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Abstract :   
 
Spatial conservation prioritization (SCP) is a planning framework used to identify new conservation areas 
on the basis of the spatial distribution of species, ecosystems, and their services to human societies. The 
ongoing accumulation of intraspecific genetic data on a variety of species offers a way to gain knowledge 
of intraspecific genetic diversity and to estimate several population characteristics useful in conservation, 
such as dispersal and population size. Here, we review how intraspecific genetic data have been 
integrated into SCP and highlight their potential for identifying conservation area networks that represent 
intraspecific genetic diversity comprehensively and that ensure the long-term persistence of biodiversity 
in the face of global change. 
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Highlights 

► Conservation area networks on land and sea need to be expanded to meet the objectives of the post-
2020 global biodiversity framework. ► Spatial conservation prioritization (SCP) is a rigorous framework 
to identify suitable areas for protection on the basis of scientific data. ► Integrating intraspecific genetic 
data in SCP can help identify networks of conservation areas that are more representative of biological 
diversity and likely better at ensuring its long-term persistence. 
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Main 44 

The benefits and challenges of intraspecific genetic data for spatial conservation 45 

prioritization 46 

Facing worldwide declines in biodiversity and nature’s contributions to people [1], the post-2020 global 47 

biodiversity framework under discussion by the UN will prescribe to create “ecologically representative and 48 

well-connected” networks of conservation areas (CAs) that cover 30% of marine, aquatic and terrestrial 49 

habitats, and to ensure that 90% of within species genetic diversity is maintained by 2030 (see 50 

www.cbd.int/conferences/post2020). To achieve these goals, spatial conservation prioritization (SCP) is an 51 

effective framework to identify new CAs on the basis of the spatial distribution of conservation costs and 52 

biodiversity features (see Glossary) such as species and ecosystems [2]. 53 

Over time, SCP has evolved to integrate increasingly complex aspects of biodiversity, such as connectivity, 54 

ecosystem services and functional diversity [3–5]. Recently, attempts have been made to use intraspecific 55 

genetic data to gain knowledge on several aspects of species’ biology that are critical for their conservation 56 

(see also Online Supplemental Information Table S1). In particular, genetic data can provide information 57 

on intraspecific genetic diversity, dispersal and population size [6,7]. The published studies listed in Table 58 

S1 show that such information can increase the comprehensiveness of CA networks and the long-term 59 

persistence of biodiversity. However, the successful integration of intraspecific genetic data with other 60 

types of data in SCP presents challenges. Here, we briefly review the available techniques to estimate 61 

intraspecific genetic diversity, dispersal and population size from intraspecific genetic data and we discuss 62 

how to best integrate them in SCP. 63 
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Obtaining unbiased information from intraspecific genetic data 64 

Intraspecific genetic diversity 65 

Species are not static in time and show phenotypic variation throughout their range. This intraspecific 66 

diversity, which arises through the interplay of environmental and genetic variation, has consequences for 67 

population viability, community and ecosystem functioning, and nature’s contributions to people [8,9]. 68 

Intraspecific variation is an important asset that can allow species to persist in the face of rapid 69 

environmental change, such as those expected from the outcomes of global climate change [10]. There is 70 

evidence that intraspecific genetic diversity has declined in many wild species [11,12]; therefore, the post-71 

2020 biodiversity framework will commit to protecting intraspecific genetic diversity and CAs can be a 72 

valuable tool to reach this objective [13]. 73 

Intraspecific genetic diversity can be partitioned into within-population diversity and between-population 74 

diversity, analogous to partitioning species diversity into alpha and beta components [14]. Within-75 

population genetic diversity can be measured using metrics such as allelic richness and observed and 76 

expected heterozygosity, while between-population genetic diversity can be represented by metrics of 77 

genetic differentiation [15]. Genetic differentiation can be used to identify conservation units below the 78 

species level, such as management units (MUs) and evolutionarily significant units (ESUs) [16]. The 79 

maintenance of genetic differentiation between MUs implies significant demographic isolation or selection 80 

against immigrants, which justifies considering them as distinct conservation units [16]. Conversely, 81 

genetically homogenous sets of individuals cannot be considered as MUs given that the level of migration 82 

that is sufficient for genetic homogeneity might not be sufficiently high to ensure demographic 83 

connectivity [17,18]. 84 

ESUs are populations or groups of populations that have evolved independently and can be identified by 85 

reconstructing phylogenetic trees within species [16,19]. ESUs are important conservation units because a 86 
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comprehensive view of biodiversity includes the full set of nested clades representing phylogenetic 87 

relationships among organisms [20]. In addition, regions with maximum phylogenetic diversity for a given 88 

taxon will also have the greatest trait diversity and thus potential to respond evolutionarily to future 89 

environmental change [21]. Finally, focusing on ESUs instead of species can help conserve biodiversity 90 

when taxonomy is uncertain [22]. Although the identification of ESUs has frequently relied on finding 91 

monophyletic clades [19], the general agreement is that ESUs should not be designated solely on the basis 92 

of genetic distinctiveness: ecological exchangeability and existence of genetic adaptations are among the 93 

proposed criteria to define ESUs [16,23,24]. Furthermore, the steps and choice of methods involved in 94 

reconstructing phylogenies can influence the inferred relationships among population units [25,26]. 95 

A further distinction can be made between neutral genetic diversity and adaptive genetic diversity 96 

according to the effects of genetic variation on individual and population fitness [27]. However, the effect 97 

of different alleles on the fitness of individuals and the viability of populations is seldom known, especially 98 

for non-model organisms. Genotype-phenotype association studies aim to identify genes responsible for 99 

phenotypic variation through correlative tests between variation in phenotypic traits and genetic variation 100 

