

The Effect of a Weak Asthenospheric Layer on Surface Kinematics, Subduction Dynamics and Slab Morphology in the Lower Mantle

Nestor G. Cerpa, Karin Sigloch, Fanny Garel, Arnauld Heuret, D. Rhodri Davies, Mitchell Mihalynuk

▶ To cite this version:

Nestor G. Cerpa, Karin Sigloch, Fanny Garel, Arnauld Heuret, D. Rhodri Davies, et al.. The Effect of a Weak Asthenospheric Layer on Surface Kinematics, Subduction Dynamics and Slab Morphology in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 2022, 127 (8), pp.e2022JB024494. 10.1029/2022JB024494 . hal-03764872

HAL Id: hal-03764872 https://hal.umontpellier.fr/hal-03764872v1

Submitted on 30 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The effect of a weak asthenospheric layer on surface kinematics, subduction dynamics and slab morphology in the lower mantle

Nestor Cerpa¹, Karin Sigloch², Fanny Garel¹, Arnauld Heuret³, D. Rhodri Davies⁴, Mitchell G. Mihalynuk⁵

6	¹ Geosciences Montpellier, University de Montpellier, CNRS, Université des Antilles, Place Eugène
7	Bataillon, 34095 Montpellier, France
8	$^2{\rm Geoazur},$ Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, 250 Avenue Albert
9	Einstein, 06560 Valbonne, France
10	3 Université de Guyane, Géosciences Montpellier, 97300, Cayenne, France
11	4 Research School of Earth Sciences, The Australian National University, Canberra, ACT, 2601, Australian National University, Australian Natio
12	$^5\mathrm{British}$ Columbia Geological Survey, PO Box 9333 St n Prov Govt, Victoria, British Columbia V8W 9N3
13	Canada

14 Key Points:

1

2

3

4

5

15	• Tectonic plate kinematics and seismic tomography suggest slab accumulation in
16	the mantle transition zone, beneath near-stationary trenches.
17	• By contrast, subduction dynamics models tend to produce inclined, laterally ex-
18	tended slabs associated with slab rollback and trench retreat.
19	• Adding a sub-lithospheric weak layer accelerates subduction, limits trench migra-
20	tion, and promotes sub-vertical slab piles, as observed.

Corresponding author: Nestor Cerpa, nestor.cerpa@umontpellier.fr

21 Abstract

On Earth, the velocity at which subducting plates are consumed at their trenches (termed 22 'subduction rate' herein) is typically 3 times higher than trench migration velocities. The 23 subduction rate is also 5 times higher than estimated lower mantle slab sinking rates. 24 Using simple kinematic analyses, we show that if this present-day "kinematic state" op-25 erated into the past, the subducting lithosphere should have accumulated and folded be-26 neath near-stationary trenches. These predictions are consistent with seismic tomogra-27 phy, which images localized and widened lower-mantle slab piles. They are, however, at 28 odds with most dynamic-subduction models, which predict rapid trench retreat and in-29 clined slabs in the mantle transition zone. We test the hypothesis that a weak astheno-30 spheric layer (WAL), between the lithosphere-asthenosphere boundary and 220 km depth, 31 compatible with geophysical constraints, can remedy the discrepancies between numer-32 ical models and observations. The WAL lubricates the base of the lithosphere, increases 33 the subduction rate while reducing trench retreat. As a consequence, simulations fea-34 turing a WAL predict slab accumulation at the mantle transition zone, and thicker, folded 35 slabs in the lower mantle. A WAL viscosity only 2-5 times lower than that of the adja-36 cent mantle is sufficient to shift subduction regimes towards a mode of vertical slab sink-37 ing and folding beneath near-stationary trenches, across a wide range of model param-38 eters, producing surface and slab velocities close to those observed at the present-day. 39 These findings provide support for the existence of a weak asthenosphere beneath Earth's 40 lithosphere, complementing independent evidence from various geophysical data. 41

42

Plain Language Summary

At convergent margins (subduction zones, marked by deep trenches), oceanic (sub-43 ducting) plates plunge into Earth's mantle. Analysis of the present-day surface veloc-44 ities suggest that subducting plates are consumed at trenches at rates of 5 cm/yr, on av-45 erage. Moreover, it is observed that the consumption rate is higher than the trench mi-46 gration velocity, which is often less than 1 cm/yr. At depth below 660 km, marking the 47 transition from the upper to the lower mantle, the subducted piece of the plate (the slab) 48 encounters increased resistance to its sinking, with slab sinking velocities at these depths 49 being less than about 1.5 cm/yr. Take together, such rapid plate consumption at quasi-50 fixed trenches, along with slab deceleration in the lower mantle, causes a "traffic jam" 51 leading to sub-vertical accumulation of the slab and folding. This behavior is confirmed 52

- ⁵³ by seismic imaging techniques of Earth's interior which reveals vertically-sinking piles
- of oceanic slabs at and beneath a 660-km depth. However, computational and labora-
- 55 tory models of subduction zones often fail to reproduce these first-order observations.
- ⁵⁶ Here, we demonstrate that the addition of a lubricating mantle layer at the base of the
- ⁵⁷ oceanic plates reduces the mismatch between the aforementioned observations and pre-
- ⁵⁸ dictions from 2-D computation models.

⁵⁹ 1 Introduction

The negative buoyancy of subducting plates is a primary driving force sustaining 60 subduction and surface plate motions (Forsyth & Uyeda, 1975). Subduction zones are 61 the sites of tectonically-forced horizontal deformation (Uyeda & Kanamori, 1979; Lalle-62 mand et al., 2005) and dynamic vertical motions (G. Davies, 1981; Gurnis, 1993). Crust 63 and lithosphere subducting beyond the mantle transition zone add chemical heterogeneities 64 to the lower mantle, which are stirred and homogenised by mantle convection (Zindler 65 & Hart, 1986; Jones et al., 2016), or persist to the core-mantle-boundary, as suggested 66 by modern tomographic models (e.g. Hosseini et al., 2020). Understanding the deep dy-67 namics of subducting slabs is thus key for addressing the geodynamical and geochem-68 ical evolution of our planet. 69

Observed plate kinematics provide insights into the dynamics of the subduction sys-70 tem (Forsyth & Uyeda, 1975; Jarrard, 1986; Lallemand et al., 2005; Heuret & Lallemand, 71 2005; Sdrolias & Müller, 2006; Doglioni et al., 2007; Funiciello et al., 2008; Schellart, 2008b; 72 Becker & Faccenna, 2009; Goes et al., 2011). Subduction kinematics (see Fig. 1) involve 73 the velocities of the subducting plate v_{sp} ("SP velocity" for short); the velocity of the 74 overriding plate v_{op} ("OP velocity"); and the velocity of the trench v_t , which is equal to 75 OP velocity if the overriding plate does not undergo (back-arc) deformation. Note that 76 v_{sp} and v_t are defined with opposite signs: the natural (positive) direction of trench mi-77 gration is "retreat" towards the SP. These absolute velocities are given in some absolute 78 reference frame, which is taken as the stable lower mantle herein (Becker & Faccenna, 79 2009). 80

The subduction rate v_s is the velocity of the subducting plate relative to the trench 81 (i. e., the rate at which the subducting plate is consumed by the migrating trench). It 82 has been repeatedly shown that typical values of v_s on Earth are higher than 3-4 cm/yr 83 (Forsyth & Uyeda, 1975; Jarrard, 1986), while absolute trench motions are usually be-84 tween -2 and 2 cm/yr (Heuret & Lallemand, 2005; Funiciello et al., 2008; Schellart, 2008b). 85 Other studies have pointed out that the magnitude of the (absolute) SP velocity v_{sp} is 86 generally two to three times higher than that of the (absolute) v_t (Becker & Faccenna, 87 2009; Goes et al., 2011; Carluccio et al., 2019). Hence plates are consumed at much faster 88 rates than their trenches move laterally. 89

-4-

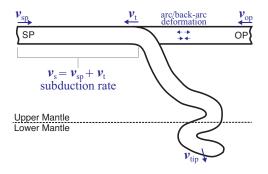


Figure 1. a) Sketch illustrating the various kinematics that can be inferred within a subduction system. Positive values denote absolute trenchward motion for both the subducting plate (v_{sp}) and the overriding plate (v_{op}) . Absolute trench velocity (v_t) is considered positive towards the subducting plate. We define relative to a fixed lower-mantle reference frame, in order to compare to absolute motions in nature, which can be quantified in empirical, approximate mantle reference frames, such as the fixed-hotspot frame. Subduction velocity (v_s) is a relative velocity, the rate at which the subducting plate is consumed at the trench $(v_s = v_{sp} + v_t)$.

