
HAL Id: hal-03810018
https://hal.umontpellier.fr/hal-03810018

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MemCork: Exploration of Hybrid Memory
Architectures for Intermittent Computing at the Edge
Theo Soriano, David Novo, Guillaume Prenat, Gregory Di Pendina, Pascal

Benoit

To cite this version:
Theo Soriano, David Novo, Guillaume Prenat, Gregory Di Pendina, Pascal Benoit. MemCork: Ex-
ploration of Hybrid Memory Architectures for Intermittent Computing at the Edge. VLSI-SoC 2022 -
30th IFIP/IEEE International Conference on Very Large Scale Integration, Oct 2022, Patras, Greece.
pp.1-6, �10.1109/VLSI-SoC54400.2022.9939630�. �hal-03810018�

https://hal.umontpellier.fr/hal-03810018
https://hal.archives-ouvertes.fr

MemCork: Exploration of Hybrid Memory Architectures
for Intermittent Computing at the Edge

Theo Soriano1, David Novo1, Guillaume Prenat2, Gregory Di Pendina2, and Pascal Benoit1
1 LIRMM, University of Montpellier, CNRS - Montpellier, France - {firstname}.{lastname}@lirmm.fr

2 SPINTEC - University of Grenoble-Alpes, CNRS, CEA - Grenoble, France - {firstname}.{lastname}@cea.fr

As the memory can occupy up to 95% of the silicon
area for some MCUs, the power it consumes represents the
dominant part of the total circuit consumption [1]. An MCU
is designed to run simple applications with one or more tasks.
They include a very simple memory hierarchy with memories
integrated in a flat address space (no cache). In general, the
architecture includes at least three memories: a working one
based on SRAM technology, a storage one based on Flash
technology and a Read-Only Memory (ROM) that contains the
boot code. Depending on the application parameters, such as
the duration of the inactive phase, the right compromise must
be found between keeping the volatile memories powered and
saving and restoring their contents in non-volatile memory so
that they can be switched off.

Emerging non-volatile memory technologies (NVM) such
as FRAM, RRAM or MRAM have grown in maturity and
their integration into MCU architecture has been the subject
of a vast amount of research. These memories have SRAM-
like performance while having the capability to hold saved
data even if the power is turned off. Accordingly, they open
new opportunities in the design of ultra-low-power MCUs for
standby power critical applications and for energy harvesting-
based systems. Non-volatile MCUs that rely on the use of
emerging NVM are presented as interesting alternatives to
SRAM/Flash-based MCUs. Prior works include MCUs im-
plemented with FRAM [2] [3] [4] [5], RRAM [6] [7] [8] and
MRAM [9] [10] [11]. Emerging NVMs are used to provide
instant on/off capabilities to MCUs with near-zero power
consumption during the inactive phases. These works have
investigated the possibility of replacing SRAM and Flash with
a single universal memory, or a mix of SRAM/Emerging NVM
memories. Although these studies have succeeded in showing
the advantages of using emerging NVM or hybrid solutions in
specific applications, they usually present a particular solution
that is difficult to generalise to different application and
technology contexts. This non-systematic approach is costly
in terms of design time and does not allow an easy and rapid
exploration of different size/performance/power consumption
trade-offs.

Our goal is to find the best memory architecture based on a
data mapping that takes advantage of the different properties of
the available technologies. We present MemCork, a framework
for memory architecture and data mapping exploration in
intermittent MCU applications. Based on an evaluation on a
technology-agnostic FPGA prototype, it allows exhaustively
exploring the possible data mapping and memory architecture
combinations to find the most energy-efficient solution. To
show the relevance of our approach, we use MemCork to
evaluate two different intermittent applications and show that
different application characteristics can influence the best de-
sign choice for the memory architecture and the data mapping.