[28]. Such genes can be considered important for the viability of populations when the phenotypic traits 101 

studied are of key importance for the persistence of populations and the identified genes have sufficiently 102 

large phenotypic effects for their variation to significantly affect phenotypic variation [29]. A second set of 103 

methods (outlier tests and environmental association analyses) investigate the signatures of selection to 104 

detect candidate loci underlying local adaptation [30,31]. However, it is always difficult to distinguish the 105 

signatures of positive selection from those of genetic drift [30] and, even when adaptive loci have been 106 

identified with high confidence, the effects of their genetic diversity on population persistence usually 107 

remain unknown [29]. Faced with these challenges, it is often difficult to partition neutral from adaptive 108 

genetic diversity. One possibility is using genome-wide genetic variation as a proxy for the viability of 109 

populations [32]. However, for some cases where genetic variation in phenotypic traits has been 110 
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quantified, neutral genetic variation has proven to be a poor predictor of adaptive genetic variance [33]. 111 

Furthermore, genomic techniques allow typing thousands of loci and if all these loci were included as 112 

biodiversity features, they could lead to computationally prohibitive problems and redundant information. 113 

As large genomic data sets accumulate [34], there is a need to consider how measures of intraspecific 114 

genetic diversity can be used in SCP. 115 

Dispersal 116 

The post-2020 global framework emphasizes that biodiversity should be protected through “well-117 

connected systems” of CAs. The functioning of systems of CAs as well-connected networks depends 118 

critically on the dispersal of organisms, which facilitates recolonization after catastrophic disturbances 119 

(demographic rescue) and allows the spread of adaptive variants that increase the viability of local 120 

populations facing environmental change (genetic rescue). In some species, dispersal can be studied using 121 

telemetry methods, but these techniques are not practical for many animal and plant species that disperse 122 

during life stages (such as larvae or seeds) when they are too small to be equipped with emitters. In these 123 

cases, genetic techniques can be a useful alternative to estimate dispersal at the temporal scale of a few 124 

generations in the past (Box 1). Four types of methods have been identified to estimate dispersal from 125 

genetic data: assignment tests [35], parentage analysis [35–37], analysis of the pattern of isolation-by-126 

distance [37] and clinal analysis [38]. The results are estimates of dispersal probabilities between sites 127 

(summarized in a dispersal matrix) and dispersal distances (summarized in a dispersal kernel). Each of 128 

these methods has strengths and weaknesses (reviewed in [7,35]): for example, the accuracy of assignment 129 

tests depends on the degree of genetic differentiation between populations, while parentage and clinal 130 

analyses require intensive sampling or sequencing efforts [35] and cannot realistically be applied to a large 131 

number of species occupying an area being considered for SCP. However, gaining direct dispersal data for a 132 

small number of representative taxa could be useful to complement other, more feasible genetic 133 

approaches, such as the analysis of isolation by distance [37]. 134 
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Census and effective population size 135 

Various statistical frameworks are available to estimate census population size Nc from samples of 136 

individuals from natural populations typed with molecular markers [39]. These methods offer a valuable 137 

alternative to direct observation for obtaining estimates of population density in species that are difficult to 138 

observe and count, such as aquatic animals. For example, close-kin mark-recapture is an extension of 139 

traditional mark-recapture approaches where each juvenile carries the “marks” of its parents within its 140 

DNA [40]; using this method with a panel of 8,961 SNPs, Hillary et al. [41] estimated that Nc in the white 141 

shark Carcharodon carcharias population in eastern Australia and New Zealand ranges between 2,500–142 

6,750 individuals. Intraspecific genetic data are also useful to estimate effective population size Ne, which 143 

is related to the risk of inbreeding depression and loss of genetic diversity [42], through several statistical 144 

frameworks applicable to a variety of life-histories [43]. Although uncertainty increases when the real Ne is 145 

large, with appropriate sampling designs and sufficient numbers of genetic markers, genetic data can 146 

provide precise and unbiased estimates of Nc and Ne, in some cases using the same dataset [44]. 147 

Temporally repeated sampling can provide estimates of population trends in time and thus help identify 148 

declining populations [45]. 149 

Integrating information obtained from intraspecific genetic data in spatial 150 

conservation prioritization 151 

SCP can be treated as a mathematical problem using equations linking the spatial distribution of 152 

biodiversity features and conservation costs [46] (Box 2). While there are different formulations of SCP 153 

problems [46], almost all of them involve four parameters: the representation level rij of biodiversity 154 

feature j in site i, the cost ci of protecting site i, the spatial target Tj for biodiversity feature j, and the 155 

adjacency cost cvih between site i and h. The general principle to integrating the estimates from 156 

intraspecific genetic data is to link them explicitly to the parameters of SCP (Figure 1). 157 
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Intraspecific genetic diversity 158 

There are various ways to integrate information on intraspecific genetic diversity into SCP. The simplest 159 

approach is to use alleles as biodiversity features instead of (or in combination with) species (“AL” method 160 

in Table 1), but it can be difficult to decide which and how many genetic markers and alleles to consider as 161 

biodiversity features. Estimates of within-site diversity, such as allelic richness and heterozygosity, can be 162 

used as biodiversity features (“GM”); however, defining a target of representation Tj for them is not 163 

meaningful since Tj considers the total sum of a biodiversity feature across the planning area and such 164 

genetic metrics are not additive across space. These metrics could be better integrated as cost layers, for 165 

example by setting costs proportional to the inverse of allelic richness to select sites with high local genetic 166 

diversity (“CS” method). Another option is to use site-specific metrics to rank sites according to the metric 167 

of interest (e.g. sites with low and high allelic richness) and split the taxon (species or conservation unit) 168 

occurrence layer into several distinct layers with specific representation targets (“ST” method). 169 

Conservation units (MUs and ESUs), when present, can also be used directly as biodiversity features (“CU” 170 

method). As an alternative to using ESUs, the branches of the phylogenetic tree can be used directly as 171 

biodiversity features to assign higher priorities to older genetic lineages [22,47]. This approach may be 172 

useful because conserving lineages separated by longer branches results in protecting larger amounts of 173 

genetic diversity, compared to conserving more closely related lineages. In addition, using branches 174 

ensures cost-effective protection as deeper branches representing shared evolutionary histories are only 175 

accounted for once in the prioritization [48]. 176 

Some species do not have a discrete spatial genetic structure that permits researchers to unambiguously 177 

identify conservation units. A solution to this problem is to use continuous measures of genetic distance 178 