Analogue and numerical models of subduction dynamics without external forcing 90 (hereafter simply referred to as models of subduction dynamics) have shed light on the 91 internal force balance of subduction systems and the resulting kinematics. They have 92 illuminated various subduction regimes and slab morphologies in the upper mantle (e. g. 93 Guillou-Frottier et al., 1995; Schellart, 2008a; Di Giuseppe et al., 2008; Ribe, 2010; Stegman 94 et al., 2010). Recent studies that included an overriding plate with finite strength, con-95 cluded that the slab pull force associated with the negative buoyancy of a subducting 96 plate (SP) favored slab rollback and migration of the trench towards the subducting plate 97 (i. e., trench retreat), unless the SP was weak and/or the overriding plate (OP) was strong 98 (Garel et al., 2014; Sharples et al., 2014; A. Holt et al., 2015; Hertgen et al., 2020). It 99 has been pointed out that such analogue and numerical models of subduction dynam-100 ics tend to produce surface kinematics that are at odds with some of the first-order ob-101 servations outlined above (Goes et al., 2011; Carluccio et al., 2019). These subduction 102 models generally produce trench retreat velocities that exceed present-day observations, 103 especially once the subducting slab reaches the bottom of the upper mantle, which was 104 sometimes treated as a rigid barrier (Funiciello et al., 2004; Schellart, 2005; Capitanio 105 et al., 2007; Goes et al., 2011). More modest trench motions over a relatively wide range 106 of parameters have only been produced by 2-D models that consider both the penetra-107

-5-

tion of the subducting slab into the lower mantle and complex rheologies (Garel et al., 108 2014; A. Holt et al., 2015; Z.-H. Li et al., 2019). Even then, slower trench motion is only 109 achieved at the cost of decreasing the SP velocity to values of less than 2 cm/yr once the 110 slab interacts with the viscosity increase around 660-km depth (hereafter referred to as 111 "first slab-660 interaction") (e.g. Garel et al., 2014; Suchoy et al., 2021). Hence, in most 112 subduction dynamics models, more than half of the subduction rate v_{sp} is accounted for 113 by trench motion v_t , which contradicts present-day observations of plate kinematics.

114

Independent constraints on subduction dynamics come from seismic tomographic 115 images of slab morphologies at and below the mantle transition zone. A few slabs un-116 der present-day subduction zones in the Western Pacific appear to stagnate above the 117 660-km discontinuity (Karason & Van Der Hilst, 2000; Amaru, 2007; C. Li et al., 2008; 118 Fukao & Obayashi, 2013) - for instance, under Japan (Fukao et al., 1992) and under Izu-119 Bonin (Wu et al., 2016), at least under its northernmost part (Zhang et al., 2019). But 120 many other slabs have breached the 660-km discontinuity and are sinking into the lower 121 mantle (Goes et al., 2017). Transition-zone and lower-mantle slabs are imaged more ro-122 bustly and consistently than slabs in the upper(most) mantle. The opposite would be 123 expected if slabs retained a constant thickness across depths. Hence the deeper slab must 124 be thicker (Ribe et al., 2007; Loiselet et al., 2010), which is well-documented under the 125 Americas (Karason & Van Der Hilst, 2000; Ren et al., 2007; Sigloch & Mihalynuk, 2013; 126 Mohammadzaheri et al., 2021), but also globally (Van der Voo et al., 1999; Shephard et 127 al., 2017; Van der Meer et al., 2018; Hosseini et al., 2020). Under the particularly well-128 instrumented Cascadia subduction zone of North America, tomography can resolve a shal-129 low slab of single lithospheric thickness, and also confidently show that the slab is mul-130 tiply thickened from the transition zone downward (Sigloch et al., 2008). 131

Thickened slabs in the lower mantle have been attributed to slab buckling and fold-132 ing through the mantle transition zone (Ricard et al., 1993; Guillou-Frottier et al., 1995; 133 Ribe et al., 2007; Běhounková & Čížková, 2008; Lee & King, 2011; Cerpa et al., 2014; 134 Billen & Arredondo, 2018), with possible slab detachment (Čížková et al., 2012). Slab 135 folds have not yet been resolved by tomography, so the exact widening mechanism re-136 mains speculative from the observational side. 137

Some numerical subduction models have produced vertical slab folding by impos-138 ing a fixed overriding plate, i.e., trench velocity $v_t = 0$ (e.g. Lee & King, 2011). Mod-139

-6-

els with mobile plates often predict trench-retreat modes while sub-vertical slab folding 140 tends to be limited to simulations with relatively young subducting plates and old over-141 riding plates (Garel et al., 2014; T. Yang et al., 2018; Strak & Schellart, 2021; Behr et 142 al., 2022), or to double-subduction set-ups (Cížková & Bina, 2015; Lyu et al., 2019). By 143 contrast, the tomographic observations – of pervasively thickened lower-mantle slabs, con-144 centrated in narrow, linear belts – suggest that slab folding beneath largely stationary 145 trenches should prevail across a wide range of subduction settings. Thus we argue that 146 current subduction models may lack a first-order ingredient that favors (almost) verti-147 cally stacked, thick lower-mantle slabs, which tends to be observed independently of plate 148 strength and/or the distance to other subduction zones. Phase transitions at 410 and 149 660 km can produce realistic lower-mantle slab morphologies by altering slab sinking rates 150 (Briaud et al., 2020; Cížková & Bina, 2013; Arredondo & Billen, 2017), although the re-151 quired Clapeyron slopes may be too extreme (see e.g. Agrusta et al., 2017, and refer-152 ences therein). Hence there is room for considering alternative mechanisms. 153

To summarize, there are at least two discrepancies between existing models of subduction dynamics and first-order observations. First, current models generally produce trench retreat velocities v_t in excess of those observed at present-day subduction zones, alongside SP velocities v_{sp} and subduction rates v_s that are too slow after first slab-660 interaction. Second, models seldom reproduce the tomographically observed, multiply thickened geometries that prevail in the transition zone and lower mantle.

This study considers how a weak asthenospheric layer (WAL) beneath the plate 160 can resolve these discrepancies. The presence of a WAL on Earth has been proposed to 161 explain a large range of geophysical observations, including lithospheric net rotation (Ricard 162 et al., 1991), postglacial rebound and gravity data (e.g. Paulson & Richards, 2009), shear-163 wave tomography (Kawakatsu et al., 2009; Barruol et al., 2019), seismic attenuation (Y. Yang 164 et al., 2007; Debayle et al., 2020), seismic anisotropy (Montagner & Tanimoto, 1991; De-165 bayle & Ricard, 2013; Becker, 2017) and electrical conductivity tomography (Naif et al., 166 2013). The viscosity reduction could originate from a plume-fed asthenosphere (Phipps Mor-167 gan et al., 1995), from the depth-dependency of dislocation creep flow laws (Raterron 168 et al., 2011), from crystal-preferred orientation (Meyers & Kohlstedt, 2021), or from the 169 presence of melt pockets (Cooper & Kohlstedt, 1986; Chantel et al., 2016), which may 170 remain trapped due to low melt fractions (Holtzman, 2016) or low density contrast (Sakamaki 171 et al., 2013). 172

-7-

The presence of a WAL is predicted to affect large-scale dynamics of the underly-173 ing, convecting mantle (Lenardic et al., 2006), and to favor 'plate-like' rather than 'stagnant-174 lid' regimes (Höink et al., 2012). Since the sub-lithospheric mantle resists a plate's trench-175 ward motion, the inclusion of a WAL in models of subduction dynamics yields faster sub-176 duction velocities v_{sp} , as shown by Carluccio et al. (2019) and Suchoy et al. (2021). The 177 latter authors also showed that increased v_{sp} was coeval with reduced trench retreat v_t , 178 although they did not detail the implications for lower mantle slab morphologies. We 179 hypothesize that increasing subduction rates while reducing trench motion results in the 180 accumulation of slab material in a near-vertical column beneath the (quasi stationary) 181 trench, and that the slab must widen (through folding) around the depths where it slows 182 down to lower-mantle sinking rates, given that slab input v_s remains high. Thus, a WAL 183 could resolve both first-order discrepancies regarding plate velocities and slab morpholo-184 gies. 185

We carry out a systematic numerical analyses of how a WAL impacts the dynamics of thermo-mechanical subduction models featuring an overriding plate. Section 2 provides a first-order quantification of slab widening behavior in modern subduction zones, using plate kinematic data. Section 3 describes the model setup. Section 4 presents our modeling results, and Section 5 discusses their implications for subduction systems on Earth.