Abstract—Microcontroller units (MCUs) are often used in
Internet of Things nodes that operate intermittently. Such nodes
alternate active and inactive phases under strict energy con-
straints. Typically, the memory system has a significant impact
on overall MCU energy consumption. Memory accesses and
memory leakage power often dominate the consumption of active
and inactive phases, respectively. Emerging Non-Volatile Memory
(NVM) technologies have recently enabled the design of non-
volatile MCUs that can significantly reduce e nergy consumption
during inactive phases. However, replacing all memories with
emerging NVMs is not necessarily the best solution, as it
often results in dynamic power overhead during active phases.
Instead, a hybrid memory architecture that combines volatile
and non-volatile technologies is a promising alternative. However,
designing hybrid memory MCUs is challenging because the
technology that best fits a d ata s egment d epends o n i ts access
pattern during execution (e.g., program memory experiences
mostly reads while the stack alternates reads and writes). For a
given intermittent application, our goal is to find the best memory
architecture based on a data mapping that takes advantage of
the different properties of the available memory technologies.
To this end, we present MemCork, a tool for hybrid mem-
ory architecture exploration in intermittent computing devices.
Based on an instrumented execution on a technology-agnostic
FPGA prototype, our tool exhaustively explores the possible
data mapping and memory architecture combinations to find
the most energy-efficient solution. We evaluate MemCork on two
representative intermittent applications and find a customised
memory architecture and data mapping that reduces energy
consumption by up to 23% compared to a fully NVM solution.

Index Terms—IoT, intermittent computing, design exploration,
MRAM, FPGA emulation, wireless sensor node, edge computing,
tiny ML

I. INTRODUCTION

For many applications, electronic systems operate inter-
mittently. This is particularly the case in the context of the
Internet of Things (IoT). IoT nodes can be used for sensing,
actuating, processing, receiving, and/or transmitting data, but
these functions are only executed periodically or following
a trigger event, meaning that the device remains inactive for
the rest of the time. Nodes include computing and storage
resources embedded in a Microcontroller Unit (MCU) and
usually operate in energy-constrained environments. To avoid
unnecessary energy consumption during the inactive phases,
IoT nodes can operate under different energy-saving modes,
the most aggressive one being the total cut-off of the power
supply. This powering down can be intended or not, depending
on available energy management policies. Although cutting the
power supply is the most radical solution for limiting energy
consumption, it is also the one that penalises the most in terms
of performance and reactivity.

II. MCU DESIGN AND MAIN CHALLENGES

The design of an energy-efficient MCU implementation of
an intermittent IoT application is a challenging task. It includes
the definition of an architecture based on a set of memory tech-
nologies and the corresponding data and instruction mapping.

To
o

lch
ain

Application
sources

Compiler

Assembler

Linker

Machine code (.o)

ELF file

Assembly code (.s)

Objcopy

Hex file

MCU

NVM

.text

RISC
CPU Core

P
erip

h
erals

VM

Interconnect

Linker script

.data

.bss

.heap

.stack

DMA WUCROM

Fig. 1. Typical microcontroller compilation flow and architecture

MCU architecture and compilation flow. As shown in
Fig. 1, most MCUs include a Reduced Instruction Set Com-
puter (RISC) CPU core, a set of task-specific logic circuits
such as Direct Memory Access (DMA) or Wake-Up Con-
troller, peripherals to communicate with other components,
Volatile Memories (VM) and NVM. NVM is usually based
on a ROM for the boot code, and a storage memory (Flash
or EEPROM) for the program and read-only data. The VM
(SRAM) is used to store data during program execution. At
the software level, the source code is compiled and then linked
to generate the executable, using a dedicated toolchain. We
focus on the linker script, which declares and defines the
memories and their corresponding address ranges. At compile
time, this script maps instructions and data to the memories
by grouping them into typically five sections. The .text section
contains the application code as a sequence of instructions,
the read-only data and the default values of the application
global variables initialised to specific values other than zero.
The application global variables are also stored in the .data
section where default values are initialised from .text section
at startup and can be modified during execution. In the same
way, the .bss section contains all uninitialised variables and is
initialised to zero at startup. The .heap is used for dynamic
memory allocation and the .stack for temporary data such as
function parameters, return address and local variables. For
both of them, their size is defined by the programmer in the
linker script. As depicted in Fig. 1, the .text section is stored in
NVM, while .data, .bss, .heap and .stack are located in VM.
Main challenges. The first challenge is the definition and
design of high-level intermittent application and memory
models. Accordingly, we define an intermittent application
model that covers a wide range of possible applications by
dividing them into several phases and defining the activity and
operating modes of the memories in each phase. Regarding
high-level memory energy models, we define and build them
for different technologies and sizes in a consistent way for
activation-based evaluation. For the mainstream technologies,
we rely on information extracted from datasheets and memory
compilers, while for MRAM we perform electrical simulations
and characterisation of complete memory banks. The second