[49] in the ‘environmental diversity’ formulation of the SCP problem (“ED” method), used to identify a set 179 

of conservation priority sites on the basis of continuous intraspecific variation (genetic or environmental 180 

[50]). 181 
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Importantly, as genetic sampling is usually sparse, there will not be enough observations to measure the 182 

spatial occurrence rij of alleles, conservation units or genetic metrics nor to measure costs ci in all sites. This 183 

requires a spatialization step to go from sampled points to values for all sites in the regular grid (planning 184 

units) used in SCP. This can be done using several methods relying on sampled genetic data only (e.g. 185 

inverse distance weighting) or making use of environmental variables (e.g. ecological niche models). 186 

Supplementary Table 1 indicates the methods used for each published paper that incorporates genetic 187 

data in SCP. There is currently no comparison of the various methods to infer genetic data to cover 188 

unsampled sites (see Outstanding questions). 189 

Dispersal 190 

Several methods are available to constrain the sites chosen for protection to be spatially contiguous 191 

[46,51,52], such as introducing a boundary cost cvih for not protecting pairs of bordering sites (Box 2). This 192 

formulation can easily accommodate the information of dispersal contained in a dispersal matrix, whose 193 

elements dij give the probabilities of dispersal from site j to site i. Whether it is estimated from genetic data 194 

or obtained through other methods, the dispersal matrix can be used to define the cvih parameter in the 195 

SCP problem, which becomes a connectivity penalty cost paid when site i is chosen for protection and site h 196 

is not [53]. Depending on the goals of SCP, researchers can choose the extent to which connectivity should 197 

be prioritized by changing parameter b, which becomes the connectivity strength modifier (Equation 2 in 198 

Box 2)[53]. In other formulations of the SCP problem, the dispersal matrix can be used to maximize metrics 199 

of metapopulation performance, such as the expected time to extinction [54,55]. Alternatively, dispersal 200 

distances can be used to set the maximal size of CAs and distances between different CAs in a network to 201 

ensure that propagules and juveniles generated in one CA can disperse to and recruit in nearby CAs [56,57]. 202 

The dispersal matrix can also be used to define site-specific metrics measuring the importance of each site 203 

for population persistence using graph theory [58] or matrix analysis [55]. When used as biodiversity 204 
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features [58] or costs [59], such site-specific metrics lead to the selection of sites that are well-connected, 205 

and this connectivity may enhance persistence within the CA network [58]. 206 

Population size 207 

Estimates of Nc and Ne are useful to refine the targets Tj’s of species representation that constrain the 208 

solution of the SCP problem (equation 2 in Box 2)[60]. These targets define the minimum proportions of 209 

the geographical ranges of species that need to be included in the sets of CAs to consider those species 210 

adequately covered. Species with smaller geographical ranges are usually given higher proportional targets 211 

of representation because they might face a higher risk of extinction than species with larger ranges [61]. 212 

Despite being easy to implement, this approach is an approximation for the complexity of demographic, 213 

genetic and ecological factors affecting the long-term persistence of species. Estimates of Nc and Ne could 214 

help set more appropriate targets, for example by increasing Tj for species that have low numbers of 215 

individuals even if their geographical range is large or for species showing a negative temporal trend in 216 

abundance. The information provided by population abundance complements that of occurrence in setting 217 

conservation priorities [62] and many species are showing signs of declining abundance despite keeping 218 

stable geographical ranges [63]. The approach used by the IUCN to classify species into threat categories is 219 

also based on criteria of geographical ranges and population abundance [64]. 220 

When estimates of Nc and Ne are available per site, they can be used to define SCP problems in terms of 221 

abundance: the representation levels (rij) are the site-specific population numbers and the target Tj is the 222 

total species abundance required for long-term persistence, which can be found using population viability 223 

analysis or set following the general 50/500 rule [65–67]. This approach requires a comprehensive sampling 224 

across the range of the species, or a method to spatialize the estimates of Nc and Ne. While there are 225 

several abundance-based species distribution models that predict Nc [68], similar approaches for Ne have 226 

yet to be developed. 227 



12 

 

Building adaptive conservation area networks 228 

A primary goal of well-connected and genetically representative CA networks is to support the persistence 229 

of species in the face of anthropogenic disturbance, such as land use and climate change [69]. When loci of 230 

large effect on fitness can be identified, there are two alternative conservation strategies that can be 231 

adopted to account for future adaptation. First, when the direction of environmental change can be 232 

predicted and the relationship between alleles and environmental variables is known, a decision can be 233 

made to conserve the alleles that confer stronger adaptation to future environmental conditions, or the 234 

sites that show the smallest genetic offset with future predicted conditions [70]. However, focusing on the 235 

winners of environmental change relies on many strong assumptions, among which that the populations 236 

are optimally adapted to current environmental conditions and that the relationships between alleles and 237 

environmental variables are correctly characterized. In addition, when the direction of environmental 238 

change is unclear, it is even more difficult to predict biological responses accurately.  239 

A safer strategy is to conserve a portfolio of alleles at adaptive loci (I.e. adaptive genetic diversity) as 240 

opposed to conserving only some alleles, as this confers higher adaptation capacity when future 241 

environmental conditions are uncertain [71] and buffers the risk of incorrectly characterized gene-242 

environment associations. Depending on the genetic structure of the species, intraspecific genetic diversity 243 

can be conserved either by prioritizing sites with the highest within-site diversity (alpha diversity) or by 244 

protecting sets of sites with complementary genetic variants to maximize adaptation capacity at the 245 

landscape scale (beta diversity; Box 3). 246 

Concluding remarks: getting the best (out of) genetic data 247 

Despite the potential for improving CA planning, there are still numerous challenges that should be tackled 248 

by future research (see Outstanding questions). First, information from intraspecific genetic data is 249 

affected by various types of uncertainty [72]. Some estimated variables, such as dispersal distance and 250 
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population size, can have wide confidence intervals [37,41] and the identity of conservation units and 251 

adaptive genetic markers often depends on the methods used [24,30]. There is also limited knowledge 252 