¹⁹² 2 Quantifying slab folding from plate motions and slab sinking rates

193

2.1 Conceptual assessment

We start by demonstrating how slab folding can be assessed theoretically as a ge-194 ometrical/kinematic phenomenon, involving slab accumulation in the mantle transition 195 zone. This analysis is inspired by subduction models where (unlike our own model) ve-196 locities are applied to one or both plates, and which can predict slab morphology as a 197 function of these imposed surface kinematics (Christensen, 1996; Heuret et al., 2007; Ar-198 cay et al., 2008; Gibert et al., 2012; Cerpa et al., 2015; Guillaume et al., 2018; Cerpa et 199 al., 2018). Among these, Gibert et al. (2012), anchored the subducting slab to a rigid 200 660-km discontinuity, which aims to simulate the effect of a strong viscosity jump at 660 201 km, as inferred from e.g. geodetic constraints (B. H. Hager, 1984; B. Hager & Richards, 202 1989; Mitrovica & Forte, 2004). Gibert et al. (2012) showed that if the subduction rate 203

 $v_s = v_{sp} + v_t$ exceeds the trench velocity v_t , continued subduction results in slab folding at the base of the upper mantle. Essentially, the slab has to fold because trench retreat does not create enough lateral accommodation space to permit all incoming slab to lie down flat on the '660'. Here we extend their analysis to the more general case where the subducting slab sinks into the lower mantle.

Let $v_s \times \Delta t$ be the length of subducted material consumed at the trench over some 209 duration Δt . The lateral displacement of the trench over the same duration is $v_t \times \Delta t$. 210 The displacement of the deepest portions of the subducting slab (simplified as the dis-211 placement of the slap tip) within the upper mantle is approximated as $v_{tip} \times \Delta t$, where 212 $v_{\rm tip}$ is the absolute velocity of the deepest point of the slab. Slab folding can thus be 213 understood as a simple geometrical constraint. When the length of subducted material 214 is larger than the lateral displacement of the trench plus the displacement of the slab tip, 215 the excess length (slab accumulation) is expected to be accommodated by folding. Put 216 in another form, slab accumulation and folding occurs when: 217

length of subducted material > trench displacement + slab tip motion in the mantle

Alternatively, we can define a kinematic ratio K_r which predicts whether the subducting slab undergoes folding as:

$$K_r = \frac{v_s}{|v_t| + \sqrt{(v_{\rm tip}^x)^2 + (v_{\rm tip}^z)^2}}$$
(1)

where we have decomposed the velocity of the deepest point of the slab into its horizontal and vertical components.

When $K_r \simeq 1$, the free space created by trench retreat and slab sinking can ac-222 commodate all newly incoming lithosphere, which does not have to compress (fold). Hence 223 the slab's apparent thickness remains similar in the upper and lower mantle (Fig. 2). A 224 kinematic ratio K_r higher than 1 implies a surplus of slab material that cannot be ac-225 commodated by trench retreat and slab sinking into the lower mantle, and instead has 226 to be accommodated by slab folding. At $K_r > 1$, the higher the value of K_r , the greater 227 the frequency of slab folds (or alternatively, the wider the amplitude of the folds). Also 228 at $K_r > 1$, the apparent thickness of the folded slab in the lower mantle is predicted 229 to be multiples of the lithospheric thickness observed in the uppermost mantle. 230

The ratio of trench velocity to slab-sinking velocity (v_t/v_{tip}^z) controls, to first order, the average slab dip. This is true for both the unfolded $(K_r \le 1)$ and folded $(K_r > 1)$

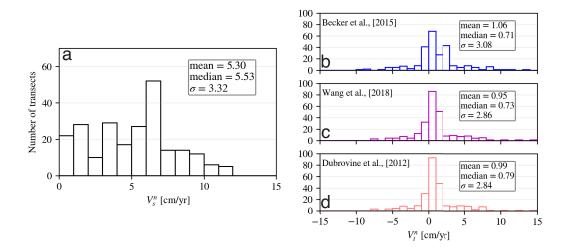


Figure 2. Range of theoretically possible geometries for slabs that sank vertically after entering the trench and have penetrated well into the lower mantle (LM). Dashed lines mark the viscosity discontinuity between upper mantle (UM) and LM, in this study assumed to equate to the seismic "660-km discontinuity". The x-axis plots the ratio of trench motion to the slab's(approximate) sinking velocity. v_t is absolute trench velocity and v_{tip}^z is the vertical velocity component of the deepest slab tip (approximating the slab's overall sinking rate). Positive values of v_t/v_{tip}^z represent trench retreat, negative values trench advance. A stationary trench $(v_t/v_{tip}^z = 0)$ leads to a vertical slab piling up beneath it; a migrating trench results in a dipping slab. The y-axis plots the kinematic ratio (K_r , Eq. 1) which expresses whether the length of slab newly entering the mantle (per time unit) can be accommodated in the slab-free space created by trench migration (horizontally away from the slab) and/or by the sinking of older motion of the slab (which vacates upper-mantle space). $K_r > 1$ indicates a shortfall of newly created accommodation space, so that the slab must fold (or thicken in some other way) in order to adjust.

1) cases. Note that we use only the vertical component of the slab-tip velocity as it is
thought to be much higher than the horizontal component (see also below section 2.2).

Hence the parameter space along the dimensions of K_r and v_t/v_{tip}^z spans a variety of candidate slab morphologies and subduction regimes, as depicted in (Fig. 2). For negative trench motion (trench advance), the subducting slab leans forward, so that the deepest slab portions lie beneath the subducting plate at increasing distances from the trench (leftmost regimes in Fig. 2). For quasi-null trench motions, the subducting slab sinks vertically, with all slab portions remaining below the trench. For relatively high, ²⁴¹ positive trench motions (trench "retreat"), the subducting slab leans backwards (" slab

- rollback"), with deeper slab beneath the overriding plate. It has been proposed that high
- trench-retreat rates promote the complete stagnation of slab atop the 660-km discon-
- tinuity (Torii & Yoshioka, 2007; Goes et al., 2017), so that high values of v_t/v_{tip}^z may
- lead to the end-member subduction regime where the slab flattens and folds on the 660-
- ²⁴⁶ km discontinuity (rightmost regimes in Fig. 2).
- 247

