellular Penetration and Damage

AgNPs can permeate the cell and affect essential activities such as DNA and pro-
tein interaction, depending on the degree of membrane damage. One of the recognized
mechanisms for AgNPs antibacterial action is silver ion release from the NPs, which has a
detrimental impact on microorganisms. Silver ions were shown to cause the transition of
bacteria’s DNA from a naturally relaxed state to a compacted one, in which the molecule of
DNA loses its reproduction ability. Furthermore, X-ray examination reveals the presence
of sulphur, indicating that silver ions interact with protein thiol groups, resulting in the
inhibition of enzyme function. AgNPs can cause DNA degradation and/or denaturation,
in addition to changing their configuration. Ag+ ions are also attached to DNA via phys-
ical attractions and interact with the nucleoside component of the nucleotide, according
to research. The base-pairing inside complimentary strands is altered as a result of the
hydrogen bond breakage [46].

The intracellular action of Ag NPs is not limited to DNA destruction. The effects
of Ag NPs on proteins and protein synthesis have been discovered through proteomic
investigations. Previous research has shown that silver nanoparticles and Ag+ ions formed
from AgNPs are reactive with protein thiol groups. Cysteine amino acids are found with
thiol or thiolate groups as their functional group. Cysteine is an inadequate amino acid;
however, it is a highly conserved residue in functional protein locations. It is important
in biological processes because of its high-affinity metal-binding capability, nucleophilic
participation in catalytic events, and ability to form disulfide bonds, which is essential for
protein folding and 3-D structure.
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3.4. Oxidative Stress

The term “reactive oxygen species” (ROS) refers to oxygen-containing compounds
with high redox potential. When circumstances are normal, the generation of ROS inside
the cell is balanced, as is its antioxidant capacity. However, due to an imbalance between
the antioxidant mechanism and the inappropriate release of ROS, the redox balance of cells
favors oxidation, resulting in oxidative stress. AgNPs cause cellular oxidative stress, and
cells respond by exhibiting defensive responses that include enzymatic and non-enzymatic
defense mechanisms to counteract this stress. When oxidative stress overwhelms these
defensive systems, ROS and free radicals cause damage to the cell wall and macromolecules,
including proteins, lipids, and DNA.

DNA damage includes deletions, mutations, single and double-strand breaks, adduct
accumulation, and protein cross-linking. Studies have shown that oxidation-mediated
DNA fragmentation occurs following exposure to metal oxide NPs. Cells strive to repair
damaged DNA in response to DNA damage. Failure to repair can lead to cell death. There
is also a possibility of the generation of ROS, which is mediated by Ag+ ions produced by
AgNPs, which may disrupt the bacterial electron transport chain as well as proton motive
force. This leads to enzyme inhibition involved in the reactions. Researchers also found
that, in addition to the breakdown of membrane functions, ROS generation also causes
protein leakage through increased membrane permeability. These leaked proteins by the
cells interact with AgNPs, which eventually leads to cell death. Oxidative stress can change
gene expression, in addition to its direct effects on cell walls and components. On the
treatment of Pseudomonas cells with AgNPs, translation of ribosomal proteins S2 and L9,
alkyl hydroperoxide reductase C (AhpC), keto-hydroxyglutarate aldolase (KHGA), and
thiol-specific antioxidant (TSA) was deemed to be overexpressed.

Thus, the essential aspect of NPs is their method of action, which is influenced by their
size; dissolving efficiency; ionic strength of the medium; synthesis and treatment variables;
and the kind of stabilizing agent used.

AgNPs have been shown to impede protein expression along with cell wall production
in the literature, providing strong evidence for protein breakdown of the exterior cell surface
and increased ATP permeability, leading to apoptosis [153].

Furthermore, the size and morphology of AgNPs were shown to boost the production
of Ag+ ions due to their larger surface area, thus influencing their potency towards microbial
illness. AgNPs’ aqueous solubility significantly affects their antibacterial activity. The
potential efficacy might be boosted if the aqueous solubility is significant [154]. AgNPs
smaller than 10 nm are thought to be capable of directly penetrating cell walls, entering
bacterial cells, and causing cell lysis [155]. As a result, the findings might be useful in
determining if AgNPs can be used as an alternative antibacterial agent to prevent dangerous
microorganisms and alleviate microbial disease illnesses.