about the real effects of intraspecific genetic diversity on the adaptive potential of populations [73]. An 253 

important area for future research is to evaluate the impact of these types of uncertainties on the selection 254 

of CAs [74] and develop standardized, efficient workflows to integrate the uncertainty of inputs into multi-255 

species SCP [72]. 256 

Secondly, characterizing intraspecific genetic diversity requires multiple samples distributed throughout the 257 

entire geographic range of species, and possibly replicated in time to estimate population abundance 258 

trends. To estimate dispersal and population size, sampling must be carefully planned [35,43]. Multi-259 

species genetic studies are becoming more common [75,76] and efforts are made to bring together genetic 260 

data sets for multiple species in free databases [34]. However, intraspecific genetic data are still lacking for 261 

many species and attempts to replace them with surrogate variables (e.g. environmental variables) have 262 

yielded mixed results [77–79]. Obtaining spatially and temporally replicated genetic samples for multiple 263 

species, in line with local conservation priorities and involving all stakeholders [80], remains a main goal for 264 

future research. 265 

The scientific community has set ambitious goals to obtain genomic information for wild species: for 266 

example, the Earth Biogenome Project aims to sequence all known eukaryotic species in a ten-year 267 

timeframe [81]. The availability of genome sequences will undoubtedly help develop genetic markers for 268 

wild species, but it will be necessary to understand how to best use the knowledge obtained from 269 

reference genomes [82], for example the identification of deleterious mutations and the quantification of 270 

mutation load [83], to plan networks of CAs.  When genomic data are used to identify putatively adaptive 271 

genetic markers, SCP solutions might be similar [85] or substantially different [74,84] to those found using 272 

putatively neutral loci or traditional markers such as microsatellites. 273 
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Similarly, conserving intraspecific genetic diversity, dispersal and population size might require specific sets 274 

of sites that increase conservation costs relative to the surface area needed to conserve species, possibly 275 

making it more difficult to reach other conservation objectives. This is likely to happen each time new 276 

objectives and constraints are added to the conservation problem. For example, the sites needed to 277 

maintain ecosystem services and functional diversity are often different from those needed to conserve 278 

species [86,87]. These conflicts in CA siting are eased when the connections between seemingly different 279 

objectives are recognized: for example, ensuring that marine reserves ensure population persistence within 280 

their borders (biodiversity conservation objective) and fishery supply beyond their borders (ecosystem 281 

service objective) can be reconciled by siting them according to the dispersal capacity of the targeted 282 

species [88]. This also shows that information obtained from intraspecific genetic data has an added benefit 283 

[89] and may justify the extra money and time required to obtain them.  284 

Systematic approaches to biodiversity conservation will be increasingly needed in the near future to reach 285 

the targets of the post-2020 global biodiversity framework. Intraspecific genetic data are a wealthy source 286 

of information not only for characterizing intraspecific genetic diversity, but also for estimating important 287 

demographic parameters such as dispersal and population size. In addition to the framework briefly 288 

illustrated here, there might be other ways, which will be important to assess, to expand SCP towards these 289 

data. Early examples show that information from intraspecific genetic data is likely to improve the planning 290 

of CAs to reach multiple ecological objectives.  291 
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 292 

Figure 1. Integration of intraspecific genetic data into the ‘minimum set coverage’ spatial conservation prioritization (SCP) 293 

problem. Intraspecific genetic data can enter the minimum set SCP problem in various ways. Estimates of intraspecific genetic 294 

diversity obtained from sampled sites can be converted into spatial layers through a spatialization step. Layers of alleles (AL), 295 

conservation units (CU), genetic metrics (GM; such as allelic richness Ar and expected heterozygosity He) and split taxa occurrences 296 

(ST) can be used as biodiversity features and enter the SCP problem via variable rij, the representation level of biodiversity feature j 297 

in site i. The ST example shows the distribution range of a taxon split into two layers on the basis of the Ar value, with a threshold of 298 

4 alleles. Information on dispersal, arranged in a dispersal matrix, can be used to define the connectivity penalty costs cvih. 299 

Estimates of population size at the species level can be used to refine the specific spatial representation targets Tj and estimates at 300 

the site level can be used as a layer to define SCP problems in terms of abundance. All three types of intraspecific genetic data can 301 

also be used to define layers of conservation costs ci (CS). See Table 1 and main text for detailed explanation of each method and 302 

Box 2 for notation of the SCP problem.   303 
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Table 1. Methods to integrate information from intraspecific genetic data in spatial conservation 304 

prioritization. 305 

METHOD DESCRIPTION EXAMPLES 

ALLELES (AL) 
Alleles are the biodiversity features. Allele presence or frequencies are mapped on the 

landscape and spatial layers are used as inputs in the prioritization. 

[75,90–94] 

CONSERVATION 

UNITS (CU) 

Conservation units (management units, evolutionarily significant units or the branches of 

the phylogenetic tree) are treated as biodiversity features.  As intraspecific genetic data 

are usually spatially sparse, the spatial distribution of individual conservation units is 

usually not known from observations, but can be predicted using spatial interpolation 

techniques or ecological niche models. In this latter case, each conservation unit is 

treated as a distinct entity in a model using environmental variables as predictors of its 

occurrence, with the possibility to include future environmental projections to forecast 

the response of each conservation unit under different climate change scenarios. 

[22,47,84,95–

97] 

GENETIC 

METRICS (GM) 

Genetic metrics, calculated for each species or conservation unit in each site, are the 

biodiversity features. Values in unsampled sites are predicted using spatialization 

techniques. A conceptual and practical difficulty with this method is the need to set 

representation targets for genetic metrics. 

[74,93,98] 

SPLIT TAXA (ST) 
Taxa (species or conservation units) are the biodiversity features. Each taxon is 

represented by several spatial layers grouping sites sharing similar genetic characteristics. 

For example, distinct layers are used to represent sites with low, medium and high allelic 

richness or areas of low, medium and high genetic differentiation. Each layer has a spatial 

representation target. A limitation of this approach is that the number of distinct spatial 

layers and the limits among them are usually arbitrary. 