2.2 Estimating slab folding at present-day

- In order to gauge the prevalence of slab folding in nature, we seek to calculate an observational estimate of K_r in active subduction zones, using Equation 1. Hence we need estimates of subduction rate v_s , absolute trench velocity v_t , and slab sinking velocity v_{tip} .
- For estimating v_s and v_t , we use an updated version of the SUBMAP database (Lallemand 251 et al., 2005), which defines 249 transects of active subduction zones. Subduction rates 252 are retrieved from the relative plate motions of the MORVEL56-NNR model (based on 253 a circuit of 56 tectonic plates (Argus et al., 2011) as explained in the Supplementary In-254 formation Text S1). Each SUBMAP subduction transect is assigned to a subducting plate 255 and an overriding plate of the MORVEL56-NNR plate circuit. For transects that cross 256 significant arc and back-arc deformation, MORVEL56-NNR permits the definition of an 257 "arc block" and assessment of trench motion relative to that of a rigid overriding plate, 258 enhancing the accuracy of the derived subduction rate. For a few subduction zones, the 259 MORVEL56-plate circuit does not account for active arc and back-arc deformation even 260 though such a deformation has been well-established in the literature (Southernmost-261 Central Andes, Izu-Bonin, Calabria). For these transects, we complement MORVEL56-262 NNR with published regional studies (see Supplementary Information). 263
- To define the absolute motion of the plates and trenches, we need to consider an 264 absolute plate motion model within an absolute reference frame, comparable to the fixed 265 reference frame of our numerical models. In this paper we calculate and compare the value 266 of K_r in three recent absolute plate motion models, constructed in different manners: 267 the "SA" ("spreading-alignement") model (Becker et al., 2015), the "TM25" model (Wang 268 et al., 2018), and the "GMHRF-1Ma" model by Doubrovine et al. (2012). The SA model 269 minimizes the angular misfit between spreading-ridge orientations and plate velocities. 270 This plate motion was found to give a good fit to azimuthal seismic anisotropy, a proxy 271

-11-

for the shear induced by the relative motion between the tectonic plates and the upper mantle. The TM25 model is based on 25 hotspot tracks under the assumption of fixed hotspots relative to the deep mantle. The GMHRF-1Ma model is based on a global fit of hotspot tracks since the Late Cretaceous, accounting for modest relative motions between the hotspots' mantle plumes, computed by numerical models of whole mantle convection.

We extract the trench-normal component of the plates and trench velocities for comparison with our 2-D models. In what follows, the absolute and relative velocities at each transect are those of their trench-normal components.

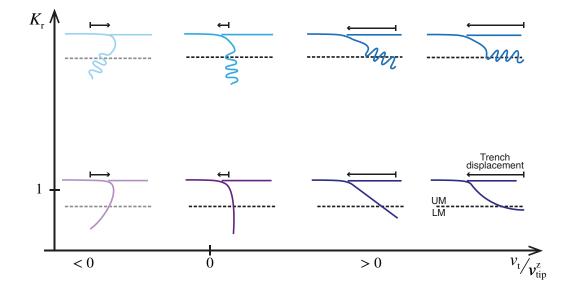


Figure 3. a) Histogram of the trench-normal component of subduction rate v_s in present-day subduction zones. b Histogram of the trench-normal component of trench velocity (retreat) v_t , in the spreading-alignment reference frame (Becker et al., 2015). c) Histogram as in b) but for T25M reference frame (Wang et al., 2018). d) Like b), but for GMHRF-1Ma frame (Doubrovine et al., 2012).

281 282

283

284

285

286

The observed subduction rates are non-negative with a median value of 5.3 cm/yr and a long tail up to almost 12 cm/yr (Fig. 3a). In all three reference frames (Fig. 3bd), absolute trench velocity v_t scatters around slightly positive values with a median values of 0.71 to 0.79 cm/yr. This tendency towards slow trench retreat may or may not be significantly different from zero motion (stationary trench), given the large formal standard deviations of almost 3 cm/yr but also the non-Gaussian, heavy tails of the histogram. In any case, two thirds of the subduction transects have trench velocities between -1 and 1 cm/yr in the three absolute plate motion frames. Hence typical present-day trench motion is roughly five times smaller than typical subduction velocities.

Estimating K_r also requires an estimate of slab sinking rates in the lower mantle. 290 In principle, the reduction of slab sinking rate from UM to LM could be derived from 291 the viscosity contrast between upper and lower mantle (Richards, 1991; Ricard et al., 292 1993). Given the rheology uncertainties and variability of slab sinking rates across the 293 upper mantle, we prefer to use estimates based on tomographic observations. Since im-294 aged slabs are not directly dateable, they have been correlated to the geology of accre-295 tionary orogens, which hold the surface record of subduction. The subduction of litho-296 sphere is accompanied by the formation of a volcanic arc at the surface, which often sur-297 vives and is dateable. Such slab-arc correlations have inferred time-averaged sinking rates 298 of 1.0-1.5 cm/yr for slabs that have penetrated the lower mantle (Van Der Meer et al., 299 2010; Sigloch & Mihalynuk, 2013; Domeier et al., 2016; Van der Meer et al., 2018; Mo-300 hammadzaheri et al., 2021). 301

Using 1.0 cm/yr as the slab sinking velocity estimate, 70–80% of subduction transects exhibit values of $K_r > 1$ in all three absolute reference frames (Fig. 4 and Fig. S1). Only a few subduction transects consistently display $K_r < 1$ in all reference frames, mostly at the edges of longer arcs: the southernmost Andes (Patagonian transects), the northern edge of the Lesser Antilles (e.g. Puerto Rico Trench), or the edges of the South Sandwich SZ.

The present-day prevalence of $K_r > 1$ is relatively insensitive to the assumed slab sinking velocity. Even when considering $v_{tip} = 1.5$ cm/yr, at the high end of the reasonable estimate range (see e.g. Butterworth et al., 2014; Domeier et al., 2016)), 63% of transects remain above $K_r > 1$ in the spreading-aligned absolute plate motion model, and 72% of transects in the two other reference frames.

Figure 4a plots the global inventory of slabs (between 600-1800 km depth), from which the sinking rates were derived. Importantly, most areas are slab free. Existing slabs cluster in two vast, linear belts: one under the Alpine-Eurasian-Himalayan-southwest Pacific orogens; the second under the Americas and into Siberia. From the geologic record and quantitative plate reconstructions, these are the known, absolute locations of major orogenies over the past 200 million years, hence the known paleo-trench locations.

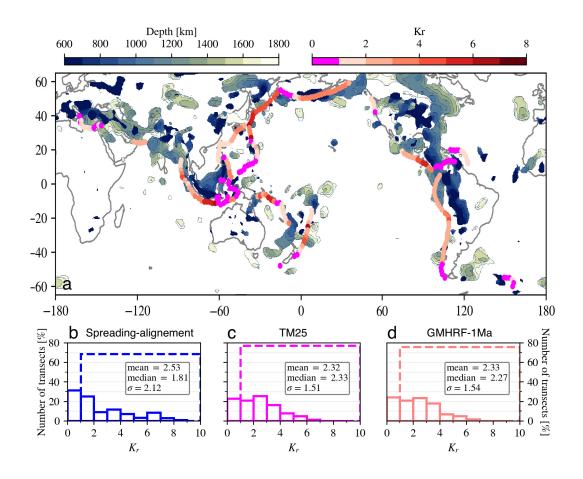


Figure 4. a) Map shows estimates of the kinematic ratio K_r (reddish color scale) for all subduction transects of the SUBMAP database (Heuret & Lallemand, 2005). The regime of inferred slab folding ($K_r > 1$) prevails in most subduction zones. The absolute plate motion model is GMHRF-1Ma, which yields intermediate K_r values compared to the also-investigated spreadingalignment and TM25 models (plotted on Fig. S1 in the supplementary information). Also shown in blue shades is the global inventory of subducted slabs in the lower mantle (600-1800 km depth). More precisely, these are contours of seismically fast P-velocity anomalies exceeding dvp/vp>0.35% in global model DETOX-P2 (Hosseini et al., 2020). b) Histogram of K_r values in the spreading-alignment reference frame. c) Histogram of K_r values in the TM25 reference frame. d) Histogram of K_r values in the GMHRF-1Ma reference frame.

The observation that slabs are still located only beneath these independently inferred paleo-trench regions means that slabs sank rather vertically. The vast slab-free mantle areas are known not to have hosted trenches over the past 200 m.y. This implies that paleo-trenches have remained quite stationary over a time period during which the area equivalent of all ocean basins was subducted once or twice over (Coltice et al., 2012). Thus

319

320

321

322

323

trenches had the opportunity to migrate across the globe but did not, which indicates sustained K > 1 (slab folding regime) over geologic time.

