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1. Introduction

Most of soft tissues such as arteries, tendons and
intervertebral discs are composed of extracellular
fibres which are considered to be crimped and
surrounded by matrix called ground substance. In
Gatt et al. (2015) the authors proposed that this
crimped fibre structure may be the reason of the
negative Poisson’s ratio (¥ < 0) they observed for
tendons under uniaxial tests. Besides, negative
Poisson’s ratio have also been discovered in skin
tissue (Veronda and Westmann 1970), carotid arteries
(Timmins et al. 2010) and annulus fibrosus tissue
(Baldit et al. 2014; Derrouiche et al. 2019; Dusfour et
al. 2020). In addition, soft tissues were also well
reported to have large (v > 0.5) Poisson's ratio
(Vergari et al. 2011; Swedberg et al. 2014). In Xiao et
al. (2020) the authors studied the tendon Poisson’s
ratio by considering the fibre corrugation as a 2D
sinusoidal structure, but no negative value was found
in their study. Many soft tissues such as aortic wall
(Niestrawska et al. 2016) and tendon (Verzar 1964;
Evans and Barbenel 1975; Thompson et al. 2010) are
found to possess a helix-shape fibre 3D micro-
structure. In Khani et al. (2016) the authors studied
the mechanical properties of composites reinforced by
helical fibres, but the effective Poisson’s ratio of the
composite was not determined.

Present study is aimed at investigating the correlation
between soft tissue Poisson’s ratio and fiber structure.
To do so, the considered soft tissues are assumed to
be composite materials reinforced by helical fibres
and matrix is supposed to be perfectly bounded with
the fibres. We further consider a periodic arrangement
of the helical fibres, with or without cross-links in the
aim to investigate their respective implication on the
overall composite Poisson’s ratio.

2. Methods

An homogenization procedure, based on double scale
asymptotic expansions which is well documented by
Papanicolau et al. (1978), is used to estimate the
effective rigidity tensor. A finite element model is
developed to numerically study the mechanical
properties of the composite reinforced by Fig.1 (a)
uni-helix fibres and Fig.1 (d) helix with cross-linked

fibres. The Poisson’s coefficients are calculated from
the effective rigidity tensor of the composite. The
stress-strain curve for soft tissue is usually J-shaped,
and the proposed model only focuses on small initial
strain which is considered as quasi-linear behavior.
The elastic modulus of fibres is set to 100 MPa based
on measurements (Dutov et al. 2016) and the elastic
modulus of the matrix is set to 10 kPa (Cortes and
Elliot 2012). The Poisson’s ratio of both the fibres
and the matrix is set to 0.3 (Reese et al. 2010). We
define the representative elementary volume (REV)
associated to periodic boundary conditions. The
geometric design is built by using Solidworks and
FreeCAD, the mesh is generated by Gmsh, the finite
element analysis is calculated by Cast3m and the data
analysis is done by Python programming.

2.1 Representative elementary volume

The REV of the composite reinforced by uni-helix
fibres is shown in Fig. 1(a-c) and the composite
reinforced by helix with cross-linked helix fibres is
shown in Fig. 1(d-f), respectively. The helix lead
direction is set parallel to the z-axis and the cross-
links are set perpendicular to the z-axis and are
connected to the nearest helix fibre at the furthest
point. The helix angle is set to 28° for both of the
considered REV whereas the fibres occupy a fraction
of the overall volume varying from 2% to 24%.

Figure 1. (a) REV of the helical fibre reinforced
composite. (b) Finite element mesh of (a). (c) Mesh
of the fibre in (b). (d) REV of the composite
reinforced by helix with cross-linked fibres. (e) Finite
element mesh of (d). (f) Mesh of the fibre in (e).

2.2 Boundary conditions

To obtain macroscopic elastic properties, periodic
boundary condition is applied to the REV. The
periodicity requires that the opposite surfaces of the
REV have the same deformation for a linear
displacement field in the REV. To impose the
periodic boundary condition, the finite element mesh
of the REV is set as shown in fig. 1(b) and (e), where
the meshes on the opposite boundary surfaces are
identical.

3. Results and discussion



The Poisson’s ratios of composites reinforced by uni-
helix fibres are shown in Fig. 2 (a). The term v;; is
defined as Poisson’s ratio that characterize the strain
in the j direction produced by the loading in the i
direction. No negative effective Poisson's ratio was
found for volume fractions ranging from 2% to 24%.
Dy, and Py, decrease with the increase of the fibre
volume fraction and D, and Dy, are larger than 0.3
when fibre volume fraction is ranging from 3% to
20%. Fig. 2 (b) shows that Poisson’s ratios of
composite reinforced by cross-linked fibres vy, ,
Vxz, Vzy and Dy, are negative, Dyy, Dyy, P,y and
VD, decrease and stabilize with the increase of the
fibre volume fraction ranging from 2% to 24%.
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Figure 2. The Poisson’s ratio versus fibre volume

fractions. (a) Composite reinforced by uni-helix fibres.

(b) Composite reinforced by cross-linked fibres.
4. Conclusions

The Poisson’s ratio of both fibre and matrix are set to
0.3 but the effective ratio of the composite varies with
the fiber structure. No negative effective Poisson's
ratio was found for composite reinforced by uni-helix
fibres but negative effective Poisson's ratio are found
in composite reinforced by cross-linked fibres. The
effect of cross-link position on Poisson’s ratio will be
further studied and we consider that cross-link might
also lead to large poisson's ratio. In conclusion, we
think that considering cross-links associated to
specific and more realistic structural arrangement of
fibres may be crucial for further soft tissue models.
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