challenge comes from the fact that in the case of an event-
based IoT node, memory size and access pattern depend on
the application type and on its environment. For example,
a typical temperature sensor node application will sample
data and do some processing (possibly min/max, average)
before transmitting the data. This type of application requires
a small memory and generates sporadic requests. However,
if we take the example of an intelligent application based
on machine learning, involving significantly more processing
and the storage of many constant values, the memory needs
and activity are considerably higher. Furthermore, in event-
based applications, the wake-up probability depends on the
environment in which the system is located. Regardless of
the application, the memory usage will be strongly correlated
with the wake-up frequency. All these parameters have an
impact on the activity of the memory and therefore on its
energy. To address this challenge, we propose MemCork,
a framework for intermittent MCU application evaluation.
We use an application evaluation platform allowing a fine-
grained tracking of the memory activity, performed on a
technology-agnostic FPGA prototype to characterise various
applications running in real-time in a real-life environment.
Finally, the third challenge relates to the design exploration
of all the possible memory architectures and data mapping
options considering multiple memory technologies for a given
application. Accordingly, in MemCork, we introduce a mem-
ory architecture and data mapping exploration tool that takes
advantage of the different properties of memory technologies
to find a custom architecture and data mapping for minimal
memory energy consumption.

III. MODELLING ASSUMPTIONS

In this section, we define a set of parameters to model and
evaluate the energy of intermittent computing MCUs to enable
hybrid memory architecture exploration. To this end, we first
define an intermittent application model that covers a wide
range of possible applications by dividing them into several
phases. We approximate the overall energy as a function of
key parameters that capture the activity and operating modes
of each memory in each phase. We then build parametric
memory models for different technologies and sizes to enable
an activation-based energy consumption estimation.

A. Intermittent application model

erun erestoreebackup
Time

Po
w
er

Teval

Po
w
er

Time

eactive einactive

ta ti

tre tru tba Edyn

Estat

Fig. 2. Intermittent computing MCU power profile

Fig. 2 illustrates a possible MCU power profile of an
IoT node running an intermittent application. The system is
inactive by default and performs event-driven tasks. Events
are depicted as flags in the picture; they can be periodic or

aperiodic. Before transitioning from an active to an inactive
phase, the node can secure the data stored in VM with a
transfer to NVM (backup). In this case, it is necessary to add
hardware and software support for backup and restore (the
reverse operation) of volatile data. Based on these basic as-
sumptions, we define several timing parameters to characterise
the application profile. We consider the system in an evaluation
time window denoted as Teval = Ta + Ti, where Ta and Ti

are the sums of all the active (ta) and inactive (ti) phases,
respectively. We further split ta into an execution phase tru,
a backup phase tba and a restore phase tre. Thus, ta and ti
depend on the frequency of events and the duration of the
corresponding phases.

Regarding the energy modeling, we define the MCU energy
during Teval as Emcu, which corresponds to the sum of the
consumption during Ta (Eactive) and Ti (Einactive). Eactive

is the sum of the energy of each active phase (eactive) and
Einactive is the sum of each inactive phase (einactive). Thus,
eactive = erestore+erun+ebackup. Emcu is also the sum of the
energy of the memory Emem and the remaining logic Elogic.
However, as justified in Section I, we assume Elogic ≪ Emem.
Thus, we approximate the consumption of the MCU to that
of all its memories, i.e., Emcu ≈ Emem. The memory energy
during any phase is Emem = Edyn +Estat, with Edyn being
the sum of the dynamic energy of each memory (edyn) and
Estat the sum of their static energy. We define the dynamic
energy of a memory as edyn = (nrd×Erd)+(nwr×Ewr), nrd

and nwr being the number of read and write accesses, Erd and
Ewr the read and write energy, respectively. We define backup
and restore content as Bbr =

∑
Bvm with Bvm being the size

of data and/or instructions stored in a VM. For backup activity,
we consider the reading of Bvm in each of the VM and the
writing of Bbr in the destination NVM. For restore activity,
we consider the reversed process. Backup and restore phases
duration tba and tre depend directly on the bandwidth of the
source and destination memories and on the amount of data
to be transferred Bbr. We assume that the backup and restore
procedures are executed by a dedicated device such as a DMA.

For static energy, we assume a typical memory level power
management, i.e., power modes can be controlled indepen-
dently for each memory. We also assume On and Off modes.
Memories can only be accessed in On mode, which corre-
sponds to a static leakage power of PstatOn. The Off mode
allows a lower static leakage power PstatOff but leads to the
loss of the VM content. The static energy of an execution
phase of duration tphase is estat = Pstat × tphase. For Pstat

during a run phase, we consider all memories that contain
data or instructions as On while other memories are Off (e.g.,
empty memory or NVM used only for backup). Concerning
backup and restore, we consider all VM and NVM involved
in the process as On while other memories are Off. Finally,
during an inactive phase all memories are Off.