Finally, slab dimensions directly point towards folding. In figure 4a, the Eurasian and American slab belts are 15,000-20,000 km long; individual slab segments are 1,000-3,000 km long (i.e., arc length) and 400-700 km wide. The latter is a multiple of lithospheric thickness, and suggests slab folds of this amplitude.

Thus three separate lines of observational reasoning suggest that most present and past subduction zones feature(d) a surplus of subducted material not accommodated by lateral trench migration and slab sinking, so that instead slab folding is required. As discussed, common models of subduction dynamics (hereafter referred to as standard models) seldom reproduce this regime. Next we investigate whether adding a WAL to a standard model can shift its regimes from non-folding to folding over a wide range of model parameters.

We use 2-D thermo-mechanical models of subduction dynamics. The governing equa-338 tions are those suitable for multi-material, incompressible viscous flow, under the Boussi-339 nesq approximation, which are solved using the finite-element, control-volume, unstruc-340 tured adaptive mesh Fluidity computational modelling framework, which has been care-341 fully validated for simulations of this nature (D. R. Davies et al., 2011; S. Kramer et al., 342 2012; Le Voci et al., 2014; S. C. Kramer et al., 2021). Our model setup and material prop-343 erties are similar to Garel et al. (2014), albeit that in some cases we extend the mod-344 els by incorporating a sub-lithospheric weak asthonospheric layer (WAL), similar to that 345 in Suchoy et al. (2021). Our models neglect the potential effects of phase transitions on 346 the buoyancy forces. Below we summarize our modeling approach. 347

348

3.1 Model Setup

The model predicts the evolution of a single subduction zone comprising both a subducting plate (SP) and an overriding plate (OP), with no external forces or velocities applied to the system. The model domain is a Cartesian box that is 8000-km wide and 2900-km in height (i.e. the whole mantle depth). Mechanical boundary conditions on the sides and base of the domain are free-slip, with a free-surface at the top. We use

-15-

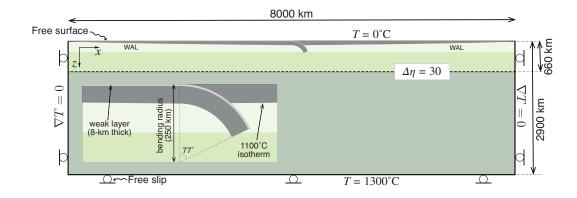


Figure 5. Model setup and boundary conditions. In the standard models the viscosity of the WAL is equal to that of ambient mantle ($\alpha = 1$), i.e., no weak asthenospheric layer (WAL) is present. The initial curved geometry of the subducting plate is prescribed using a bending radius of 250 km, including the weak layer.

no-flux thermal boundary conditions on the sides and impose constant temperatures of 0°C and 1300°C at the surface and at the bottom boundaries, respectively.

The initial temperature field is given by a half-space cooling model where the age of the plates vary linearly from the 0 at the ridges to (A_{SP}) for the subducting plate and to (A_{OP}) for the overriding plate. Models begin with a curved subducting slab to initiate subduction (see inset Fig. 5). Two mid-ocean ridges are initially set at either end of the model box, and are subsequently free to move according to the model dynamics.

We consider a composite visco-plastic rheology that accounts for four deformation mechanisms: linear diffusion creep, and non-linear dislocation creep, Peierls creep and pseudo-brittle yielding. The effective viscosity is:

$$\frac{1}{\eta_{eff}} = \left(\frac{1}{\eta_{diff}} + \frac{1}{\eta_{disl}} + \frac{1}{\eta_P} + \frac{1}{\eta_Y}\right)$$
(2)

which is bounded at lower (10^{18} Pa s) and upper (10^{25} Pa s) limits.

The diffusion (η_{diff}) , dislocation (η_{disl}) and Peierls (η_{P}) viscosities follow the generic form:

$$\eta_{\text{diff}|\text{disl}|\text{P}} = A^{\frac{1}{n}} \exp\left(\frac{E+PV}{nRT_r}\right) \dot{\epsilon}_{II}^{\frac{1-n}{n}} \tag{3}$$

where A is a prefactor, n is the stress exponent, E and V are the activation energy and volume, respectively. P is the lithostatic pressure, R the gas constant, and $\dot{\epsilon}_{II}$ the second invariant of the strain-rate tensor. T_r is the sum of model temperature and an adi-

abatic temperature gradient of 0.5 $^{\circ}C/km$ and of 0.3 $^{\circ}C/km$ in the upper and lower man-370

tle, respectively. The pseudo-brittle yielding viscosity follows a yield-stress law 371

$$\eta_Y = \frac{\tau_Y}{2\epsilon_{II}}\tag{4}$$

where the yield strength $\tau_Y = \min(\tau_0 + f_c P, \tau_Y^{\max})$, with τ_0 the surface yield strength, 372 f_c the friction coefficient, P the lithostatic pressure, and τ_V^{max} the maximum yield strength. 373 The interface weak layer is 8-km thick, with a friction coefficient 10 times lower than the 374 mantle material, and a maximum prescribed viscosity of 10^{20} Pa s. We impose a viscos-375 ity contrast $\Delta \eta$ of 30 at a 660-km depth between upper and lower mantle (B. H. Hager, 376 1984; Gurnis & Hager, 1988; Ricard et al., 1993; Čadek & Fleitout, 1999; Mitrovica & 377 Forte, 2004). All rheological parameters are listed in Table 1. 378

379

3.2 Treatment of WAL

The depth extent of a potential WAL is not well constrained. Some studies, which 380 consider it to be a layer of partial melt, suggest that it is only 10-20 km thick (Schmerr, 381 2012; Sakamaki et al., 2013; Stern et al., 2015), whereas others advocate for a layer ex-382 tending from the lithosphere-asthenosphere boundary up to 200-300 km depth (thus a 383 thickness of approximately 100-200 km) (Kawakatsu et al., 2009; Paulson & Richards, 384 2009; French et al., 2013; Becker, 2017; Barruol et al., 2019; Debayle et al., 2020). Here, 385 we simulate the presence of the WAL by imposing a viscosity reduction between the 1100 $^{\circ}$ C 386 isotherm (a proxy for the LAB) and a depth of 220 km, similarly to Suchoy et al. (2021). 387 Note that models tested with a WAL extending up to 300 km depth showed little dif-388 ferences with the results reported below. We define the effective viscosity within the WAL 389 as: 390

$$\eta_{\rm WAL} = \alpha \eta_{\rm eff} \tag{5}$$

where $0 < \alpha \leq 1.0$ is a reduction-viscosity factor. 391

The viscosity reduction of a WAL, and its origin, is also debated. For example, par-392 tial melt can lead to a 20-fold or larger viscosity reduction (Holtzman, 2016), but strongly 393 depends on melt fraction, creep regime, grain size and wetting angle (Kohlstedt & Zim-394 merman, 1996). Milder viscosity reduction (< 5-fold) are expected from crystal-preferred 395 orientation considerations (Meyers & Kohlstedt, 2021). We explore α values of 1.0 (no 396 viscosity reduction – standard case); 0.5 (two-fold weaker asthenosphere – WAL case); 397 and 0.2 (five-fold weaker – pronounced WAL case)). Note that larger viscosity reduc-398

tions (α in the range 0.01–0.1) have usually been used in global mantle flow models re-

- ⁴⁰⁰ producing sub-plate seismic anisotropy (Conrad & Behn, 2010; Becker, 2017). In our mod-
- els with a composite rheology, shearing in the sub-plate mantle produces additional weak-
- 402 ening of the strained layer relative to the underlying ambient mantle, by the sole effect
- 403 of dislocation creep. Thus a nominal reduction factor of $\alpha = 0.2$ to 0.5 may produce ac-
- tual viscosity reductions by one order of magnitude (see e.g. the viscosity profile in Fig.
- $_{405}$ S10). Empirically, values of α lower than 0.1 in our set-up led to unrealistically large sur-
- $_{406}$ face velocities >50 cm/yr very early in the simulations.

