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14 Abstract 
63 

64 

65 15 Recently,  the  application  of  natural  biocompatible  polymeric  hydrogels  for  the 
66 

67 16 conception of drug delivery matrices has attracted widespread interest. Thus, in the present 
68 
69 17 study, riboflavin pH-sensitive drug delivery hydrogels were developed based on blue crab 
70 
71 

18 chitosan (Cs), via direct dissolution in alkali/urea aqueous solution at low temperatures.  First, 
72 

73 
19 the effect of Cs characteristics in terms of acetylation degree (AD) and molecular weight (Mw) 

75 

76 20 on  the  structural,  mechanical,  thermal,  swelling  and  in  vitro  biodegradation  of Cs-based 
77 

78 21 hydrogels were studied. Data from overall analysis revealed that Cs with low AD and high Mw 
79 

80 22 exhibited improved mechanical properties, as evidenced by the compressive and rheological 
81 

82 23 behaviors  tests,  thermal  resistance,  swelling  behavior  and  in  vitro  degradation  kinetics. 
83 

84 24 However,  hydrogels  pore  sizes  were  reduced  with  the  AD  decrease  and  Mw  increase. 
85 

86 25 Additionally, hydrogels in PBS (pH 5.5) underwent quicker degradation, compared to those 
87 
88 26 immersed in PBS (pH 7.4). In the drug delivery model, the kinetics of Riboflavin release, 
89 
90 

through the Cs-based hydrogels were monitored. The Riboflavin release exhibited a typical tri- 
91 
92 

93 28 phasic deliverance pattern, with significantly higher released amounts in more acidic systems. 
94 

95 29 Therefore, drug encapsulation within the conceived pH-sensitive Cs-based hydrogels could 
96 

97 30 provide suitable and promoting microenvironment for drugs delivery. 
98 
99 

100 
31 
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37 1. Introduction 
122 

123 
38 Hydrogels are three-dimensional hydrophilic polymeric networks with the ability to 

125 
absorb large amounts of water or biological fluids [1-2]. Because of their high-water content, 

 

porosity and soft consistency, they closely simulate natural living tissues, more than any other 

class  of  synthetic  biomaterials  and  thus  open  up  many  possibilities  for  applications  in 

biomedical fields [3-5]. Physical hydrogels are distinguished from chemical hydrogels. The 

network of physical hydrogels is maintained through weak bonds (hydrophobic, hydrogen, 

136 44 ionic) that are not permanent because they are disconnected continuously depending on the 
137 
138 

45 medium (pH, temperature, ionic strength). The chemical hydrogels, however, have a network 
139 

140 
46 which is maintained by covalent crosslinks providing them a permanent character [6-7]. 

142 
The high porosity that characterizes hydrogels can easily be adjusted by controlling the 

 

density of the crosslinks in their matrix and their affinity to water. Moreover, their porous 

structure allows to controllably loaded and released drugs [8-9]. The benefits of hydrogels for 

drug delivery applications include the possibility of controlled and sustained release, which 

permits  a  high  local  concentration  of  an  active  pharmaceutical  ingredient  (drug)  to  be 

153 52 maintained over a long period of time. The drug can be loaded into a hydrogel, and then released 
154 
155 

53 by several mechanisms: controlled release, controlled swelling, chemically controlled release 
156 

157 
54 and environmental release [10]. 

159 
The  rate  of  release  can  be  managed  by  modifying  some  factors  such  as   polymer 

 

concentration, crosslinking density, and water content. Some «smart» hydrogels have the ability 

to respond to external stimuli such as pH, temperature, ionic strength, etc., making them 

excellent site-specific active ingredient in delivery matrices for diseases prevention and 

treatment [11-12]. 

170 60 Hydrogels are of great interest for other biomedical applications because of the ability to 
171 
172 

61 control their swelling, mechanical properties, chemical and physical structures, crosslinking 
173 
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236  

183 

200 

217 

224 

178 

179 
180 

62 density and porosity. Therefore, hydrogels are frequently used in tissue engineering for cell 
181 

182 
63 encapsulation or drug delivery, but as well as wound dressings, bioadhesives and biosensors 

184 
[13-14]. In fact, hydrogels can serve as templates for directing cell behavior and promoting cell 

 

organization. In addition, the biocompatibility of hydrogels has generated a lot of interest in 

hygiene products, implants and soft contact lenses [15-16]. 

Advantageously, chitosan can be used in the preparation of hydrogels which serve as a 

matrix for the incorporation of active agents [17-19]. As part of this research, chitosan obtained 

195 69 by partial deacetylation of chitin was chosen. Chitosan-based hydrogels have shown important 
196 
197 

70 advantages in terms of drug delivery, as they allow site-specific and / or time-controlled 
198 

199 
71 administration for small and large drugs [17,20]. They offer, furthermore, many benefits, such 

201 
as improving biosecurity and drug efficacy. Chitosan hydrogels can provide targeted delivery 

 

and improved stability of therapeutic agents against physiological degradation [17]. 

 

To the best of our knowledge, there is a lack of information in literature regarding the 
 

effect of acetylation degree and molecular weight on chitosan-based hydrogels, although 

several reports describe their developpement and application in particularly the biomedical 

212 77 field. Therefore, the objective of this work was the conception of high strength hydrogels based 
213 
214 

78 on chitosans with different acetylation degrees and molecular weights, to assess the effects of 
215 

216 
79 these two structural parameters on the properties of the resulting hydrogels. Subsequently, the 

218 

219 80 selected  hydrogel  was  applied  for  controlled  release  of  Riboflavin  with  very  interesting 
220 

221 81 biological potential, as drug model. 
222 

223 
82 2.  Materials and methods 

225 

226 83 2.1. Materials 
227 

228 84  Riboflavin was purchased from LOBA CHEMIE (India) and the other used chemical 

reagents from commercial sources were of analytical grade and employed without further 
 

purifications. 
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242 

259 

276 

237 

238 
239 

87 2.2. Chitosans preparation and purification 
240 

241 
88 Chitosans (Cs) from blue crab Portunus segnis shells were prepared in our laboratory, as 

243 
described in our previous study [21]. Briefly, Cs with different AD were obtained through chitin 

 

N-deacetylation with NaOH 12.5 M at a w/v ratio of 1/10 at 140 °C, for 2, 3 and 5 h and 

produced Cs were named Cs I, Cs II and Cs III. After filtration, Cs was washed to neutrality 

and then dried for 12 h at 50 °C. Based on the nuclear magnetic resonance (13C NMR) analysis, 

ADs of 17%, 13% and 8% were reached for Cs I, Cs II and Cs III, respectively. Further, Cs 

254 94 were characterized by size exclusion chromatography (SEC-HPLC) and average molecular 
255 
256 

95 weights (Mw) of 125 600, 118 900 and 115 000 g mol-1  were obtained for CsI, CsII and CsIII, 
257 

258 
96 respectively. 

260 
To generate Cs with different Mw, Cs, at different ADs, were hydrolyzed with Cellulase 

 

(10 U/g chitosan) in 0.5 N acetate-bicarbonate buffer (pH 5.2) at 55 ° C, for 1 and 3 h, as 

described by Chang et al. [22] with slide modifications. The Cs obtained are lyophilized and 

analyzed to study the evolution of their molecular mass. The respective Mw were reported in 

 

Table S1. 

271 102 Subsequently, Cs were purified according to the method described by Qian and Glanville 
272 
273 

103 [23]. Thus, crude Cs (6 g) was dissolved in 600 ml of HCl 0.1 M under stirring overnight at a 
274 

275 
104 temperature of 40 °C. The acidic solution was vacuum filtered to remove insoluble particles. 