B. Memory models
To calculate the energy for different memories, we model

each technology in terms of the parameters defined in the
previous subsection: Erd, Ewr, PstatOn, PstatOff . As we
explore memory sizing, we choose to express these param-
eters as a function of the memory size. We collect data for
different memory sizes of each technology and approximate
each parameter as an affine function ax+ b with x being the
memory size, and a and b technology-dependent constants.

Parameters were extracted from commercial MCU
datasheets for 1MB and 2MB Flash memory with a 90nm
technology node, which was scaled down to 28nm. The same
information was obtained for two 28nm FD-SOI SRAM
(16kB and 64kB) built with the single-port high-density
compiler supporting forward body bias (SPHD-BODYBIAS)
from STMicroelectronics.

Emerging NVM, such as MRAM, are less mature than
mainstream technologies. As a result, we have no access to
datasheet information or memory compilers. Instead, we resort
to the design of a full memory at the transistor level and
its characterisation to extract the mentioned parameters. We
choose to design a high-density 32-bit word single bank with
an SRAM-like interface. The chosen CMOS process is 28nm
FDSOI from STMicroelectronics and the considered MRAM
processes are STT and SOT, with MTJ diameters of 28nm.

The first step is to calibrate the compact MTJ models of the
two MRAM technologies for electrical simulations. For each
of them, we calibrate the model to fit the state of the art for an
MTJ diameter of 35nm, and then extrapolate to 28nm. Based
on these compact models, we can design and characterise
128kB STT and SOT memories. Both memories include 1024
rows and columns. Since the word size is 32 bits, we have 32
words per row, resulting in a 32-to-one multiplexing to select
the word. The address is thus composed of 15 bits: 10 to select
the row and 5 to select the word in the row. We characterise the
bit cell by evaluating the parasitic resistance and capacitance
of the access lines depending on the memory size. This is
evaluated by drawing a very simplified layout of the memory
array to approximate the size of the access rows and parasitics.
These parasitics are injected in the critical path of the memory,
which contains the bit cell, made of the MTJ and access
transistor, the writing drivers, reading amplifiers and access
transistors such as activation transistors and multiplexing.
Thus, the critical path is representative of the worst-case
scenario for any bit cell and allows an exhaustive set of
electrical simulations using standard electrical simulators such
as Spectre from Cadence. We use these simulations to ensure
the operation of the memory and extract the main parameters
in terms of writing and reading currents, as well as timing data.
Full memory operation is then performed and validated using
a “fast-spice” simulator, such as UltraSim from Cadence, to
reduce the simulation runtime and cover a large number of
cases. From these other simulations, we can extract write and
read energies, the On and Off static power due to leakage of
a 128kB memory for both STT and SOT as shown in Table I.

TABLE I
128 KB MRAM HIGH-LEVEL ENERGY MODELS

STT 28nm SOT 28nm

Size [kB] 128 128
Byte read energy [J/B] 7.50e-12 7.50e-12
Byte write energy [J/B] 7.50e-12 3.75e-12
Static power in mode On [W] 1.50e-04 1.50e-04
Static power in mode Off [W] 2.40e-09 2.40e-09

To extend these estimations to other memory sizes, we build
linear functions of the MRAM parameters. We assume that
PstatOn and PstatOff increase linearly with the memory size
as all powered transistors contribute to leakage. For Erd and
Ewr we assume constant values because the bit-cells selected
in a memory access remain constant for any memory size.

IV. MEMCORK

Now that we have defined the application and memory
models, we look more closely at the memory exploration
tool. In this section, we present MemCork, a framework
for memory architecture and data mapping exploration in
intermittent MCU applications. First, we propose an evaluation
methodology based on a fine-grained tracking of the memory
activity performed on a technology-agnostic FPGA prototype.
It enables to retrieve both compile-time and run-time applica-
tion parameters of real-time intermittent applications running
in a real-life environment. Second, we combine the extracted
activity information with the high-level models introduced
in Section III in an exploration tool. This tool allows us to
exhaustively explore the possible hybrid memory architectures
and data mappings to select the most energy-efficient solution.