4. Toxicology of Silver Nanoparticles to Human Health

Although nanotechnology has been exploited in a large number of commercial prod-
ucts overall the world recently, there is still a lot of information lacking regarding the
increase of human, animal, and ecological exposure to AgNPs and their short and long-
term potential lethal effects [156]. Silver can enter the human body and shows lethal effects
on human health. Previous literature indicated that Ag+ ions alter the cell membrane per-
meability to K+ and then to Na+. This reduces the mitochondrial function or ATP activity
and increases membrane leakage [156,157]. Silver nanoparticles were found to have a sig-
nificant cytotoxic effect on peripheral blood mononuclear cells (PBMCs) when levels were
over 15 ppm, and Phyto-haemagglutinin-induced cytokine production was remarkably
inhibited by silver nanoparticles [157]. Additionally, lactate dehydrogenase (LDH) leakage
was notably elevated in cells exposed to AgNPs (10–50 µg mL−1). A study proved the
significant decrease in reduced glutathione (GSH) level, and increase in reactive oxygen
species (ROS) levels, which signifies that AgNPs cytotoxicity (15, 100 nm) is mediated by
oxidative stress in liver cells. Silver nanoparticles also exhibit severe effects on the male
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reproductive system. Studies suggest that silver nanoparticles can cross the blood-testes
barrier and be deposited in there. They show potential adverse effects on sperm cells. Silver
also accumulates and shows some toxic effects in organs and tissues. When overused, it can
accumulate in the liver, skin, corneas, mucous membranes, kidneys, nails, gingiva, spleen,
and other places. It can cause effects such as producing reactive oxygen species, and cell
activation that is more toxic to tissue, which gradually leads to cell death [158].

5. Future Challenges

Synthetic methods involving fungus, bacteria, and other creatures are challenging
since strain separation and growth are required. These processes are also difficult owing to
the need to maintain the culture media, as well as the physical and chemical conditions.
Plants are selected primarily because they are simple to extract and plentiful. As earlier
explained, AgNP’s essential properties depend on their morphology and size. Therefore,
future challenges lie in how these biological procedures can be used to produce other
shapes such as triangular, cuboidal, truncated, ellipsoidal, pyramidal, decahedral, and oval
shapes. Scaling up NP production from laboratory to commercial scale is not an easy task
and has many difficulties and uncertainties. There are two further challenges. First, cost,
dependability, waste, energy consumption, recycling potential, material safety, and hazard
level should all be considered throughout manufacturing. Second, when nanomaterials
scale up, their characteristics may alter. When working with huge volumes, the level of
control may be compromised.

6. Summary

In this review paper, the research trends, worldwide use, synthesis, characteristics,
and future challenges of Ag NPs have all been thoroughly assessed. Three methods are
often employed to synthesize Ag-NPs: physical, chemical, and biological. The physical
approach has several drawbacks, including high energy consumption, a large quantity
of space needed, and a significant time to achieve thermal stability. Using a chemical
technique, AgNPs may be easily prepared. On the other and, the usage of costly and
dangerous chemicals is a major cause of environmental concern. Biological AgNP synthesis
approaches are gaining popularity since they are ecologically friendly/green, cost-effective,
and have no negative effects on the environment. Recent studies have revealed that AgNPs
have good physical, chemical, biological, electrical, optical, thermal, and catalytic properties,
making them appropriate for a wide range of essential applications. Concurrently, it IS
crucial to acknowledge that AgNPs are dangerous, which must be considered when they are
used in consumer items. Green synthesis should take into account three factors: simplicity,
time consumption, and cost. It is also worth considering how this process may be enhanced
to create shapes other than spheres. AgNPs discharged into the environment should
be investigated from their origins, techniques, and transportation through their effects,
utilizing better prototypes than those now available.
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