277 
Cs was then precipitated with NaOH 0.5 M under continuous stirring until approximatively pH 

 

8.5. Thereafter, 6 ml of 10% (w/v) sodium dodecyl sulfate (SDS) was added to the suspension 

and the mixture was heated at 95 °C for 5 min. After cooling at room temperature, the pH was 

adjusted to 10.0 with 0.5 M NaOH. The mixture was vacuum filtered and the hydrated Cs was 

washed 5 times with 600 ml of deionized water at 40 °C. A solution of barium chloride was 

288 110 used to confirm the absence of residual SDS in the filtrate. Finally, the obtained purified Cs 
289 
290 

111 were lyophilized, milled to powder and then sieved. 
291 

292 

293 
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342 

296 

297 
298 

112 2.3. Conception of blue crab chitosan-based hydrogels 
299 

300 
113 Hydrogels were prepared based on the freezing/thawing approach described by Duan et 

302 
al. [5]. Briefly, Cs, derived from the action of Cellulase, were dissolved in an alkaline solution, 

 

widely used for the dissolution of cellulose and chitin, consisting of 4.5 wt. % LiOH, 7.5 wt. % 

KOH and 8.5 wt. % urea. Then, the reaction mixtures were maintained at -30 °C until complete 

freezing, followed by a thawing step at 20 °C under vigorous agitation, until a clear and 

transparent solution of Cs was obtained. After removal of air bubbles by centrifugation at 5000 

313 119 ×g for 15 min at 4 °C, the prepared solutions were maintained at 60 °C for 1 h (solvent 
314 
315 

120 evaporation technique), promoting the formation of Cs physical gels. After exhaustive washing 
316 

317 
121 with Milli-Q water, to remove the residual alkali/urea solution, prepared hydrogels were 

319 
immersed in an ethanol solution (100%) for 3 days to improve the resistance of the gels [24]. 

 

Foremost, Cs-based hydrogels with different AD and Mw were prepared at a 

concentration of 3% (w/v) [24], to study the effect of these two parameters on the structural, 

mechanical and rheological features of elaborated hydrogels. The corresponding code to each 

hydrogel was recorded in Table S2. Subsequently, an optimization of the ideal concentration 

330 127 for the formation of Cs-based hydrogels was performed. Accordingly, different concentrations 
331 
332 

128 were  used,  namely  1%,  2%,  3%,  4%  and  5%  of  Cs,  and  the  obtained  hydrogels   were 
333 

334 
129 characterized. 

336 
337 130 2.4. Blue crab chitosan rheological behavior in the alkali/urea aqueous solution 
338 
339 

131 To study the stability of the Cs in alkali/urea system, hydrogels (15 mm of diameter ×  1 
340 

341 
132 mm  of  thickness)  rheological  and  gelation  behaviors  were  investigated  with  dynamic 

343 

344 133 viscoelastic measurements. For all the experiments, a rheometer apparatus (Physica MCR, 
345 

346 134 Anton Paar, GmbH, France) equipped with a plate-plate measuring geometry (25 mm diameter, 
347  

348 135 0.1 mm gap) was used. Oscillatory measurements of the storage modulus (G′) and loss modulus 
349   

350 136 (G″) were carried out under a strain sweep from 0.1% to 1000% at 37 °C with a frequency of 1 
351   

352   

353  6 
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495  

360 

367 

391 

355 

356 
357 

137 Hz. Thermo-viscoelasticity properties in a ramp temperature from 20 to 80 °C was investigated, 
358 

359 
138 under constant frequency (1 Hz) and strain (1%), at a heating rate of 2 °C/min. A solvant trap 

361 

362 139 was applied to prevent water evaporation when heating. The data were analyzed with Rheoplus 
363 

364 140 software from Anton Paar. 

365 

366 
141 2.5. Analytical methods 

368 
2.5.1.   Hydrogels microstructure 

 

The cross-section of Cs-based hydrogels was studied using scanning electron microscopy 

SEM (Hitachi S4800), at an angle of 90° to the  surface, at  different magnifications.  Prior  to 

imaging their cross-section, hydrogel samples were lyophilized, sectioned and fixed on the 

SEM support using double side adhesive tape, and observed up to a 2000 x magnification, under 

379 147 an accelerating voltage of 2.0 kV and an absolute pressure of 60 Pa, after being sputter coated 
380 
381 

148 with a 5 nm thick gold. 
382 

383 

384 149 2.5.2.   Moisture content of Cs-based hydrogels 
385 
386 150 The water content was determined according to the methods described by AOAC (2000) 
387 
388 

151 [25]. The water content of the elaborated hydrogels was measured, in triplicate, by drying about 
389 

390 
152 100 mg of each sample in an oven at 105 °C until the dry weight of the sample was reached 

392 

393 153 (constant weight). Weights before and after drying were measured. The moisture content of 
394 

395 154 hydrogels was determined by measuring the mass loss of each film in triplicate and expressed 
396 

 

 

MC (%) = 

 
402 

W0 ‒ W1 

W0 
× 100 

403 157 where W0 and W1 are the respective masses (g) of hydrogels before and after drying at 105 °C. 

404 
405 158 2.5.3.   Swelling rate of hydrogels 
406 
407 

159 The swelling test was performed on pieces of hydrogels with masses of 20-30 mg. The 
408 
409 

410 160 samples  were  immersed  in  phosphate-buffered  saline  (PBS)  at  37  °C  and  after  24  h of 

411 

412 7 
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372  
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397 155 as follows: 
398   

399   
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531  

419 

436 

414 

415 
416 

161 incubation, the samples were removed, oven-dried and the masses were measured again [26]. 
417 

418 
162 The swelling rate (SR), repeated three times, was calculated as follows: 

420 
Ms ‒ Md

 
421 

163 SR (%) = 
422 

423 

Md 
× 100 

424 164 where SR is the swelling rate (%), Md  is the mass (g) of the oven-dried hydrogel and Ms  is the 
425 
426 

165 mass (g) of the swollen hydrogel. 
427 

428 

429 166 2.5.4.   Infrared spectroscopy analyses 
430 
431 167 The  prepared  Cs-based  hydrogels  FT-IR  analysis  was  performed  by  means  of  a 
432 
433 

168 spectrometer (Agilent Technologies, Carry630 series) with an  attenuated reflection accessory 
434 

435 
169 (ATR) containing a diamond/ZnSe crystal, at room temperature (25 °C). Spectra were recorded 

437 
in the spectral range frequencies of 650-4000 cm-1, with 32 scans of interferograms and a 

 

resolution of 4 cm-1. Prior to analysis, FT-IR spectrometer was calibrated via a background 

spectrum recorded from the clean and empty diamond for each spectrum. Data analysis and 

treatment were carried out using the OMNIC Spectra software (ThermoFisher Scientific). 

 
2.5.5.   X-ray diffraction studies 

 

To further investigate the structural characteristics of the prepared hydrogels, XRD 
 

patterns were recorded using an X-ray diffractometer (D8, Advance Bruker XRD 

diffractometer, Germany). Ni-filtered Cu Kα radiation (k = 1.5406 ˚A) was used to record  the 

455 178 X-ray patterns. The relative intensity was recorded in the scattering range 2θ of 5–50° with a 
456 
457 

179 step size of 0.02° and a counting time of 5 s/step, with an error of ±1°. 
458 

459 

460 180 2.5.6.   Thermal properties of blue crab chitosan-based hydrogels 
461 

462 181 Thermogravimetric analysis  (TGA Q500 High Resolution, TA  Instruments), operating 
463 
464 182 under nitrogen flow, was used to study the thermal stability of Cs-based hydrogels. The mass 
465 
466 

183 change of a sample as a function of temperature augmentation is the basis of TGA, and the 
467 
468 

469 184 progressive change in mass (%) as function of temperature, is recorded. Cs-based hydrogels, 

470 

471 8 
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472  

478 

485 

509 

526 

473 

474 
475 

185 initially about 4 mg, were heated from 25 to 700 °C at a heating rate of 20 °C/min and constantly 
476 

477 
186 measured with an accuracy of 0.01 mg.  Cs-based hydrogel thermograms were subsequently 