A. Application evaluation

FPGA

IBEX
RISC-V

CPU Core

In
terco

n
n

ect

Peripheral bus

R
C

C

G
P

IO
s

TIM
ER

s

U
A

R
Ts

SP
Is

I2
C

s

RAM

ROM

M
o

n
ito

r

Sensor and radio board

Application
HEX file

• Run-time parameters
• Number of wake-ups
• Total Trun
• Total Ti
• Minimum ti
• Section activity

• Compile-time parameters
• Section size

Fig. 3. Evaluation platform

We follow a methodology similar to [12], where an FPGA-
based emulation platform for edge computing node design ex-
ploration is used to track the memory activity of a real execu-
tion. It includes a wireless sensor node prototype for architec-
ture evaluation and exploration under real-life conditions. The
prototype is based on a Nexys video FPGA development board
connected to a radio module (with Bluetooth low energy and
LoRa) and sensors (inertial measurement unit, microphone,
temperature, humidity, and camera). It also integrates a power
management unit for battery voltage regulation. As illustrated
in Fig. 3, an open-source 32b RISC-V MCU architecture with
various peripherals is embedded into the FPGA.

We extend the platform with an enhanced monitor, capable
of retrieving run-time information and to evaluate the activity
of memories with a fine granularity. Monitoring memory
addresses individually is not realistic as it would generate
excessively large traces. Thus, we change the activity moni-
toring to record at the section granularity (see Section II). The
monitoring infrastructure performs two tasks: (1) configuration
of the FPGA monitors based on the application compile-time
parameters (sizes of the sections), and (2) recording of applica-
tion run-time parameters (obtained by running the application
on the platform during Teval). The monitor, configured from
software, tracks nrd and nwr, the number of reads and writes
in several parameterizable sections. It also measures Ti as
described in Section III. Once configured, the monitor is non-
intrusive.

It must be noticed that the application execution on FPGA
does not include backup and restore phases, as they depend

on the memory technology. Their execution is only con-
sidered in the subsequent hybrid memory exploration step
(Section IV-A). Since they result in an extra activity at the
beginning (back-up), and the end (restore) of the inactive
phases, it requires a minimum inactive duration ti between
two run phases to be feasible.

B. Hybrid memory exploration

• Compile-time parameters
• Section size

• Run-time parameters
• Number of wake-ups
• Total Trun
• Total Ti
• Minimum ti
• Section activity

MemCork

Performance and energy
evaluation

Solution generator

Techno libraries:

• Techno properties
• RW/RO
• Size range
• V/NV
• Read/Write time

• Energy models
• Read energy
• Write energy
• On leakage
• Off leakage

N sections
• RW/RO

M memories
• Techno
• Size

S

Memory sizing

S’

Evaluated solutions

F

Fig. 4. MemCork exploration flow

As illustrated in Fig. 4, this exploration tool uses five inputs;
first, a library containing the properties and energy models of
each available memory technology (detailed in Section III);
second, M , the set of memories, with their corresponding
technology and size defined by the user; third, N , the set
of sections and their properties; fourth, the compile-time
parameters that contain information about sections such as
their sizes; finally, the output of the monitor with the resulting
run-time parameters (detailed in Section IV-A).

We propose an algorithm that explores all possible memory
architecture and section mapping combinations for the eval-
uated application, with m = |M | the number of memories,
and n = |N | the number of sections. A memory Mj can store
|Mj | bytes, and can be read-only (R), or read/write (R+W).
|Ni| is the size in bytes of a section Ni. A feasible mapping is
an application f : N 7→ M where all sections can be mapped
to the available memories. One or more Ni sections can be
mapped into a memory Mj provided that R+W Ni sections
are only mapped to a R+W Mj memory. Based on its inputs,
the tool generates S, the set of solutions (feasible mappings)
with cardinal |S| ≤ mn, depending on the constraints of the
different sections and memory, i.e., type (R or R+W) and size.

Based on the section sizes and on the required backup space,
the tool computes the dimension of each memory for each
solution of the S set. A user-defined upper and lower limit
is assumed for each memory technology. According to the
generated section mapping, it determines the minimal memory
depth that minimises the total consumption. A memory size is
valid only if it is within the range allowed in the corresponding
memory technology library. Once calculated for each solution,
the tool extracts S′, the subset of S containing all solutions
for which the memory size is valid.

Finally, based on the run-time parameters obtained with
the monitor described above, the solutions of the set S′

are evaluated following the energy modelling methodology
proposed in Section III. As mentioned in Section IV-A, the
memory activity and duration related to backup and restore is
introduced at this stage. The energy of each memory for each
application phase during the evaluation window is calculated.