[84,85,99–102] 

COSTS (CS) 
Costs are calculated as a function of site-specific or between-site genetic metrics. For 

example, sites with lower allelic richness are given higher protection costs to favor the 

[99] 
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selection of sites with higher genetic diversity. Pairwise genetic metrics can be integrated 

through boundary costs cvih: pairs of sites with lower genetic differentiation are given 

lower pairwise costs to favor the selection of genetically connected sets of sites. One 

drawback of this approach is the need to combine information that may be 

incommensurable, e.g. genetic-based and monetary costs, or when costs are used to 

define layers of unsuitable habitats. 

ENVIRONMENTAL 

DIVERSITY (ED) 

The ED formulation finds the subset of sites that contain the most representative set of 

environmental conditions among all candidate sites, subject to a limit on the number of 

sites that can be selected [50,103]. It uses a dissimilarity matrix to characterize the 

differences between each pair of sites: thus, it can be adapted to generate prioritizations 

that ensure a representative sample of genetic diversity among sites, using a genetic 

distance matrix instead of environmental dissimilarity.  

[50,77,78,104] 

  306 
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Box 1. Dispersal estimates and their potential usefulness in spatial conservation 307 

prioritization 308 

Intraspecific genetic data offer various ways to estimate dispersal in organisms and habitats that are 309 

otherwise difficult to study using direct observations, such as tiny fish and invertebrate larvae that have the 310 

potential to disperse widely on ocean currents. 311 

Parentage analysis - whereby offspring are assigned to parents based on their DNA - can be used to directly 312 

detect dispersal events [78]. In one example, D’Aloia et al. [36] genotyped over 7,000 individuals of the 313 

neon goby Elacatinus lori and used parent-offspring matches to estimate the species’ dispersal kernel on 314 

the Belize barrier reef (Fig. I-A-B). They found that most larvae dispersed less than 2 km from their parents, 315 

despite larvae spending nearly one month dispersing. Like most parentage studies, this was constrained to 316 

a relatively small spatial area and required a large amount of sampling that will not be feasible to undertake 317 

for all species of interest in SCP. However, follow-up studies have corroborated this strongly limited 318 

dispersal pattern. For example, genetic sibship reconstruction revealed that full siblings are spatially 319 

arranged as predicted by the parentage dispersal kernel [105] and genetic assignment tests at the scale of 320 

the species’ range revealed a low frequency of long-distance dispersal events [106]. The congruence 321 

between multiple genetic estimates of dispersal in E. lori is promising for the application of more feasible 322 

genetic-based estimates of dispersal in other species. 323 
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 324 

Figure I. Using genetic-based dispersal estimates to inform spatial conservation prioritization. (A) A larva of the neon goby 325 

Elacatinus lori (photo: J. Majoris); (B) The species’ estimated dispersal kernel overlaid on a histogram of dispersal events detected 326 

by parentage analysis. Fig. Ib drawn using data from [36]. 327 

(end of Box 1)  328 
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Box 2. Spatial conservation prioritization as a framework to place new 329 

conservation areas 330 

Spatial conservation prioritization (SCP) can be treated as a mathematical problem involving the spatial 331 

distribution of biodiversity features (e.g. species, indexed by j = 1, …, S) and conservation costs in a set of 332 

sites indexed by i = 1, …, N. rij indicates the spatial occurrence (binary variable) or abundance (continuous 333 

variable) of biodiversity feature j in site i. In one of the several possible types of SCP problems, the 334 

minimum set coverage [71], the mathematical formulation involves two equations: 335 

𝑚𝑖𝑛 (∑ 𝑐𝑖𝑥𝑖

𝑁

𝑖=1
+ 𝑏 ∑ ∑ 𝑥𝑖(1 − 𝑥ℎ)𝑐𝑣𝑖ℎ

𝑁

ℎ=1

𝑁

𝑖=1
) (1) 

∑ 𝑟𝑖𝑗𝑥𝑖

𝑁

𝑖=1
≥ 𝑇𝑗  ∀𝑗 (2) 

where xi is the unknown variable indicating whether a site is selected for protection (xi = 1) or not (xi = 0). 336 

Solving the problem means finding the vector of xi’s that satisfies the two equations. 337 

Equation (1) states that the total cost of protection should be minimized. The total cost is the sum of two 338 

terms: the first term is the sum of the site-specific costs of protection, ci’s, which can be defined as the 339 

monetary costs required to purchase the sites, as the opportunity costs of other excluded territorial uses 340 

or, in the absence of such information, simply as the surface area of the sites. The second term of equation 341 

(1) is used to limit the spatial fragmentation of the solution by introducing a boundary costs cvih, which is 342 

typically the length of the physical boundary between site i and h [5]; more simply, when sites have the 343 

same shape and size and are placed on a regular grid, cvih = 1 for adjacent sites and 0 otherwise. For two 344 

adjacent sites, the cost is paid when site i is protected but site h is not (xi = 1 and xh = 0). The “boundary 345 

length modifier” b is set according to the degree of fragmentation that is deemed acceptable (a lower b 346 

leads to a more fragmented solution). 347 
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Equation (2) constrains the solutions to sets of sites that include a minimum target proportion Tj of the 348 

geographical range of each species. Tj is set according to ecological considerations: for example, species 349 

with smaller ranges are given higher targets because they might be at higher risk of extinction than species 350 

with larger ranges [61].  351 

The SCP problem can be solved using exact or heuristic methods implemented in several software packages 352 

[5,107,108]. The solution is a list of priority sites for the creation of new conservation areas (Figure I). 353 

 354 

Figure I 355 

(end of Box 2) 356 

  357 
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Box 3. Retaining adaptive genetic diversity to foster persistence under uncertain 358 

future conditions 359 

Prioritizing portfolios of genetic combinations increases the probability that “winning” combinations can 360 

persist during periods of environmental change [71]. Depending on the genetic structure of the species, 361 

targeting sites with high within-site adaptive genetic diversity or sites with populations adapted to different 362 

local conditions will help build conservation area networks that retain the genetic diversity of species. 363 