479 

480 187 analyzed using TA Universal V4.5A software. 
481 
482 

188 2.5.7.   Evaluation of hydrogels mechanical properties 
483 

484 
189 Hydrogel compression tests were carried out using the DMA50 (Dynamic Mechanical 

486 
Analyzer) universal testing machine (Metravib, Brand of ACOEM, France) at a temperature of 

 

25 °C and a compression speed of 1 mm/min. Samples were compressed at 10%, 20%, 30%, 

40%, 50% and 60%, and then reverted at the same speed of 1 mm/min, to obtain the stress- 

strain curves for gels’ compression-recovery. The dimensions of the hydrogel specimens 

(parallelepiped) for compression tests were 10 mm × 5 mm × 5 mm (based on the apparatus 

497 195 requirements). The stress-strain curve hysteresis was recorded and treated by the instrument 
498 
499 

196 software. 
500 

501 

502 197 2.5.8.   Hydrogels in vitro degradation test 
503 
504 198 Cs-based hydrogels in vitro biodegradation study was monitored through the gravimetric 
505 
506 

199 method  described  by  Qu  et  al.  [27].  Briefly,  hydrogels  (approximatively  100  mg)  were 
507 

508 
200 immersed in 10 ml of phosphate buffer saline (PBS) at pH 7.4 (physiological microenvironment 

510 

511 201 simulation)  and  pH  5.5  (acidic  microenvironment),  at  37  °C  and  under  gentle  shaking 
512 

513 202 (approximatively  100  rpm).  Thereafter,  hydrogel  samples  were  removed,  at  each desired 

interval time, washed with Milli-Q water to remove the excess of salinity, oven-dried for 48 h 
 

at 60 °C and then weighed. The remaining weight of hydrogels (%) was calculated based on the 

following equation: 

522 Mt 

523 206 Remaining weight ratio (%) = 
Mi 

× 100 
524 

525 
207 where Mt is the remaining hydrogels dry weight after degradation at each selected time interval 

527 

528 208 and Mi  is the initial hydrogels dry weight. 
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590  

537 

225 

582 

532 

533 
534 

209 2.6. In vitro riboflavin loading and release kinetics 
535 

536 
210 The amount of riboflavin incorporated in hydrogels was studied. Briefly, wet Cs-based 

538 
hydrogel (30 mg) were suspended in 10 ml of riboflavin solution (1-5 g/l) in dark at 5 °C for 

 

48 h. The riboflavin entrapment efficiency and loading capacity by the hydrogels were 

determined  considering  the  derivative  thermogravimetric  (DTG)  thermograms  [28],  by 

subtracting the amount of riboflavin in the supernatant from the total amount applied [24]: 

 
Mass of loaded riboflavin 

548 
215 Riboflavin loading capacity (%) = 

549 
550 

Mass of hydrogel samples 
× 100 

551 

552 216 Riboflavin entrapement efficiency (%) = 
553 

554 
555 

Mass of loaded riboflavin 

Mass of initial riboflavin  
× 100

 

556 
217 Regarding  the  riboflavin  release  studies,  loaded  hydrogel  samples  (30  mg)  were 

557 

558 218 subsequently incubated in 10 ml of aqueous HCl and NaCl (0.1 M) with different pH values 
559 

560 219 (pH 2.0, 4.5 and 7.4) at 37 °C, with stirring. At each time interval, an aliquot of the supernatant 
561 

562 220 (2.5 ml) was withdrawn and replaced by fresh medium at the same volume. The amount of 
563 

564 221 released riboflavin was determined spectrophotometrically, considering the cumulative amount 
565 

566 222 of riboflavin in each of the release system. The amount of riboflavin was estimated using a UV- 
567 

568 223 visible spectrometer (Agilent Technologies, Carry 630 series) at 450 nm on the basis of a 
569 
570 

224 riboflavin calibration curve (Data not shown). All studies were performed in duplicate and the 
571 
572 

average values were reported. 
573 

574 

575 226 2.7. Statistical analysis 
576 
577 227 Statistical analyses were performed with SPSS ver. 17.0, professional edition (SPSS, Inc., 
578 
579 

228 Chicago, IL, USA) using ANOVA analysis at a p-value ˂ 0.05. A standard deviation at the 
580 

581 
229 95% confidence level was used to compare all parameters analyzed for the different hydrogels 

583 

584 230 All assessments were repeated three times and average values with standard deviation errors 
585 

586 231 were reported. 
587 

588 
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596 

613 

630 

591 

592 
593 

232 3.  Results and Discussion 
594 

595 
233 3.1. Microstructure analysis of Cs-based hydrogels 

597 
Since  understanding  biomaterials  functional  properties  is  based  on  their  structure 

 

knowledge, the examination of Cs-based hydrogels microstructure, reflecting polymer and 

molecules interactions, is required [29]. 

SEM images showing the pore microstructure (cross section) of Cs-based hydrogels, with 

different AD and Mw, are displayed in Fig. 1. The pore size of the prepared hydrogels changed 

608 239 in the range of 1 ~ 6 μm and became bigger and bigger as the Cs AD increased, with more 
609 
610 

240 compact distribution. For example, pore size values of ~ 1 µm for CsIII-0 based hydrogel (Fig. 
611 

612 
241 1G), 2 µm for CsII-0 based hydrogel (Fig. 1D) and 3 µm for CsI-0 based hydrogel (Fig. 1A) 

614 
were reached, suggesting that lower AD allowed the preparation of a more well-organized 

 

network structure, which could contribute to mechanical support [30]. 

 

It was found likewise that the hydrogel pore size had the tendency to decrease with the 
 

increase of Cs Mw. Indeed, the pore size (approximatively 4 µm; Fig. 1I) of CsIII-3 based 

hydrogel, showing a microstructure, filled with larger interconnected pores, was about twice of 

625 247 that  for  CsIII-1  based  hydrogel  (approximatively  2  µm;  Fig.  1H),  which  could  lead  to 
626 
627 

248 modulations in Cs-based hydrogels swelling and drug release behaviors [17]. 
628 

629 
249 In another aspect, overall Cs-based hydrogels, regardless Cs AD and Mw, as shown in 

631 
Fig.  1,  the  formed  hydrogels  network  revealed  a  uniformly  distributed  porous  three- 

 

dimensional architecture, with, to variable extend, a roughness matrix surface. The pores 

interconnected in a recurrent style inside the hydrogels network affords a suitable medium flow 

and drug transport channels, being therefore appropriate for drug delivery [26,31]. 
 

641 254 3.2. Hydrogels moisture content determination 

642 

643 255 Moisture content (MC) of Cs-based hydrogels, reported in Table 1, revealed that values 
644 

645 256 decreased with the decrease of the AD, reaching 82%, 81% and 79%, for CsI-0 (AD=17%), 
646 

647 

648 11 
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790  

655 

672 

696 

650 

651 
652 

257 CsII-0 (AD=13%) and CsIII-0 (AD=8%) based hydrogels, respectively (p<0.05). however, 
653 

654 
258 considering Cs Mw, MC values were found to be strengthened with the decrease of Cs Mw. 

656 
Indeed, regarding an AD of 8% (CsIII), hydrogels MC rates of 79.90%, 80.26% and 81.83% 

 

were reached with respective Mws of 115 kDa (CsIII-0), 78.43 kDa (CsIII-1) and 16.04 kDa 

(CsIII-3), probably due a decrease of crosslinking density [5]. In fact, hydrogels are systems 

known for their remarkable water-holding capacity during their preparation, and the water 

content is one of the most features that distinguishes hydrogels from other biomaterials. Their 

667 264 water-rich structure facilitates, indeed, the transport of nutrients and molecules between the 
668 
669 

265 external environment and the hydrogel, which allows to mimic the function of cells in the body 
670 

671 
266 [9]. 