The output of the tool is the solution set F , which is a subset
of the set S′. It only includes the solutions where execution
is feasible, i.e., complies with the minimum ti required for
backup and restore.

V. RESULTS

Recent studies have succeeded in showing the advantages
of using emerging NVM or hybrid solutions in specific appli-
cations. MemCork is a systematic and automated exploration
tool, able to cover a wide range of applications. To demonstrate
this capability, we define two applications with very different
characteristics: a simple light application representative of
temperature-like sensor nodes, and a much more complex
heavy application based on machine learning inference pro-
grammed in TensorFlow Lite for Microcontrollers. For both
applications we assume a periodic wake-up with a period
T and an identical execution phase at each wake-up. In
this particular case, Teval = T is sufficient to evaluate the
application.

Table II shows the application parameters for both appli-
cations. For the light one, the code is very simple resulting
in a .text section smaller than 10kB and the amount of
raw data generated by the sensor is very low (4B). The
data section is empty while the .bss section is a bit more
than 5kB because it contains all the user-level input and
output buffers of communication peripherals. For the heavy
application, the code is significantly more complex integrating
multiple libraries (TensorFlow Lite + KissFFT), which results
in a significantly larger .text section (236kB). Furthermore, the
input raw data have a maximum size of 32kB, the associated
features use 2kB and the TensorFlow Lite model uses 20kB.

TABLE II
APPLICATION PARAMETERS FROM MONITOR OUTPUT

Light app Heavy app

Section Size [B] Rd [B] Wr [B] Size [B] Rd [B] Wr [B]

.text 6.0e+03 2.6e+06 0 2.4e+05 4.8e+08 0
.data 0 0 0 1.4e+02 1.9e+02 2.0e+00
.bss 5.1e+03 4.6e+04 5.2e+02 1.7e+04 2.3e+06 1.5e+05

.heap 1.0e+03 0 0 3.3e+04 2.0e+07 1.5e+06

.stack 1.0e+03 4.6e+02 4.8e+02 3.3e+04 6.3e+07 2.9e+06

Concerning run-time parameters, the light application tru is
17ms versus the 3.53s for the heavy application. Table II shows
that in both cases, reads in .text section represent a large part of
the overall memory activity (from 83% to 98%). For the light
application, there is no activity in the .text section as it is empty
and the application does not use dynamic allocation resulting
in no activity in the .heap section. The .bss and .stack sections
are the most active after the .text section. This is because it
contains the input and output buffers of the peripherals: in this
type of application, the use of the peripherals represents a large
part of the activity. Concerning the heavy application, the .heap
and .stack sections show a high activity due to the complexity
of the application. We also observe a certain activity in the .bss
section. Indeed, this section contains an array of about 10kB
generated by TensorFlow and called Tensor Arena, which is
used to store input, output, and intermediate arrays during
inference. Finally, we notice that the activity in the .data
section is very low because the application uses very rarely
initialised global variables.

0510152025

HYB

NV

BEST

HYB

NV

BEST

HYB

NV

BEST

Li
g
h
t

a
p
p
lic

a
ti
o
n

T
=

0
.1

s
T
=

1
s

T
=

1
d

(a)

text data bss heap stack backup

Flash SRAM STT SOT

10 11 10 8 10 5 10 2 101

(b)2.0e-04

2.0e-04

1.5e-04

2.1e-05

2.0e-05

1.6e-05

4.6e-07

5.2e-10

4.5e-10

0100200300400500600700
Total memories size [kB]

HYB

NV

BEST

HYB

NV

BEST

HYB

NV

BEST

H
e
a
vy

 a
p
p
lic

a
ti
o
n

T
=

5
s

T
=

1
0
m

T
=

1
d

(c)

10 11 10 8 10 5 10 2 101

Average memory power [W]

(d)1.3e-03

1.2e-03

1.0e-03

1.2e-05

1.0e-05

9.0e-06

1.1e-06

8.1e-08

6.8e-08

Fig. 5. Memory architecture (left) and corresponding average power (right) of
a hybrid (HYB), a fully non-volatile (NV) and the optimal (BEST) solutions
proposed by MemCork depending on different wake-up periods for the light
(top) and heavy (bottom) applications