An example of prioritizing within-site diversity is given by Xuereb et al. [74]. They used environmental 364 

association analysis to identify 51 SNPs associated with mean bottom temperature in the California sea 365 

cucumber Parastichopus californicus living in the coastal seas of British Columbia (Canada). Then, they used 366 

within-site heterozygosity at these putatively adaptive SNPs as a biodiversity feature in spatial conservation 367 

prioritization (SCP), which led to the selection of sites in the northern region of the study area. In a second 368 

prioritization exercise, they used the frequency of warm-temperature-associated alleles as a biodiversity 369 

feature, which led to the selection of sites in the southern region. These results illustrate a trade-off 370 

between prioritizing specific alleles versus prioritizing genetic diversity. 371 

The second option is protecting a portfolio of sites with a diverse set of adaptations. Hanson et al. [84] 372 

genotyped three amphibian species living in the Iberian peninsula at several thousand SNPs. Using outlier 373 

detection and environmental association analyses with climatic and soil variables, they identified several 374 

putatively adaptive loci in each species. They then identified sets of populations sharing similar adaptations 375 

(adaptive units [24]) by applying genetic clustering techniques to these putatively adaptive loci and used 376 

them as distinct biodiversity features in SCP. This allowed them to identify a set of complementary priority 377 

areas for the conservation of adaptive genetic diversity at the species level. 378 

When selecting different sites, it is important that the genetic variants that may be favorable under future 379 

conditions will be able to spread to the other sites. For this reason, it is advisable to combine the 380 
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prioritization of genetically diverse sites with estimates of dispersal to build adaptation networks capable of 381 

exchanging favorable genetic variants when needed [71]. Various approaches are available to integrate this 382 

type of information in SCP (see main text). It should be noted, however, that prioritizing portfolios of 383 

genetic combinations is still subject to the difficulties of correctly characterizing adaptive genetic diversity. 384 

(end of Box 3)  385 
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GLOSSARY 386 

Adaptive genetic diversity. The genetic diversity that is estimated at adaptive genes, i.e. those that have an 387 

effect on fitness [27]  388 

Biodiversity feature. A component of biodiversity (e.g. species, alleles, ecosystems) that can be mapped in 389 

a landscape. 390 

Census population size. The count of individuals in a population, often restricted to adult individuals. 391 

Comprehensiveness. The degree to which a set of conservation areas includes all elements of biodiversity 392 

features [51]. 393 

Demographic connectivity. The relative contribution of dispersal to population dynamics. 394 

Demographic rescue. A decrease in population extinction probability owing to the simple addition of 395 

immigrants. 396 

Dispersal kernel. The statistical distribution of dispersal distances in a population. 397 

Dispersal matrix. A dispersal matrix describes the probability of dispersal between a set of sites in the 398 

landscape. Each element of the dispersal matrix is the dispersal probability from site j to site i, which may 399 

be different from the dispersal probability from site i to site j (asymmetric dispersal). 400 

Ecological niche model. A statistical model linking the spatial occurrence of a biodiversity feature to a set of 401 

environmental variables. It is often used to predict species occurrences in places where no data are 402 

available (spatial prediction) or in the future (forecasting).  403 
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Effective population size. The size of an ideal population experiencing the same rate of genetic drift or 404 

inbreeding as the population under study. The ideal population is usually a closed population of constant 405 

size with discrete generations and a Poisson variance in reproductive success between individuals. 406 

Environmental association analysis. A statistical approach to identify genetic variants strongly associated 407 

with specific environmental conditions. 408 

Genetic rescue. A decrease in population extinction probability owing to gene flow. 409 

Inbreeding depression. Reduced fitness of offspring with related parents, often due to deleterious 410 

recessive alleles that become expressed in homozygous state. 411 

Outlier test. A statistical approach to identify loci involved in local adaptation by screening for alleles that 412 

show unusually high genetic differentiation among populations, i.e. outside of the distribution expected 413 

under neutrality. 414 

Neutral genetic diversity. The genetic diversity estimated at putatively neutral genes, I.e. those that do not 415 

have any direct effect on fitness. This type of genetic diversity is selectively neutral and is useful to estimate 416 

dispersal and population size [27]. 417 

  418 
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Outstanding questions 

What is the risk of disregarding intraspecific genetic data in spatial conservation prioritization (SCP) for 

biodiversity persistence? Conservation decisions have been and will be made in the absence of intraspecific 

genetic data, especially when they are too demanding to be collected. In what cases is it worth spending 

more time and money to collect genetic data? 

As intraspecific genetic data are still lacking for many species, to what extent can they be replaced by 

surrogate information such as environmental variables in setting spatial conservation priorities? 

What is the best method to spatialize genetic data to obtain information for unsampled sites? 

How much more land and sea surface area will have to be protected to represent intraspecific genetic 

diversity? Previous studies showed that moderate extension of the current global system of conservation 

areas (CAs) would be sufficient to represent phylogenetic and functional diversity, but would this be true 

for intraspecific genetic diversity? 

What is the impact of uncertainty in genetic data on the outcome of SCP? When uncertain genetic data are 

used in conjunction with other types of information to represent additional constraints to prioritization, the 

results risk being economically inefficient or unfavorable for conservation. 

What is the risk of integrating intraspecific genetic data for some species only? Maximizing genetic diversity 

of one species can lower diversity of others. How would one select the species to collect genetic data on? 



Table S1. List of published studies integrating intraspecific genetic data in spatial conservation prioritization 

Ref Citation Number 
of 
species 

Molecular 
markersa 

Integration 
of genetic 
datab 

SCP methodc Genetic metricsd Inference of information in 
unsampled sites 

[1] Moritz (2002) 10 mtDNA ED Environmental 
diversity 

Nei's [26] genetic distance 
averaged across species 

Not performed. Only sampled sites 
were included in the prioritization. 

[2] Bonin et al. (2007) 2 AFLP GM Exhaustive 
search 

Proportion of polymorphic loci 

Population adaptive index [2] 

Not performed. Only sampled sites 
were included in the prioritization. 