673 
Consequently, it could be proposed that the increase of CS MW, besides the decrease of 

 

its AD, as well as Cs-based hydrogels soaking in ethanol solution (100%), allowed the decrease 

in  Cs-based  hydrogels  water  content,  and  thereby,  reducing  pore  sizes  [24],  which  was 

consistent with SEM data. This finding seems to be beneficial for Cs-based hydrogels 

mechanical properties enhancement. 

3.3. Evaluation of Cs-based hydrogels swelling properties 
 

As an absorbent matrix, the degree of swelling of a hydrogel is a key parameter that is 

closely related to the ability of hydrogels to release active ingredients [32]. Swelling is defined 

691 275 as a continuous transition process from the solvent-free glassy state or partially rubbery state to 
692 
693 

276 a relaxed rubbery solvent containing state. The solvent infiltration and the elastic contraction 
694 

695 
277 from the network strain, as two opposite forces, create a skirmish in the swelling process, which 

697 

698 278 reaches the equilibrium, when they reach a dynamic balance [33]. In this context, the effect of 
699 

700 279 Cs AD and Mw on Cs-based hydrogels swelling ratio (SR) was studied and results are recorded 
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714 

731 

755 

709 

710 
711 

281 Results display that Cs-based hydrogels water absorption capacity was found to be 
712 

713 
282 dependent to the Cs AD and Mw. Indeed, SR values increased with the decrease of Cs AD as 

715 
well as the decrease in its Mw. For example, hydrogels developed with CsI (CsI-0; AD=17%) 

 

exhibited SR value of 13.59±0.45 g/g, compared to CsIII-0 based hydrogel, prepared with lower 

AD Cs (CsIII-0; AD=8%), with SR exceeding 18 g/g (Table 1). Moreover, regarding CsIII- 

based hydrogel, respective SR values of more than 18 g/g, 22 g/g and 26 g/g were reached with 

hydrogels prepared with GCsIII-0 (115 kDa), GCsIII-1 (78.43 kDa) and CsIII-3 (16.04 kDa). 

726 288 It is well known that the swelling properties of hydrogels depend on the hydrophilic 
727 
728 

289 nature of polymeric chains and the nature of bonds inside the matrix structure. Thus, it is 
729 

730 
290 possible to deduce that the decrease of Cs AD, and thereby, the increase of the -NH2 groups 

732 
number, allowed the improvement of the hydrophilicity of the elaborated hydrogels, favoring 

 

their interaction with water molecules [34,35]. In addition to the polarity of the hydrogels, the 

degree of crosslinking and hydrogels porosity were found to well correlate with the ability of 

Cs-based hydrogels to absorb water [12,27]. 

 
3.4. Hydrogels spectroscopic characterizations 

 

3.4.1. FT-IR analysis 
 

The FT-IR spectra of Cs-based hydrogels were shown in Fig. 2. Compared to the polymer 

powder [21], characteristic Cs absorption bands at 3417 cm -1, 1627 cm -1, 1544 cm -1, 1407 cm 

750 299 -1  and 1020-1097 cm -1  linked to the -OH, amide I groups (-C = O), amide II (-NH2), -CH and 
751 
752 

300 glycoside rings, respectively, were noted to be rearranged. Indeed, the N–H peak in the FT-IR 
753 

754 
301 spectra of the Cs-based hydrogels was found to be shifted significantly to higher wavenumbers 

756 

757 302 overlapping with the peak of the O–H stretching vibrations. The peak at 3500–3200 cm-1 

758 

759 303 straitened, and revealed the tendency to break into several small peaks, demonstrating the 

weakening of the inter- and intra-molecular hydrogen bonds and the occurrence of some 
 

reactions on the two groups [34-39]. 
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767  

773 

790 

797 

814 

768 

769 
770 

306 The peak of the amide I group weakened remarkably and almost disappeared, indicating 
771 

772 
307 that concentrated alkali has reacted with the acetyl amino group of Cs [38,39]. Moreover, new 

774 
stretch vibration absorption bonds appeared at about 3264 cm-1, 2500 cm-1  and 785 cm-1, 

 

indicating that the alkali/urea aqueous solvent affected the structure of Cs to some extent. 

Indeed, active hydroxyl group of Cs reacted with the concentrated alkali, leading thereby to the 

destruction of the native hydrogen bonds of Cs effectively and making Cs highly swell or even 

dissolve in the alkali solution. 

785 313 These findings confirmed further during the dissolution process, alkali not only reacts 
786 
787 

314 with the hydroxyl group, but also with the acetyl amino group of Cs, leading to the weakening 
788 

789 
315 of the amide I peak ascribed to acetyl amino group [40,41]. Moreover, The FT-IR spectra of all 

791 

792 316 Cs-based hydrogels are quite similar, regardless Cs AD and Mw, accounting for the stability of 
793 

794 317 Cs in the alkali/urea aqueous solution system [24, 42,43]. 
795 

796 
318 3.4.2.   XRD patterns study 

798 
To further clarify the structural changes in the Cs matrix, during dissolution in the 

 

alkali/urea aqueous system and gelling, and regarding the effects of Cs Mw and AD, XRD 

patterns of Cs-based hydrogels were studied and compared to the polymer powder profiles (Fig. 

3). X-diffractograms of Cs-based hydrogels revealed marked differences in the molecular state. 

Indeed, diffraction peaks nearby 13.1° and 21.3°, attributed to (020) and (110) planes of Cs, 

809 324 respectively, were detected, reflecting the semi-crystalline structure of Cs [21,44]. The major 
810 
811 

325 peaks at 2θ = 37.7°, 34.32°, 32.4° and 28.9° observed in the X-diffractograms could be 
812 

813 
326 attributed to the alkali (LiOH) used for the dissolution of Cs [45]. 

815 

816 327 As shown in Fig. 3, the Cs-based hydrogels displayed the characteristic diffraction 
817 

818 328 patterns of both Cs and alkali at the same time. However, the crystallinity of the physical Cs- 
819 

820 329 based hydrogels clearly diminished in comparison with that of Cs powder, where the above 
821 

822 330 mentioned initial characteristic peaks became broader and weaker, depending on Cs AD and 
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944  

832 

849 

873 

827 

828 
829 

331 Mw. In fact, convenient with the SEM images, the crystallinity of Cs-based hydrogels decreased 
830 

831 
332 with the increase of Cs AD (CsI-0 based hydrogel) and the decrease in its Mw (Cs-1 and Cs-3 

833 

834 333 based hydrogels), suggesting a transition from a crystalline structure to an amorphous state 
835 

836 334 during the dissolution and the gelling process [46,47]. This result strongly confirmed that Cs 
837 

838 335 solubility was related to its crystallinity. 
839  

840 336 With the aid of alkali solution and the freezing to -30 °C, water molecules diffuse in the 
841   

842 337 Cs  macromolecular  chain.  The  subsequent  thawing  and  stirring  steps  during  hydrogels 
843   

844 338 preparation process are beneficial for the dissolution of Cs, as the intra- and inter-molecular 
845 
846 

339 hydrogen bonds of Cs would be broken during dissolution, leading to the loss of crystallinity 
847 

848 
340 [48,49]. 

850 
The dissolution of Cs in the alkali aqueous system begins at the amorphous side with a 

 

loose structure at first, and afterwards reaches the crystal zone with a rather thicker construction 

and low temperature. This exhibits a crucial role in the Cs crystalline configuration destruction 

[26,50]. Meanwhile, overall findings proposed that the chemical structure of Cs was relatively 

stable in the alkali/urea aqueous solution [5,24]. 