407 4 Model results

We first perform a set of simulations without a WAL ($\alpha = 1$), that we hereafter refer to as standard cases. Next, we explore sets of simulations with different degrees of weakening in the WAL (i.e. various values of α), that we refer to as WAL cases. For each case, we define a reference simulation (with plate ages $A_{sp} = 40$ My and $A_{op} = 20$ My). We subsequently run simulations that span a range of initial ages to cover a wide range of strength and buoyancy for both plates, while being representative of all regions of the subduction regime diagram presented in Garel et al. (2014).

415 4

4.1 Standard cases - no WAL

416

4.1.1 Reference simulation $[A_{sp} = 40 \text{ My}; A_{op} = 20 \text{ My}]$

Figure 6 displays the temporal evolution of the reference simulation for the stan-417 dard cases ($\alpha = 1$). We focus on the evolution of the surface kinematics and the vis-418 cosity field in the sub-plate mantle (i.e., the uppermost upper mantle which undergo rel-419 atively high shear stresses and which is found between the cold lithosphere and depths 420 of up to a 300-km depth). The velocity profile along the plates corresponds to "plate-421 like behavior": the velocity is constant except in the trench region, where both plates 422 undergo deformation (Figure S3). Since trench velocity is very similar to OP velocity, 423 indicating little back-arc deformation at all stages of the models, we will only describe 424 the evolution in terms of trench velocity. 425

During the first stage of free sinking through the upper mantle (Fig. 6a), the subducting plate accelerates as slab pull increases with increasing slab length. It reaches a peak velocity of ~ 13 cm/yr with trench retreat/OP velocity peaking at ~ 4 cm/yr (Fig. 6g).

 Table 1. Physical parameters used in the simulations, unless stated otherwise. UM and LM stand for upper and lower mantle, respectively.

Quantity	\mathbf{Symbol}	\mathbf{Units}	Value		
Gravity	g	${\rm m~s}^{-2}$	9.8		
Thermal expansivity coefficient	α	K^{-1}	$3 \ 10^{-5}$		
Thermal diffusivity	κ	$\mathrm{m}^2~\mathrm{s}^{-1}$	10^{-6}		
Reference density	$ ho_s$	${\rm kg}~{\rm m}^{-3}$	3300		
Cold, surface temperature	T_s	К	273		
Hot, mantle temperature	T_m	К	1573		
Gas constant	R	$\rm J~K^{-1}~mol^{-1}$	8.3145		
Max. viscosity	$\eta_{ m max}$	Pa s	10^{25}		
			10^{20} (WI)		
Max. viscosity interplate layer	$\eta_{ m max,weak}$	Pa s	10^{20}		
Min. viscosity	$\eta_{ m min}$	Pa s	10^{18}		
Diffusion creep					
Activation energy	E	$\rm kJ~mol^{-1}$	300 (UM)		
			200 (LM)		
Activation volume	V	${\rm cm}^3~{\rm mol}^{-1}$	4 (UM)		
			1.5 (LM)		
Prefactor	A	$\mathrm{Pa}^{-1}~\mathrm{s}^{-1}$	$3.0 \ 10^{-11} \ (\text{UM})$		
			6.0 $10^{-17}~({\rm LM}$ - $\Delta\eta=30)$		
	n	-	1		
Dislocation creep $(UM)^a$					
Activation energy	E	$\rm kJ~mol^{-1}$	540		
Activation volume	V	${\rm cm}^3 {\rm \ mol}^{-1}$	12		
Prefactor	A	$\mathrm{Pa}^{-n} \mathrm{s}^{-1}$	$5.0 10^{-16}$		
	n	-	3.5		
Peierls mechanism creep (UI	$M)^a$				
Activation energy	E	$\rm kJ\ mol^{-1}$	540		
Activation volume	V	${\rm cm}^3 {\rm ~mol}^{-1}$	10		
Prefactor	A	$\mathrm{Pa}^{-n} \mathrm{s}^{-1}$	10^{-150}		
	n	-	20		
Yield strength law					
Surface yield strength	$ au_0$	-19–MPa	2		
Friction coefficient	f_c	-	0.2		
	$f_{c,\mathrm{weak}}$	-	0.02 (weak layer)		
Maximum yield strength	$ au_{y,\max}$	MPa	10 000		

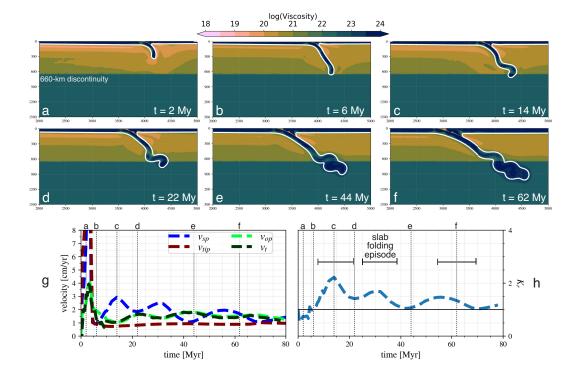


Figure 6. Reference standard model, featuring $A_{sp} = 40$ and $A_{op} = 20$ My. (a-f) Temporal snapshots of the evolution of the viscosity field, from 2 My to 62 My. The white line gives the 1100° C-isocontour. g) Kinematics of plates, slab, and trench. v_{sp} in dark blue, positive to the right. v_{op} in green, positive to the left. v_t in light blue, positive to the left. v_{tip} in dark red is the magnitude of slab tip velocity in. Vertical dashed lines mark snapshots times of (a-f). h) Temporal evolution of Kinematic ratio K_r , a proxy for the slab's propensity to fold (definition in the text). Horizontal black line denotes the boundary between the folding ($K_r > 1$) versus non-folding (K < 1) regime.

The fast SP motion induces high shear stresses in the underlying asthenosphere. This causes high sub-plate strain rates, which favors dislocation creep and lower viscosity than in the less-sheared, underlying mantle. The same occurs within the mantle wedge below 200 km depth, where high strain rates are due to corner flow. Away from these highstrain rate regions, diffusion creep dominates (see e.g. Garel et al., 2014).

As soon as the slab tip encounters the high-viscosity lower mantle around $t \simeq 5$ My, plate velocities decrease to between 1 and 3 cm/yr. The decreases in velocity and sub-plate shear lead to a slight increase of mantle viscosity beneath the subducting plate, compared to the free-sinking stage. After the slab-660 interaction, the viscosity of the
sub-plate mantle increases to typically above 10²⁰ Pa s.

The slab-660 interaction is followed by two episodes of slab folding. First the slab 439 bends with an OP-wards concavity between ~ 6 and ~ 14 My (Fig. 6b-c), with an increase 440 in SP velocity (up to 3 cm/yr) and low trench velocity of approximately 1 cm/yr. Then 441 a transient stage of slab rollback, associated with a slight increase in the trench veloc-442 ities up to 1.5 cm/yr, lasts for approximately 5 My (Fig. 6c) and lowers slab dip in the 443 upper mantle. The second folding episode occurs between ~ 25 and ~ 40 My: the deeper, 444 folded portion of the slab flattens above the lower mantle while the shallow slab contin-445 ues to roll back (Fig. 6d), increasing slab pull (v_{sp} up to ~ 2.5 cm/yr). Another tran-446 sient stage of trench retreat without buckling follows (Fig. 6e), with trench velocity (1.8 447 cm/yr) greater than the SP velocity (1 cm/yr). 448

These two folding episodes are reflected in temporal changes in the viscosity of the 449 sub-plate mantle. Its lowest strength is observed during the short SP-velocity peaks, es-450 pecially underneath the SP (see e.g. Fig. 6c). In contrast, the slight increases in trench/OP 451 motion appear to have little effect on the viscosity field beneath the OP. The highest val-452 ues of sub-plate mantle viscosity are in fact reached during the stages of slab rollback 453 (Fig. 6e), during which the trench velocity peaks. The sub-plate mantle reaches viscos-454 ity values on the order of 10^{21} Pa s, approximately one order of magnitude higher than 455 during SP-velocity peaks. 456

From 50 My, a third slab-folding episode occurs, but with a smaller amplitude due to the obliquity of slab relative to the viscosity jump (Fig. 6f), and a smaller increase in v_{sp} . Overall, through time, all velocities decrease and tend towards 1 cm/yr, comparable to the sinking velocity of the deepest part of the slab within the lower mantle. Slab sinking rates in the lower mantle therefore strongly modulate, and perhaps even limit, surface kinematics.