We used MemCork to study the influence of application
parameters such as the wake-up period, section size and
activity on the memory architecture and section mapping. The
read/write accesses for each section were retrieved for the
considered application, over the chosen evaluation window.
The results are summarised in Fig. 5: the top bar graphs
for the light application and the bottom ones for the heavy
application. In this experiment, we considered 7 memories
in the set M: one Flash (green), two SRAM (dark blue),
two STT (pink) and two SOT (light blue); and 6 sections
in the set N: .text (dark purple), .data (purple), .bss (dark
pink), .heap (orange), .stack (yellow), and backup (white).
Because of the page write granularity of Flash memory, it can
only contain read-only sections and be used for backup. The
exploration was performed on this set for both applications
with different wake-up periods Ti: 0.1 second, 1 second, and
1 day for the light applications; 5 seconds, 10 minutes and
1 day for the heavy application. For each run, we extracted
for analysis, among thousands of generated mappings, three
relevant solutions: HYB (hybrid), NV (fully non-volatile) and
BEST (optimal solution). The hybrid solution uses a SOT
memory for .text section and backup content plus an SRAM
memory for all other sections. The fully non-volatile solution
uses a single SOT memory for all sections. We use these two
solutions as a baseline to represent typical microcontroller
architecture with SOT replacing Flash and both Flash and
SRAM. Finally, the optimal solution is the one that results in
the lowest average power consumption during Teval. Each line
of the graph represents a N 7→ M mapping solution on the left
side, and the associated average memory power consumption
on the right. For example, the first line of Fig. 5(a) represents
the light application mapped in a hybrid architecture where
.text section and backup content are located in a 16kB SOT
memory while .bss, .heap and .stack sections are located in an
8kB SRAM. The corresponding average power for a 100ms
period is 0.2 mW.

We observe for both applications, on the lowest considered
duty cycles (1 day period), that the best solution relies on
a Flash for the .text section. In the absence of precise fig-
ures, it should be noted here that we have not taken into
account the static consumption PstatOff of the Flash: we
can therefore assume that this is an idealised consumption
for this technology. This encourages the choice of Flash for
very low duty cycle applications, even though its read energy is
higher than that of other technologies. For the light application,
for a 100ms and 1s period the BEST solution selected by
MemCork was a hybrid solution with .text section in an 8kB
SRAM and all other sections and backup content in two 8kB
SOT. This solution allows up to a 23% reduction in average
energy consumption compared to a fully non-volatile solution.
Considering the heavy application, for a 5s period, the best
solution is a 256kB SOT memory for .text, .data and .bss
sections, a 64kB SRAM for .heap and .stack and a 64kB
SOT for content backup/restore. This solution allows a 15%
reduction in average memory power compared to a fully non-
volatile approach. It combines the low active static power of
SRAM in On mode during active phase and the low static
power of SOT in Off mode. For a 10 min period, for the
BEST solution, .heap and .stack sections are now directly
mapped to the 64kB SOT and the use of a 64kB SRAM is
no longer optimal. The resulting optimised fully non-volatile
solution uses two non-volatile memories that are smaller than
the single memory of the traditional solution, allowing a 12%
reduction of the power consumption. For such a small duty
cycle, this solution takes full advantage of the low inactive
static power of SOT technologies. The solutions generated
by the memory mapper are optimised to avoid large unused
memory segments, which reduces the aggregate size of the
memories.

VI. RELATED WORKS

To the best of our knowledge, this is the first work to
propose a systematic and automated exploration framework
of hybrid memory MCU with custom data placement. Prior
works target architecture exploration and/or data placement
for cache-based System-on-Chip (SoC) with hybrid memory
technologies. These works also rely on a methodology for
the evaluation of performance, energy, and/or area of hybrid
memory-based SoCs [13] [14]. In [15] and [16], the authors
use an FPGA emulation method to evaluate the performance
of hybrid memory architecture. However, these works target
high-performance computing architectures and applications,
which differ significantly in the intermittent edge computing
domain targeted in this work. Patrigeon et al. [17] developed
a memory technology exploration methodology that targets
MRAM integration in ultra-low power MCU architecture.
They also use an FPGA to emulate a complete microcontroller
architecture in a real-world environment and evaluate memory
consumption for different technologies using activation-based
estimations. Assuming a two-section memory (one section for
the application code and one section for the rest), they observe
that a hybrid configuration with MRAM for code and SRAM
for data is 26% more energy efficient than a traditional Flash +
SRAM approach. However, this work only considers very ba-
sic applications and low complexity benchmarks. Furthermore,
they only perform technology exploration for two memories
with a constant size (128kB for code and 16kB for data)
regardless of the application size.