3.5. Cs AD and Mw affected based hydrogels thermal properties 
 

Thermal stability/degradation behavior of Cs-based hydrogels, with respect to their AD 

and Mw, was studied, and results in terms of TGA and derivate (DTG) thermograms, are shown 

868 349 in Supplementary data Fig. S1. The thermal decomposition data in terms of the corresponding 
869 
870 

350 degradation temperatures, the weight loss (Δw) and the residue (R), were estimated (Table 2). 
871 

872 
351 Based on data from the obtained TGA thermograms, the thermal decomposition profiles 

874 

875 352 of the overall Cs-based hydrogels exhibited a similar weight loss process in the temperature 
876 

877 353 range of 20–800 °C, indicating the polymer pyrolysis, and characterized by three major phases 
878 

851 341 

852  

853 342 
854  

855 343 
856  

857 344 
858  

859 345 
860  

861  

862 346 
863  

864 347 
865  

866 348 
867  

 

879 354 (Supplementary data Fig. S1), typical fingerprint of Cs thermal decomposition [32]. 
880   

881   

882   

883   

884  15 

 



885  

891 

908 

925 

886 

887 
888 

355 The first phase corresponded to a weight loss of 6% (CsIII-0 based hydrogel) to 19% 
889 

890 
356 (CsI-3 based hydrogel), apparently resulted from evaporation of adsorbed water by Cs at a 

892 
temperature (Td1) range from 28-46 °C to 129-158 °C, reaching its maximum mainly below 

 

130 °C, expect for the CsIII-0 based hydrogel (133.54 °C). The different content of bound and 

unbound water in the hydrogels could explain the observed difference in onset temperature [51]. 

Indeed, in line with data from the SEM analysis and results above mentioned, CsIII-0 based 

hydrogel exhibited higher onset temperature as a result of more strongly bound water, related 

903 362 to a more homogeneous network structure. However, less uniform network with  macro-phase 
904 
905 

363 separation like structure, observed in hydrogels based on CsI-3, was found to responsible of 
906 

907 
364 more unbound water in the based hydrogel structure [28,48]. 

909 
Considering the DTG curves, the temperature, at which the decomposition process was 

 

the shrillest, was revealed by the weight loss peak (Supplementary data Fig. S1). In the range 

the third phase of Cs-based hydrogels pyrolysis process (200-550 °C), where higher ΔW  were 

reached, peaks located at temperatures of 268.81, 266.09 and 261.55 °C, were found for the 

CsI-0, CsI-1 and CsI-3 based hydrogels, respectively, whereas those found at 279.71, 274.26 

920 370 and 273.35 °C were related to the CsIII-0, CsIII-1 and CsIII-3 based hydrogels, respectively 
921 
922 

371 (Table  2).  Thus,  polymers  pyrolysis  temperature  differences  are  mainly  assigned  to  the 
923 

924 
372 macromolecular interaction, crystallinity index, or orientation. The TGA results proved that 

926 
CsIII-0 based hydrogel was reorganized in more well-ordered network structure, during the 

 

dissolution in the alkali/urea system at low temperatures and the regeneration process in 

ethanol,  ensuing  a  rather  high  crystallinity  and  more  homogeneous  architecture.  Finally, 

residual decomposition reactions leading to the total degradation of the Cs ring in the hydrogels 

was found to be around 550 °C [52]. 

937 378 Regarding the residual mass (R) of the prepared hydrogels, values were found to decrease 
938 
939 

379 with the decrease of the Cs Mw and the increase of its AD, with values of 33.70% (CsI-0 based 
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974 

991 

945 

946 
947 

380 hydrogel), 30.59% (CsI-1 based hydrogel) and 29.88% (CsI-3 based hydrogel). Considering 
948 

949 
381 CsII-based hydrogels, R values of 34.34%, 33.05% and 29.58% were reached for the CsII-0, 

rogels, respectively. R values of 47.69%, 40.53% and 38.68% were 

nd CsIII-3 based hydrogels, respectively (Table 2). Accordingly, it 

mal stability of the Cs-based hydrogels is positively correlated with 

to its Mw. Moreover, as discussed earlier, TGA findings confirmed 

of the Cs-based hydrogels was due to increasing macromolecular 

 

963  
964 

965 388 3.6. Hydrogels mechanical properties as affected by Cs structural parameters 
966   

967 389 3.6.1.   Rheological behavior 
968   

969 390 The rheological properties of Cs-based hydrogels, storage modulus (G′) and loss modulus 
970 
971 

391 (G″), were shown as a function of strain at 37 °C (Fig. 4A-C). Independently of Cs AD or Mw, 
972 

973 
392 Cs-based  hydrogels  displayed  higher  elastic  behavior  (G′>G″)  than  the  viscous behavior 

975 
(G′<G″), suggesting a distinctive feature of a strong hydrogel. 

 

Since the elasticity of the sample, defined as the stored energy due to the elastic 

deformation, is reflected by the storage modulus G′, the higher the G′ value is, the tougher 

against distortion the hydrogel is [33]. Fig. 4A-C shows that for all the Cs-based hydrogel 

samples, the moduli (G′ and G") fluctuated slightly with deformation in the test strain range of 

986 398 500%. Comparing the hydrogel samples, for CsIII-0 based hydrogel, the G′ (more than 130 
987 
988 

399 kPa) was found to be significantly higher than that of CsII-0 (more than 82 kPa) and CsI-0 
989 

990 
400 (more than 35 kPa) based hydrogels. Additionally, for CsIII-1 (G′ about 30 kPa) and CsIII-3 

992 

993 401 (G′ more than 17 kPa) based hydrogels, the G′ values were significantly lower than that of 
994 

995 402 CsIII-0 based hydrogel (p<0.05). The same tendency was detected with the other hydrogels 
996  

997 403 based on CsII (AD of 13%) and GCsI (AD of 17%).  

998    

999    

1000    

1001    

1002   17 

951 

952 382 CsII-1 and CsII-3 based hyd 

953  

954 383 noted for CsIII-0, CsIII-1 a 
955  

956 384 could be concluded that ther 
957  

958 385 its AD and disproportionate 
959  

960 386 that the increased stability 
961  

962 387 chains crosslinking [28,32]. 
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404 Before hydrolysis, G' of Cs-based hydrogels, independently of Cs AD, was four times 

 

405 more than the value of Cs-1 and Cs-3 based hydrogels, thus, the creation of a more stable 
 

406 network, leading to a greater maximum storage modulus G’. 
 

407 This finding could be mainly assigned to the stronger interactions of Cs macromolecular 
 

408 chains, with high average molecular weight, than medium and lower average molecular weights 
 

409 Cs (Cs-1 and Cs-3, respectively). The formation of covalent bonds between the Cs and the 
 

410 alkali/urea system, allowed thereby remarkably the enlargement of the strength of hydrogels 
 

411 and the enhancement of their mechanical properties [5,27,33]. 
 

412 Data of gradually decreasing storage modulus G’ of the hydrogels, with the decrease of 
 

413 Cs AD and the increase of the Mw, were consistent with the gradually increasing SR results 
 

414 above  described  (Table  1),  further,  principally  ascribed  to  the  progressively  hydrogels 
 

415 crosslinking density diminishing [24,53]. 
 

416 As displayed in Fig. 4A-C, it is likewise found that an increase in the deformation, more 
 

417 than 500%, was associated with loss/viscous modulus G" enlargement and storage/elastic 
 

418 modulus G' decline, as the network movement increased [54], demonstrating that at higher 
 

419 strains elastic flow of the gel network decreased. However, unlike the G' profile, the gel-sol 
 

420 transition strain value was found not significantly influenced with the Cs AD or Mw. 
 

421 In another aspect, there was found no remarkable difference of Cs-based hydrogels 

rheological properties as function of the temperature (Supplementary data Fig. S2). Indeed, 

interestingly, as the temperature increased from 10 to 60 °C, there was no change of G' and G" 

of the hydrogel samples. Therefore, physical Cs-based hydrogels, based on the dissolution in 
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the alkali/urea aqueous system at low temperatures, exhibited stable rheological properties 

against temperature, regardless the Cs AD or Mw. 

427 Such rheological behaviors of Cs-based hydrogels, with interesting elastic and solid 
 

428 characteristics, showed the attendance of a promising material for tissue engineering application 
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429 [55]. Moreover, rapid drug loss prevention and better sustained release properties could be 

 

430 potentially provided by high gel strength and short gelation time of the hydrogel, as obtained 
 

431 with the Cs-based hydrogels [56]. 