The kinematic ratio, K_r , given in Equation 1 provides an alternative quantitative diagnostic. During the free-sinking stage, the slab-tip velocity reaches a peak value of 20 cm/yr, higher than the peak SP velocity v_{sp} (13 cm/yr). As a consequence, the kinematic ratio $K_r \leq 1$ (Fig. 6g). After the slab has interacted with the 660-km discontinuity K_r display oscillations. These oscillation follow those observed for v_{sp} and v_t , when one of the two increases while the other decreases. Folding episodes occur when $K_r >$

-21-

⁴⁶⁹ 1, while slab-retreating stages occurs for lower $K_r \simeq 1$. Through time, the amplitude ⁴⁷⁰ of K_r oscillations decrease, reflecting the decrease in folding as the slab inclines and the ⁴⁷¹ impact angle with the 660-km viscosity discontinuity decreases.

472

4.1.2 Slab morphologies and kinematic ratios across all standard cases

We run a series of standard simulations with various initial plate ages (20-100 for the overriding plate; 10-100 for the subducting plate). Since we focus on the long-term evolution of these systems (i.e. well after the first stage of slab-free sinking through the upper mantle), Figure 7a only displays their state at t = 80 My.

Several studies have focused on the interaction and passage of slabs through the 477 mantle transition and the resulting slab morphologies (Torii & Yoshioka, 2007; Billen, 478 2010; Lee & King, 2011; Čížková & Bina, 2013; Billen & Arredondo, 2018), sometimes 479 characterizing a range of so-called subduction regimes (Garel et al., 2014; Agrusta et al., 480 2017; Z.-H. Li et al., 2019; Briaud et al., 2020). Here we focus on two features after ini-481 tial slab-660 interaction: trench motion and the amount of slab folding. Thus we define 482 three regimes: strong trench retreat without slab folding (SR), strong trench retreat with 483 slab folding (SRwF), and a weak trench retreat with slab folding (WRwF) (7a). The strong-484 retreat modes are those for which the total displacement of the trench during the sim-485 ulation amounts to an average rate higher than 1 cm/yr, and weak-retreat modes when 486 it is $\leq 1 \text{ cm/yr}$. Following, Garel et al. (2014), the results of simulations are reported 487 as functions of initial SP and OP ages, with the former controlling slab buoyancy and 488 resistance to bending, and the latter controlling the OP bending resistance opposing trench 489 retreat. Note that due to our focus on the long-term trench motion and the tendency 490 and nature of slab folding, the subduction regimes outlined herein differ from those used 491 in Garel et al. (2014). 492

The SR regime in the simulations of the standard case occurs for both relatively old SPs and relatively old OPs. The regime WRwF occurs only for very young SPs. The regime that lies in between, SRwF, occurs over the widest parameter space. In simulations with relatively young OPs, only the SRwF is observed. For extremely young cases $(A_{SP} = A_{OP} = 20 \text{ Myr})$, subduction is rapidly terminated through slab detachment, because the low slab pull cannot initially overcome the resisting forces.

-22-

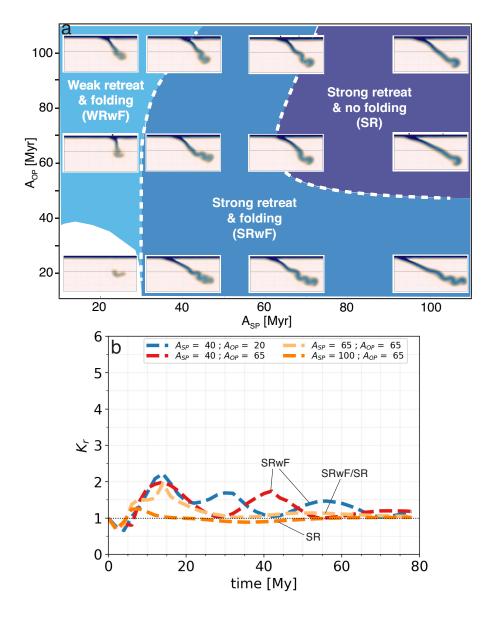


Figure 7. a) Snapshots of the final state (after model run times of 80 My) of all standard models superimposed on a regime diagram. The three regimes are: strong trench retreat without slab folding (SR, purple), strong trench retreat with slab folding (SRwF, dark blue), and weak trench retreat with slab folding (WRwF, light blue). The boundaries between regimes are approximate. b) Kinematic ratio K_r as a function of the time since the initiation of subduction, for four of the standard models shown in (a). The subduction regimes associated with the evolution of those models is indicated by labels. Over time, all four models tend towards no-folding $(K_r \approx 1)$.

Figure 7b displays the evolution of K_r for four selected standard simulations. These 499 simulations display peak K_r of 1.5-2.2, shortly after the first slab-660 interaction (time 500 range 5 to 20 Myr). Simulations $[A_{sp}=40 \text{ My}; A_{op}=20 \text{ My}]$ (ref. simulation - SRwF) 501 and $[A_{sp}=40 \text{ My}; A_{op}=65 \text{ My}]$ (SRwF) display oscillations of K_r associated with slab 502 folding. Simulations $[A_{sp}=65 \text{ My}; A_{op}=65 \text{ My}]$ (SR) and $[A_{sp}=100 \text{ My}; A_{op}=65 \text{ My}]$ 503 (SR) display $K_r \sim 1$ at all times after initial slab-660 interaction. At later times, the 504 value of K_r tends to 1, associated a decrease of both v_{sp} and v_s (see Fig. S9 of Supp. 505 Inf.). 506

4.2 WAL cases

We next perform simulations with a WAL, that is simulations where we impose values of the weakening factor $\alpha < 1$ in the sub-lithospheric mantle. We first consider the a WAL case of moderate weakening of the sub-plate mantle by a factor of two ($\alpha = 0.5$), followed by a more extreme scenario of weakening by a factor of 5 (pronouced WAL case $-\alpha = 0.2$).

513

507

4.2.1 Reference simulation of the WAL case

The plate ages are chosen identical to the reference standard case: $A_{sp}=40$ My and $A_{op}=20$ My. 514 We apply a two-fold weakening factor ($\alpha = 0.5$). In this simulation reference simula-515 tion of the WAL case (Fig. 8), the first slab-660 interaction occurs at ~ 1.5 My, earlier 516 than in the comparable standard simulation ($\simeq 4$ My). The first slab buckling episode 517 occurs shortly after, at 2-10 My (Fig. 8a-b), with subducting plate and trench velocities 518 of 5.5 cm/yr and 1 cm/yr, respectively. Compared to the reference standard simulation, 519 the velocities are higher in the WAL simulation during these stages, which likely enhances 520 the strain rate in the sub-plate mantle where the WAL lies. In addition to this intrin-521 sic weakening effect, the lowering of the viscosity by a factor of 0.5 leads to WAL vis-522 cosities that can be as low as 10^{19} Pa s even after the first slab-660 interaction. 523

A second folding episode takes place after 10 My (Fig. 8c-d) during which the SP velocity increases from 1.8 to 3.8 cm/yr between t = 14 My and t = 22 My and that of the trench decreases from 1.8 to 0.8 cm/yr. The next folding episode (between t =35 My and t = 55 My, Fig. 8e) is associated with a stationary trench, while the SP velocity stabilizes at ~ 2.5 cm/yr. A third fold forms after t = 55 My (Fig. 8f), which

-24-

produces a peak subducting-plate velocity of 4.8 cm/yr. The lowest viscosity of the sub-529 plate mantle is between 10^{19} and 5×10^{19} Pa s at various stages of the WAL simula-530 tion. It never exceeds 10^{20} Pa s, even during stage of slab rollback when SP velocity is 531 typically low (see Supplementary Text S4 and Figure S10 in the Supplementary Info.). 532 The opposite evolution of trench and SP velocity, associated with K_r oscillation, 533 is even more apparent in the reference WAL simulation than in the reference simulation 534 of the standard case. Since the slab tip velocity remains nearly constant at around 1 cm/yr, 535 independent of slab folding and oscillation of surface velocities, the peaks of K_r in the 536

⁵³⁷ WAL simulation are due to the peaks in SP velocity which occur simultaneously of the

⁵³⁸ lows in trench motion.