[3] Thomassen et al. 
(2011) 

7 AFLP, msat, 
nuDNA 

ST RESNET Nei's [26] genetic distance 

FST 

ST 

Generalized dissimilarity modelling 
[27] 

[4] Diniz-Filho et al. 
(2012) 

1 msat AL Simulated 
annealing 

 Not performed. Only sampled sites 
were included in the prioritization. 

[5] Taberlet et al. (2012) 39 AFLP AL ZONATION  Not needed. Sampling was 
performed using a regular grid 

[6] Vasconcelos et al. 
(2012) 

30 Nonee  CU ZONATION  Ecological niche model with MAXENT 
[28] 

[7] Beger et al. (2014) 1 msat ST, CM MARXAN Genetic clusters identified 
with STRUCTURE [29] 

Allelic richness 

Local FST estimated with GESTE 
[30] 

Asymmetric recent migration 
rates estimated with 
BAYESASS+ [31] 

Allelic richness and local FST were 
interpolated in ARCGIS. 

Asymmetric migration rates were 
applied to proximate neighborhood 
identified using Thiessen polygons 

[8] Schlottfeldt et al. 
(2015) 

1 msat AL, GM Multi-
objective 
Evolutionary 

Expected heterozygosity Not performed. Only sampled sites 
were included in the prioritization. 



Algorithms 
(MOEA, [36]) 

p-value of 2 test for Hardy-
Weinberg equilibrium 

[9] Diniz-Filho et al. 
(2016) 

1 msat AL Exhaustive 
search 

 Not performed. Only sampled sites 
were included in the prioritization. 

[10] Hermoso et al. (2016) 4 Msat, 
mtDNA 

CU MARXAN  Generalized dissimilarity modelling 
[27] 

[11] Carvalho et al. (2017) 33 mtDNA CU ZONATION, 
MARXAN 

 Phylogeographical interpolation 
with PHYLIN [32] 

[12] Hanson et al. (2017) 27 AFLP ED RAPTR Gower's [33] distance Not needed. Sampling was 
performed using a regular grid 

[13] Nielsen et al. (2017) 5 mtDNA ST MARXAN Haplotype diversity 

Nucleotide diversity 

Number of private haplotypes 

Local genetic differentiation 

Inverse distance-weighting 

[14] Hanson et al. (2018) 1 AFLP ED RAPTR Gower's [33] distance Not needed. Sampling was 
performed using a regular grid 

[15] Vasconcelos et al. 
(2018) 

23 mtDNA CU ZONATION  Ecological niche model with MAXENT 
[28] 

[16] Paz-Vinas et al. (2018) 6 msat AL MARXAN Allelic richness 

Private allelic richness 

Jost's [34] differentiation 

Generalized linear models for spatial 
stream networks [35,36] 

[17] Rosauer et al. (2018) 11 Nonee CU MARXAN  Lineage distribution model [37] 

[18] Hanson et al. (2019) 9 AFLP CM PRIORITIZR Landscape resistance 
estimated from Nei's [26] 
genetic distance between 
sites 

Not needed. Sampling was 
performed using a regular grid 



[19] Diniz-Filho et al. 
(2020) 

1 msat AL Exhaustive 
search 

 Not performed. Only sampled sites 
were included in the prioritization. 

[20] Hanson et al. (2020) 3 SNP CU, ST PRIORITIZR Mean individual 
heterozygosity 

Thin plate splines; phylogenetic 
interpolation with PHYLIN [32] 

[21] Nielsen et al. (2020) 5 mtDNA, 
SNP 

ST MARXAN Nucleotide diversity 

Percentage of private alleles 

Percent of outlier SNPs 

Inverse distance-weighting 

[22] Hanson et al. (2021) 10 msat ED Environmental 
diversity 

Jost's [34] genetic 
differentiation 

Not performed. Only sampled sites 
were included in the prioritization. 

[23] Phair et al. (2021) 1 SNP ST MARXAN Nucleotide diversity 

Expected heterozygosity 

Allelic richness 

Number of shared SNPs and 
private SNPs 

Proportion of outlier SNPs 

Inverse distance-weighting 

[24] von Takach et al. 
(2021) 

1 SNP AL PRIORITIZR  Not performed. Only sampled sites 
were included in the prioritization. 

[25] Xuereb et al. (2021) 1 SNP GM PRIORITIZR Expected heterozygosity 

Local FST 

Adaptive score [38] 

Population adaptive index 
[39]. 

Inverse distance-weighting 

 

Notes 

The table includes only papers using intraspecific genetic data to obtain information that is used to define the input of a spatial conservation prioritization 

problem. The table was prepared starting from papers known to the authors and searching within the literature cited in them. 



a Type of molecular marker used: mitochondrial DNA (mtDNA), nuclear DNA (nuDNA), amplified fragment length polymorphisms (AFLP), microsatellites (msat), 

single nucleotide polymorphisms (SNP) 

b Methods used to integrate intraspecific genetic data in spatial conservation prioritization: alleles (AL), conservation units (CU), genetic metrics (GM), split taxa 

(ST), environmental diversity (ED). See Table 1 in the main text for description of the methods 

c Method or software package used to perform spatial conservation prioritization (SCP): environmental diversity [40], MARXAN [41], ZONATION [42], PRIORITIZR 

[43], RAPTR [14], RESNET [44], MOEA (multi-objective evolutionary algorithms, [45]). Exhaustive search means that all the possible combinations of sites were 

considered. 

d Genetic metrics used in the prioritization either as biodiversity features (GM method), to split taxa layers (ST methods), as a distance or dissimilarity metric in 

the environmental diversity method (ED) or to integrate information on connectivity. 

e ESUs had been identified in other studies 

References 

1  Moritz, C. (2002) Strategies to Protect Biological Diversity and the Evolutionary Processes That Sustain It. Syst. Biol. 51, 238–254 
2  Bonin, A. et al. (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. 