 
432 3.6.2.   Compressive study 

 

433 Considering the bone tissue engineering, the mechanical properties of biomaterials like 

hydrogels are design features of priority [57,58]. To have additional insight into the mechanical 

behavior of Cs-based hydrogels, compressive properties were evaluated by exposing wet gels 

to compression testing and the stress vs. strain compressive curves, with different Cs ADs and 
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Mws, are shown in Fig. 4D-F. Mechanical experimental outcomes display that under 

compression, the compressive strength of the Cs-based hydrogel samples increased with the 

439 increase in compressive strain for all hydrogel formulations. More particularly, the compressive 

 

440 stiffness  of  Cs-based  hydrogels  increased  concomitantly  with  the  increase  of  the applied 

 

441 compressive strain in the range of 5-7% deformation, and then sticked to rise but in a slower 

manner, indicating that the Cs-based hydrogels were sturdy and ductile. 

The order of the mechanical properties was found as: CsIII>CsII>CsI. Indeed, when the 

Cs AD increased from 8% (CsIII based hydrogel) to 17% (CsI based hydrogel), the fracture 
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stress values of the Cs-based hydrogels decreased to 0.35 MPa for CsI-0 based hydrogel, while 

values of 0.49 MPa and 0.71 MPa were reached with CsII-0 and CsIII-0 based hydrogels, 

447 respectively (p<0.05). CsIII-3 based hydrogel was found to endure 40% deformation, whereas 
 

448 CsII-3 and CsI-3 based hydrogels were capable to bear only 35% and 30% deformation, 
 

449 respectively, because of the decrease in the physical crosslink density of the Cs network (Fig. 

 

450 4D-F),  suggesting  a  relatively  high  strength  for  CsIII  based  hydrogel,  with  the  highest 
 

451 macromolecular interactions, the most stable network and the smallest pore size [39,59]. 
 

452 In another side, the increase in Cs Mw was found to result in a significant enhancement 
 

453 in ultimate compressive stress and strain of fracture (p<0.05). In fact, hydrogels developed 
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454 based on low Mw Cs (CsIII-3, CsII-3 and CsI-3) exhibited mechanical stiffness of more than 

 

455 0.29 and 0.27 and 0.11 MPa, respectively. However, ultimate stress modulus increased by 2 

and more than 3-folds for medium (CsIII-2, CsII-2 and CsI-2) and high (CsIII-0, CsII-0 and 

CsI-0) Mw Cs, respectively (Fig. 4D-F). Interestingly, with ADs less than 13% (CsII and CsIII), 

even with medium Mw, based hydrogels kept the structural integrity and stability without 
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evidences of any sign of fracture and could recover by themselves subsequently to external 

pressure removal. This finding strongly demonstrated that the synthesized hydrogel  exhibited 

461 interesting mechanical properties, thanks to stiffer chains resulting in stronger pore wall, 
 

462 allowing gels thereby to undergo more intense external forces and conditions [33,51,57]. 
 

463 These mechanical data were further consistent with the crystallinity results (Fig. 3) and 
 

464 the microstructure of the Cs-based hydrogels (Fig. 1). 

 
465 3.7. Hydrogels in vitro degradation behavior 

 

466 The degradation behavior, based on the weight loss system, was monitored in PBS at pH 

values of 7.4 and 5.5 to simulate the physiological and acidic microenvironments, respectively. 

Significant differences (p<0.05) were observed, in terms of Cs AD and Mw, considering 

degradation kinetics over 7 days of incubation time (Fig. 5). Additionally, the degradation 
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behavior patterns were peculiar after immersion under simulated physiological (pH 7.4) and 

acidic (pH 5.5) conditions at 37 °C. However, independently of the swelling conditions and Cs 

472 characteristics (AD and Mw), more than 75% of the initial mass was preserved (Fig. 5). 
 

473 Independently of Cs characteristics, hydrogels, in PBS of pH 5.5, underwent most quicker 
 

474 degradation, compared to samples immersed in PBS of pH 7.4. For example, CsIII-0 based 
 

475 hydrogel retained about 91% mass in acidic microenvironment (Fig. 5A), and more than  95% 
 

476 mass in PBS pH 7.4 (Fig. 5B), within 4 days. Qu et al. [27], based on the morphology of the 
 

477 hydrogels observed under SEM images, proved that differences in degradation behavior could 
 

478 be ascribed to an increase in pore sizes, which increased significantly after immersion in PBS. 
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479 This increase was more pronounced for hydrogels swollen in acidic conditions (PBS of pH 5.5), 

 

480 that in the long term, could quick the degradation of hydrogels, due to protonation of chitosan 

amino groups. Indeed, pKa value of D-glucosamine residue is about 6.2~7.0. Subsequently, 

macromolecular chains bonding become brittle, leading to the hydrogel’s networks destruction 

and decomposition. 
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As expected, Cs-based hydrogels with higher AD and lower Mw exhibited a faster weight 

loss after immersion in both media (PBS of pH 5.5 and pH 7.4). After incubation for 7 days, 

486 the attained mass losses were about 20%, 22% and 25% for CsI-0, CsI-1 and CsI-3 based 

 

487 hydrogels, respectively, while, CsIII based hydrogels still retained more than 80% (CsIII-0), 

 

488      78% (CsIII-1) and 75% (CsIII-3) of their original weight, under swelling in pH 5.5 PBS, after 

7 days of incubation time (Fig. 5A). These findings corroborate well and directly with the pore 

diameters distribution based on the SEM images, the swelling and mechanical behaviors of 

prepared hydrogels and the observed crystallinity data. These results proposed that Cs-based 
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hydrogels, with good biodegradability and interesting stability in PBS, could exhibit potential 

and promising application in tissue engineering [12,55,59]. 

494 During the last decades, smart biomaterials as oral administrative drug carriers attracted 
 

495 day-by-day the attention of researchers in the biomedical field [60]. Therefore, Cs-based 
 

496 hydrogels developed in the present study could be considered as porous promising pH-sensitive 
 

497 biomaterial, with sufficient space for the diffusion of small molecules and drugs, and exercising 
 

498 drug release management capability. 

 
499 3.8. Optimization of blue crab chitosan concentration for hydrogels construction 

 

500 An optimization of the ideal concentration of Cs for the formation of hydrogels was 
 

501 performed on the basis of the compressive property test and storage modulus determination. 
 

CsIII-0 based hydrogel was selected for the optimization of Cs concentration study, considering 
 

its appropriate structural architecture, swelling behavior and mechanical strength. 
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504 Mechanical properties of the different Cs-based physical hydrogels, considering the 

 

505 compression stress-strain diagrams are illustrated in Fig. 6A. The application of a compressive 

force on the hydrogels made it possible to obtain two phases. At low deformation values (around 

5%), an elastic (reversible) deformation was observed as a straight line where the deformation 

was proportional to the stress. Beyond 5%, the stress increased slowly, giving evidence of a 
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plastic deformation (irreversible) occurrence, due to the breaking of the bonds or rearrangement 

of the structure [12]. 

511 As displayed in Fig. 6A, hydrogel compressive strength was improved with the increase 

 

512 of Cs concentration from 0.24 MPa for 1% of Cs to more than 0.48 MPa for hydrogel at 4% of 

 

513  Cs. The Cs solution at 1% concentration was found to be not able to form solid physical  

hydrogel and the hydrogel prepared was too weak to be handled and analyzed, mainly due to 

the rather low polymer amount. Indeed, the formed hydrogel was fractured under compressive 

deformation less than 30%. However, hydrogels prepared with more than 2% Cs were already 
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relatively rigid and resistant. Further, data revealed that fracture resistance of all hydrogel 

samples was found to be Cs concentration dependent, where 2% Cs-based hydrogel tolerated 

519 more than 45% of compressive deformation to be fractured, whereas, 50% of compressive 

 

520 deformation was not sufficient to induce hydrogels fracture at more than 3% Cs (Fig. 6A). 