VII. CONCLUSION

We introduced MemCork, a systematic and automated
framework for hybrid memory architecture and data mapping
exploration. This tool allows identifying the most energy-
efficient solution for a given application based on a fine-
grained tracking of the memory activity, performed on a
technology-agnostic FPGA prototype running applications in
real-time and in a real-life environment. We used MemCork
on two typical applications to study the influence of the
application type and its environment on the most energy-
efficient solution. MemCork found automatically solutions for
both types of applications, reducing memory consumption by
up to 23% compared to a naive memory architecture based
on a single NVM. We expect MemCork to encourage the use
of emerging memory technologies in the design of low-power
MCU for intermittent computing at the edge.

ACKNOWLEDGMENT

The authors acknowledge the support of the French National
Research Agency (ANR), under grant ANR-19-CE24-0017
(NV-APROC project).

REFERENCES

[1] G. Patrigeon, “Ultra low-power integrated systems for the internet-of-
things,” Ph.D. dissertation, Univ. Montpellier, 2020.

[2] M. Zwerg, A. Baumann et al., “An 82 µA/MHz microcontroller with
embedded FeRAM for energy-harvesting applications,” in Proceedings
of ISSCC, 2011.

[3] S. Khanna, S. C. Bartling et al., “An FRAM-based nonvolatile logic
MCU SoC exhibiting 100% digital state retention at VDD = 0 V achiev-
ing zero leakage with <400-ns wakeup time for ULP applications,”
IEEE JSSC, 2013.

[4] F. Su, Y. Liu et al., “A ferroelectric nonvolatile processor with 46 µs
system-level wake-up time and 14 µs sleep time for energy harvesting
applications,” IEEE TCAS1, 2016.

[5] Y. Liu, F. Su et al., “A 130-nm ferroelectric nonvolatile system-on-
chip with direct peripheral restore architecture for transient computing
system,” IEEE JSSC, 2019.

[6] F. Su, W.-H. Chen et al., “A 462GOPs/J RRAM-based nonvolatile intel-
ligent processor for energy harvesting IoE system featuring nonvolatile
logics and processing-in-memory,” in Proceedings of VLSI Symposium,
2017.

[7] Z. Wang, Y. Liu et al., “A 65-nm ReRAM-enabled nonvolatile processor
with time-space domain adaption and self-write-termination achieving
>4x faster clock frequency and >6x higher restore speed,” IEEE JSSC,
2017.

[8] T. F. Wu, B. Q. Le et al., “A 43pJ/cycle non-volatile microcontroller
with 4.7 µs shutdown/ wake-up integrating 2.3-bit/cell resistive RAM
and resilience techniques,” in Proceedings of ISSCC, 2019.

[9] N. Sakimura, Y. Tsuji et al., “A 90nm 20MHz fully nonvolatile mi-
crocontroller for standby-power-critical applications,” in Proceedings of
ISSCC, 2014.

[10] M. Natsui, D. Suzuki et al., “An FPGA-accelerated fully nonvolatile
MCU for sensor-node applications in 40nm CMOS/MTJ-hybrid tech-
nology achieving 47.14µw operation at 200MHz,” in Proceedings of
ISSCC, 2019.

[11] M. B. Tahoori, S. M. Nair et al., “A universal spintronic technology
based on multifunctional standardized stack,” in Proceedings of DATE,
2020.

[12] T. Soriano, D. Novo et al., “An FPGA-based emulation platform for edge
computing node design exploration,” in Proceedings of RSP, 2021.

[13] T. R. Kumar, C. Ravikumar et al., “Memory architecture exploration
framework for cache based embedded SOC,” in Proceedings of VLSID,
2008.

[14] M. Katsaragakis, L. Papadopoulos et al., “Memory management method-
ology for application data structure refinement and placement on het-
erogeneous DRAM/NVM systems,” in Proceedings of DATE, 2022.

[15] K. T. Malladi, M.-T. Chang et al., “FAME: A fast and accurate
memory emulator for new memory system architecture exploration,” in
Proceedings of MASCOTS, 2015.

[16] M.-T. Chang, I. S. Choi et al., “Performance impact of emerging memory
technologies on big data applications: A latency-programmable system
emulation approach,” in Proceedings of GLSVLSI, 2018.

[17] G. Patrigeon, P. Leloup et al., “FlexNode: a reconfigurable internet of
things node for design evaluation,” in Proceedings of SAS, 2019.

	Introduction
	MCU design and main challenges
	Modelling assumptions
	Intermittent application model
	Memory models

	Memcork
	Application evaluation
	Hybrid memory exploration

	Results
	Related works
	Conclusion
	References