Conserv. Biol. J. Soc. Conserv. Biol. 21, 697–708 
3  Thomassen, H.A. et al. (2011) Mapping evolutionary process: a multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413 
4  Diniz-Filho, J.A.F. et al. (2012) Planning for optimal conservation of geographical genetic variability within species. Conserv. Genet. 13, 1085–1093 
5  Taberlet, P. et al. (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–

1448 
6  Vasconcelos, R. et al. (2012) Identifying priority areas for island endemics using genetic versus specific diversity – The case of terrestrial reptiles of the Cape 

Verde Islands. Biol. Conserv. 153, 276–286 
7  Beger, M. et al. (2014) Evolving coral reef conservation with genetic information. Bull. Mar. Sci. 90, 159–185 
8  Schlottfeldt, S. et al. (2015) Multi-objective optimization in systematic conservation planning and the representation of genetic variability among 

populations. Genet. Mol. Res. 14, 6744–6761 
9  Diniz-Filho, J.A.F. et al. (2016) Exhaustive search for conservation networks of populations representing genetic diversity. Genet. Mol. Res. 15,  
10  Hermoso, V. et al. (2016) Species distributions represent intraspecific genetic diversity of freshwater fish in conservation assessments. Freshw. Biol. 61, 

1707–1719 
11  Carvalho, S.B. et al. (2017) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat. Ecol. Evol. 1, 0151 
12  Hanson, J.O. et al. (2017) Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc. Natl. Acad. 

Sci. 114, 12755–12760 
13  Nielsen, E.S. et al. (2017) Multispecies genetic objectives in spatial conservation planning. Conserv. Biol. 31, 872–882 
14  Hanson, J.O. et al. (2018) RAPTR: Representative and adequate prioritization toolkit in R. Methods Ecol. Evol. 9, 320–330 



15  Vasconcelos, R. et al. (2018) Combining molecular and landscape tools for targeting evolutionary processes in reserve design: An approach for islands. PLOS 
ONE 13, e0200830 

16  Paz-Vinas, I. et al. (2018) Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 
17  Rosauer, D.F. et al. (2018) Real‐world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conserv. 

Lett. 11,  
18  Hanson, J.O. et al. (2019) Conventional methods for enhancing connectivity in conservation planning do not always maintain gene flow. J. Appl. Ecol. 56, 

913–922 
19  Diniz-Filho, J.A.F. et al. (2020) Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of 

genetic diversity in the Brazilian Cerrado. Biodivers. Conserv. 29, 1555–1570 
20  Hanson, J.O. et al. (2020) Conservation planning for adaptive and neutral evolutionary processes. J. Appl. Ecol. 57, 2159–2169 
21  Nielsen, E.S. et al. (2020) A comparison of genetic and genomic approaches to represent evolutionary potential in conservation planning. Biol. Conserv. 

251, 108770 
22  Hanson, J.O. et al. (2021) Evaluating surrogates of genetic diversity for conservation planning. Conserv. Biol. 35, 634–642 
23  Phair, N.L. et al. (2021) Applying genomic data to seagrass conservation. Biodivers. Conserv. 30, 2079–2096 
24  von Takach, B. et al. (2021) Population genomics and conservation management of a declining tropical rodent. Heredity 126, 763–775 
25  Xuereb, A. et al. (2021) Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol. 35, 909–920 
26  Nei, M. (1987) Molecular Evolutionary Genetics, Columbia University Press. 
27  Ferrier, S. et al. (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. 

Distrib. 13, 252–264 
28  Phillips, S.J. et al. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 
29  Pritchard, J.K. et al. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959 
30  Foll, M. and Gaggiotti, O. (2006) Identifying the Environmental Factors That Determine the Genetic Structure of Populations. Genetics 174, 875–891 
31  Wilson, G.A. and Rannala, B. (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 
32  Tarroso, P. et al. (2019) Phylin 2.0: Extending the phylogeographical interpolation method to include uncertainty and user-defined distance metrics. Mol. 

Ecol. Resour. 19, 1081–1094 
33  Gower, J.C. (1971) A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 
34  Jost, L. (2008) GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 
35  Hoef, J.M.V. et al. (2014) SSN: An R Package for Spatial Statistical Modeling on Stream Networks. J. Stat. Softw. 56,  
36  Peterson, E.E. and Hoef, J.M.V. (2014) STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream 

Network Data. J. Stat. Softw. 56,  
37  Rosauer, D.F. et al. (2015) Lineage Range Estimation Method Reveals Fine-Scale Endemism Linked to Pleistocene Stability in Australian Rainforest 

Herpetofauna. PLOS ONE 10, e0126274 
38  Manel, S. et al. (2018) Predicting genotype environmental range from genome-environment associations. Mol. Ecol. 27, 2823–2833 
39  Bonin, A. and Bernatchez, L. (2009) Challenges in assessing adaptive genetic diversity: Overview of methods and empirical illustrations. In Population 

Genetics for Animal Conservation  (Bertorelle, G. et al., eds), pp. 123–147, Cambridge University Press 



40  Faith, D.P. and Walker, P.A. (1996) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of 
areas. Biodivers. Conserv. 5, 399–415 

41  Ball, I.R. et al. (2009) Marxan and relatives: Software for spatial conservation prioritisation. In Spatial conservation prioritization: Quantitative methods and 
computational tools  (Moilanen, A. et al., eds), pp. 185–195, Oxford University Press 

42  Moilanen, A. et al. (2009) The Zonation framework and software for conservation prioritization. In Spatial conservation prioritization: Quantitative methods 
and computational tools  (Moilanen, A. et al., eds), pp. 196–210, Oxford University Press 

43  Hanson, J.O. et al. (2021) prioritizr: Systematic Conservation Prioritization in R. R package version 7.0.1. https://prioritizr.net/,  
44  Sarkar, S. et al. (2009) The ConsNet software platform for systematic conservation planning. In Spatial conservation prioritization: Quantitative methods 

and computational tools  (Moilanen, A. et al., eds), pp. 235–248, Oxford University Press 
45  Coello-Coello, C. et al. (2007) Evolutionary Algorithms for Solving Multi-Objective Problems, (2nd edn) Springer US. 
 

 

 


	Genetics SCP Review preprint
	Outstanding questions R2 v1 2022_03_04
	Table S1