 

521 However, 5% Cs-based hydrogel exhibited a significant decrease in the compressive stress to 

around 0.4 MPa (p<0.05), compared to 3% and 4% Cs-based hydrogels, with an average value 

of 50 MPa. 

In order to further study the influence of Cs concentration on the resulting hydrogels 
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structure, their rheological behavior was investigated. The shear (G') and loss (G") moduli 

curves of the Cs-based hydrogels as a function of strain were considered in the rheometer 

527 dynamic stress environment (Fig. 6B). 
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528 Profiles displayed that G' values of Cs-based hydrogels increased with the increase of Cs 

 

529 concentration, with an increasing strain from 0.1% to 1000%. In fact, G' of Cs 1%-based  

hydrogel (15.9 103 Pa) at 100% strain was 11.3 times lower than that of Cs 4%-based hydrogel 

(181 103 Pa). Although, in all cases, the storage modulus G' was below the loss modulus G", 

indicating a predominantly gel-like behavior, the storage modulus G' decreased significantly 
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(p<0.05), reaching 63.2 103 Pa, for higher concentration of Cs (5%). In another aspect, 1% Cs- 

based hydrogel was found to be able to support only around 123% deformation and maintain 

535 the gel-like behavior (the point at which G"> G'), while 3% and 4% Cs-based hydrogels were 

 

536 capable to bear more than 574% and 491% deformation, respectively. However, at higher Cs 

 

537 content, le gel structure was kept only at strains below 185% (Fig. 6B). 

 

Consequently, from the mechanical and rheological testing data, 3% Cs-based hydrogel 

exhibited better rheological properties than those of 2% Cs, and the fracture deformation was 

greater than that of 5% Cs. Similarly, excessive Cs concentration led to thicker and too rigid 
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hydrogel, which could be attributed to chains entanglements excess, leading to hydrogels 

brittleness [61]. However, due to the gradually improved number of the hydrogen-bonded 

543 crosslink regions between the Cs chains, in a relatively concentrated solution, aggregation and 
 

544 entanglement amongst the Cs macromolecular chains will significantly took place. 
 

545 Therefore, 3% concentration of chitosan solution was carefully chosen to elaborate Cs- 
 

546 based hydrogels in the following section, for the Riboflavin in vitro release study. 

 
547 3.9. Encapsulation of riboflavin, in vitro loading and release profiles 

 

548 Hydrogels structure is characterized by three major parameters, namely the volume 
 

549 fraction of polymer in the inflated state, the average molecular weight of based polymers as 
 

550 well as the pore size distribution of the network [9-10]. This architecture of hydrogels allows 

the diffusion of molecules of different sizes in the network, which makes these biomaterials 

interesting for drug release applications [7,12]. 
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553 As the model drug, the kinetics of riboflavin release, through the Cs-based hydrogels were 

 

554 monitored based on the cumulative amounts of released riboflavin as a function of time. 
 

555 Different concentrations of riboflavin (1-5 g/l) were used to investigate the influence of drug 
 

556 concentration on EE and release profiles. 
 

557 The EE and LC of Cs-hydrogels for riboflavin, as reported in Table 3, were found to be 
 

558 drug concentration-dependent (p<0.05). Indeed, the EE values increased from more than 75% 
 

559 for 1 g/l of riboflavin to about 85% for 3 g/l of riboflavin. However, above 3 g/l of riboflavin, 
 

560 the EE dropped dramatically to 68% and 56%, for 4 g/l and 5 g/l of riboflavin, respectively. 
 

561 Regarding the LC of riboflavin, values increased concomitantly with the increase of drug 
 

562 concentration from 24% for 1 g/l of riboflavin to the saturated capacity of 37% at 3 g/l of 

riboflavin (p<0.05). No significant differences in the riboflavin LC values was noted beyond 3 

g/l of riboflavin (p≥0.05). The decrease in the amount of encapsulated riboflavin at high 

concentration could be related to the saturation of hydrogel (limitation of riboflavin loading 
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into Cs-based hydrogel), since the encapsulation of riboflavin was monitored through its 

diffusion in the hydrogel network. 

568 Riboflavin release profiles from Cs-based hydrogels, at 37 °C, in HCl-NaOH (0.1 M), pH 

 

569 5.5, exhibited deliverance patterns, characterized by an initial short-time rapid release,  during 

 

570 the first 8 h, followed by low riboflavin release to 72 h. Beyond 72 h, the rate of released 

riboflavin tended to stabilize (Fig. 7). Data reveal that hydrogel with lower riboflavin charge 

showed high initial release in terms of percentage. Indeed, at a riboflavin concentration of 1 g/l, 

the initial release rate (after 4 h) was 11% relative to the amount of initial riboflavin loaded in 
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the hydrogel. It was of 46% and 79%, after 24 h and at the end of the study (96 h). Regarding 

a concentration of 5 g/l, the release of riboflavin was 5%, 18% and 36%, after 4 h, 24 h and 96 

576 h, respectively. In terms of the total mass of riboflavin released, the hydrogel group with higher 

 

577 charge released more riboflavin. For example, at a riboflavin concentration of 1 g/l, the amount 
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578 released riboflavin was 790 mg after 96 h, while for the 5 g/l riboflavin hydrogel group, about 

 

579 2 g of riboflavin were released (Fig. 7A). This finding could be assigned to the concentration 

gradient phenomenon as diffusion management force. The more Riboflavin loading increased, 

the higher concentration gradient increased [27]. 

The riboflavin (3 g/l) release patterns were further investigated in HCl-NaCl (0.1 M) 
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under different pH conditions (pH 2.0, pH 4.5 and pH 7.4). Deliverance curves, as reported in 

 

Fig. 7B, showed that riboflavin was barely released from the Cs-based hydrogels, at pH 7.4, of 

 

585 only 13% after 4 days of incubation. However, high amounts of riboflavin were released in 

 

586 acidic pH (p<0.05), further, the amount of released riboflavin from Cs-based hydrogels was 

 

587 higher in pH than pH 4.5 in pH 2.0. Indeed, 16% and 38% of riboflavin were released from Cs- 

based hydrogel, after 8 h, at pH 4.5 and pH 2.0, respectively. Therefore, Cs-hydrogels were 

found to release significantly more riboflavin in acidic microenvironments, probably due to 

higher  swelling  rates  or  exhaustive  hydrogels  structure  destruction  and  thereby  faster 

degradation and release of riboflavin [26,59,60]. 

 
4. Conclusion 

 

Different Cs-based hydrogels were successfully engineered, considering Cs AD and Mw, 
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based on the alkali/urea aqueous system following the freezing/thawing/solvant evaporation 

approach. As expected, hydrogels pore size distribution, mechanical strength, swelling and 

596       thermal  resistance  behaviors  besides  the  in  vitro  biodegradation  patterns,  were extremely 

 

597       depending on Cs structural characteristics. Low AD coupled with high Mw seemed to be very 

 

598     interesting for the development of promoting biomaterials with stable and appropriate features. 

 

599      Moreover, Cs-based hydrogels were monitored to study the in vitro release of riboflavin       

600   selected as the model drug. The obtained release patterns displayed that Cs-based hydrogels    

601 could be applied as smart pH-sensitive carrier for drug-controlled release for further biomedical 

602       applications (antitumor, protein and peptide, gene and antibiotic drug delivery). Additionally, 
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603      due to its suitable structural architecture, swelling behavior and mechanical strength, the      

604      application of Cs-based hydrogels seems to be a very interesting alternative in the tissue       

605       engineering field. 
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Figure captions 
 
 

Figure 1: SEM images of Cs-based hydrogels (GCs) cross sections: GCsI-0 with AD of 17% 

and Mw of 125.6 kDa (A), GCsI-1 with AD of 17% and Mw of 17.8 kDa, (B) GCsI-3 with AD 

of 17% and Mw of 10.44 kDa (C), GCsII-0 with AD of 13% and Mw of 118.9 kDa (D), GCsII-1 

with AD of 13% and Mw of 59.27 kDa (E), GCsII-3 with AD of 13% and Mw of 18.54 kDa 

(F), GCsIII-0 with AD of 8% and Mw of 115 kDa (G), GCsIII-1 with AD of 8% and Mw of 

78.43 kDa (H) and GCsIII-3 with AD of 8% and Mw of 16.04 kDa (I). 

 

Figure 2: ATR-FTIR profiles of Cs-based hydrogels (GCs) with different AD and Mw, (A) 

GCsI, (B) GCsII and (C) GCsIII, compared to Cs powders spectra. 

 

Figure 3: XRD patterns of Cs-based hydrogels (GCs) with different AD and Mw, (A) GCsI, 

(B) GCsII and (C) GCsIII, compared to Cs powders spectra. 

 

Figure 4: Mechanical features of Cs-based hydrogels (GCs) as function of Cs AD and Mw. 

Rheological behavior (A) GCsI, (B) GCsII, (C) GCsIII, f=1 Hz, T=37 °C. Compressive 

properties, at a temperature of 25 °C and a compression speed of 1 mm/min, (D) GCsI, (E) 

GCsII, (F) GCsIII. 

 

Figure 5: In vitro biodegradation Cs-based hydrogels (GCs) as function of Cs AD and Mw, in 

PBS at (A) pH 5.5 (acidic microenvironment) and (B) pH 7.4 (physiological microenvironment 

simulation), at 37 °C. 

 

Figure 6: Mechanical behavior of Cs-based hydrogels as function of Cs concentration. (A) 

Compressive stress vs. compressive strain profiles. (B) Viscoelastic properties patterns as 

function of strain (%), f=1 Hz, T=37 °C. 

 
 

Figure 7: Riboflavin, as the model drug, in vitro release profile and kinetics from Cs-based 

hydrogels. Riboflavin incorporation was monitored by immersion in riboflavin solution (0-5 

g/l) in dark at 5 °C for 48 h. The release tests were performed in HCl and NaCl (0.1 M) with 

different pH values (pH 2.0, pH 4.5 and pH 7.4) at 37 °C. (A) Riboflavin release kinetics at 

different concentrations (0-5 g/l of riboflavin) in pH 5.5. (B) Riboflavin (3 g/l) release kinetics 

at different pH values (pH 2.0, pH 4.5 and pH 7.4). 
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Fig. 7 
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Table 1: Moisture content (MC) and swelling ratio (SR) of different prepared Cs-based 
 

hydrogels. 
 

 
 

 

Cs-based 

hydrogels 

3% (w/v) Cs content 

 
GCsI GCsII GCsIII 

 

 MC (%) SR (g/g) MC (%) SR (g/g) MC (%) SR (g/g) 

GCs-0 82.36±0.72 aB 13.59±0.45 aA 81.34±0.22 aB 16.57±1.04 aB 79.90±0.09 aA 18.10±0.47 aC 

GCs-1 86.52±1.35 bC 14.92±0.32 bA 81.78±0.11 aB 18.93±0.32 bB 80.26±0.04 bA 22.21±0.53 bC 

GCs-3 89.08±0.69 cC 16.38±0.27 cA 83.20±0.06 bB 22.86±0.78 cB 81.83±0.08 cA 26.24±0.93 cC 

 

Different letters (a-c) in the same column are significantly different as determined by ANOVA test 

(p<0.05). 

Different letters (A-C) in the same line indicated significant differences within hydrogels based on Cs 

with different AD (p<0.05). 



 

 

Table 2: Cs-based hydrogels degradation temperatures (Td: onset temperature of degradation, Tmax: maximum degradation temperature and 
 

Tf: temperature of the end of degradation), the weight loss (Δw) and the residue (R). 
 

 

 

 

 

 

 

 

 

 

I 

 

 

 

 

 

 
II 

Parameters     
GCsI-0 

GCsI 

GCsI-1 

 
GCsI-3 

 
GCsII-0 

GCsII 

GCsII-1 

 
GCsII-3 

 
GCsIII-0 

GCsIII 

GCsIII-1 

 
GCsIII-3 

ΔW (%) 11.46 15.69 18.93 8.66 12.14 12.73 5.65 10.30 14.75 

Td (°C) 27.32 33.30 40.93 30.03 37.75 42.75 36.39 41.71 45.47 
Phase 

Tmax (°C) 114.47 104.49 66.35 118.10 109.02 104.49 133.54 109.93 106.35 

Tf (°C) 147.16 133.54 129.00 153.51 134.45 129.91 158.96 135.35 130.81 

 
ΔW (%) 

 
13.30 

 
14.43 

 
10.72 

 
20.95 

 
21.24 

 
22.50 

 
17.18 

 
18.19 

 
14.04 

Td (°C) 147.16 133.54 129.00 153.51 134.45 129.91 158.96 135.35 130.81 
Phase 

Tmax (°C) 184.38 176.21 169.85 188.01 179.84 172.58 208.89 179.84 175.30 

Tf (°C) 227.05 210.71 207.08 235.22 229.77 226.13 235.22 231.59 227.05 

 
ΔW (%) 

 
12.42 

 
16.59 

 
18.63 

 
29.34 

 
15.52 

 
15.29 

 
28.77 

 
29.72 

 
23.29 

Phase Td (°C) 227.05 210.71 207.08 235.22 229.77 226.13 235.22 231.59 227.05 

III Tmax (°C) 268.81 266.09 261.55 269.72 267.00 262.46 279.71 274.26 273.35 

Tf (°C) 511.22 507.58 502.14 537.54 508.49 502.14 547.53 510.31 509.40 

 
R (%) 

 
38.68 

 
40.53 

 
47.69 

 
29.58 

 
33.05 

 
34.34 

 
29.88 

 
30.59 

 
33.70 

 



 

Table 3: Riboflavin entrapment efficiency (EE) and loading capacity (LC) of CsIII-0 based 
 

hydrogel, at a concentration of 3% (w/v). 
 

 

Riboflavin concentration (g/l) EE (%) LC (%) 

1 75.58 ± 0.61 c 23.51 ± 1.26 a 

2 80.64 ± 1.59 d 31.14 ± 0.94 b 

3 84.54 ± 1.35 e 36.57 ± 1.45 c 

4 66.28 ± 0.52 b 37.19 ± 0.62 c 

5 53.27 ± 1.72 a 37.81 ± 1.32 c 

 

Different letters (a-e) in the same column are significantly different as determined by ANOVA test 

(p<0.05). 



 

Table S1: Blue crab chitosan (Cs) nomenclature and respective acetylation degrees (AD) and 
 

average molecular weights (g mol-1). 

 

 

 

 

 

 

 
reaction-time 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Cs 

 
   

 AD (%)  

 17 13 8 

Cellulase 0 CsI-0 CsII-0 CsIII-0 

digestion 
1 CsI-1 CsII-1 CsIII-1 

(h) 3 CsI-3 CsII-3 CsIII-3 

 

 
Cs    

  
AD (%) 

 

  17 13 8 

 
Digestion 

0 125 600 118 900 115 000 

reaction-time 1 17 800 59 270 78 430 

(h)  
3 

 
10 440 

 
18 540 

 
16 040 

 



 

Table S2: Different blue crab chitosan-based hydrogels (GCs) feed compositions and 
 

respective nomenclature. 
 

 
 

Cs-based 
3% (w/v) Cs content 

 

hydrogels 
CsI CsII CsIII 

Cs-0 GCsI-0 GCsII-0 GCsIII-0 

Cs-1 GCsI-1 GCsII-1 GCsIII-1 

Cs-3 GCsI-3 GCsII-3 GCsIII-3 
 