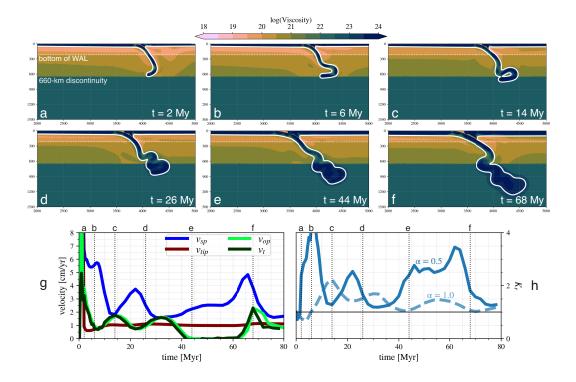


Figure 8. Reference simulation $[A_{sp}=40 \text{ My}; A_{op}=20\text{My}]$ of the WAL case with a two-fold viscosity reduction ($\alpha = 0.5$). Panels and plotting styles as in Fig. 6. Panel (h) displays the evolution of K_r for this reference WAL case (solid blue) and also for the reference standard case of Fig. 6 (dashed blue).

539

4.2.2 Mantle drag forces on the subducting plate

At simulation start, the age of the subducting plate at the trench is 40 My in both 540 the reference standard and the reference WAL models. Hence both models feature iden-541 tical slab pull initially. At simulation end (t = 80 My), the SP is 105km thick at the 542 trench (1100°C-isotherm) for the reference WAL case, versus 110km for the reference 543 standard case. Hence the differences in slab pull force in the upper mantle are likely mi-544 nor in the two simulations. The mid-ocean ridge is free to move over time, and it mi-545 grates trenchward by hundreds of kilometers over 80 My runtime, in both models (see 546 Figures S3 and S5). Since the thicknesses and dimensions of the subducting plate remain 547 quite similar in both model cases, the differences in "ridge push force" (driven by po-548 tential energy of ridge topography) should be too small to make an appreciable differ-549 ence in driving plate velocities. Besides, the magnitude of the ridge-push force is esti-550 mated about one order of magnitude smaller than that of the slab-pull force (e.g., Forsyth 551 & Uyeda, 1975; Parsons & Richter, 1980; Turcotte & Schubert, 2002). 552

Hence the divergent evolution of the two reference simulations is most likely explained by a reduction of mantle drag at the base of the subducting plate. We calculate
the drag force as the integral of the tangential stress along the 1100°C isotherm (in N m⁻¹).
Figure 9 displays the temporal evolution of this diagnostic for the reference simulations
(with and without a WAL).

Prior to first slab-660 interaction, both models show sub-lithospheric mantle moving towards the trench, but with velocities reduced relative to the overlying lithosphere (Couette-type flow). Shear stresses beneath the SP are positive and those beneath the OP are mostly negative. Shear stresses along the base of the SP remains positive after slab-660 interaction (Fig. 9c,e), and the drag force remains negative. The absolute value of the drag force beneath the SP decreases with time, as a consequence of the reduction in length of that plate with time.

The two simulations display similar oscillatory trends in SP velocity, which reflect slab folding behavior. The lower absolute drag in the WAL simulation explains its higher SP velocities (Fig. 8g) relative to the comparable non-WAL case (Fig. 6g). A faster SP may hamper trench retreat via faster trench-ward asthenospheric flow, which would oppose to slab rollback (Alsaif et al., 2020). Alternatively, A. F. Holt and Becker (2016) proposed that a reduction in the sub-plate mantle viscosity would decrease the mantle

-26-

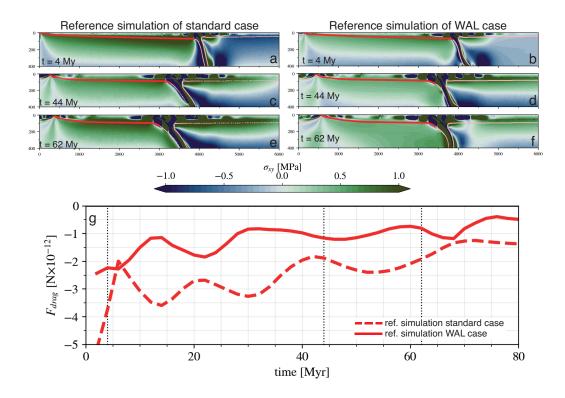


Figure 9. Viscous mantle resistance acting below the subducting plate in the reference standard model versus in the reference WAL model. (a,c,e) Snapshots of the shear stress field (background colour) in the reference standard model at times 4 My, 44 My, and 62 My. (b,d,f) Same snapshots for the reference WAL model. Red line traces the LAB isotherm of 1100°C used to calculate the drag below the subducting plate. Positive shear stresses imply that the tangential component of the stress vector - calculated along the quasi-horizontal LAB isotherm of the subducting plate - is toward the left. g) Evolution of the mantle drag force below the subducting plate for the reference standard model (dashed red) and the reference WAL model (solid red) . Negative values denote a force toward the left. The total mantle drag force onto the subducting plate is negative in accordance with the stress vector. Three vertical dashed lines indicate the times of the snapshopts (a-f). The drag force beneath the overriding plate is less straightforward to analyze, see Supplementary Information Text S5.

drag force acting on the SP to a greater extent than it would decrease the mantle-wedge suction force (Tovish et al., 1978) which opposes to trench motion. As a consequence, these authors suggested that a reduction in sub-plate mantle viscosity would preferentially favor a decrease in trench motion. Finally, a lower drag of the asthenosphere on the subducting slab can also be promoted through the non-newtonian viscosity associated to dislocation creep, causing a positive feedback loop with faster slab inducing larger strain rate and lower viscous resistance to sinking (Garel et al., 2020). All these effects favor the higher K_r observed in the reference WAL case compared to the reference standard case.

We ran a modified reference WAL simulation where the WAL is imposed only beneath the subducting plate ("WAL-SP" model shown in Fig. S12). Its trench displacement and slab morphology are intermediate between the reference WAL and reference standard cases, though tending to a WRwF regime and thus closer overall to the WAL case. This also points to viscosity reduction beneath the SP as the major, causal mechanism for shifting subduction towards a WRwF regime when a WAL is imposed.

586

587

4.2.3 Subducting slab morphologies and kinematic ratios in the moderate WAL case ($\alpha = 0.5$)

As with the standard cases, we run a series of WAL simulations with $\alpha = 0.5$, span-588 ning plate ages from 20-100 My. Figure 10a displays their final state at 80 My, together 589 with the inferred regime diagram. Consistent with the standard cases, WAL cases ex-590 hibit three regimes (SR, SRwF, and WRwF), but regime boundaries are shifted towards 591 higher plate ages. In particular, the WAL simulations $[A_{sp}=65 \text{ My}-A_{op}=65 \text{ My}]$ and $[A_{sp}=65 \text{ My}]$ 592 A_{op} =100 My] now lie more clearly in the SRwF regime while their standard equivalents 593 belong to the SR regime. Moreover, the WAL simulations with $A_{sp} = 40$ My lie within, 594 or very close to, the WRwF regime, whereas for standard cases, only those with $A_{sp} \geq$ 595 20 My are within this regime. 596

Figure 10b displays the kinematic ratio K_r of selected WAL simulations. As in the 597 standard cases, the ratios K_r before and during the first slab-660 interaction is gener-598 ally higher than 1. Some peak values of K_r reached in the WAL simulations are even 599 greater (> 2) than the highest values observed in the standard simulations (7b). Most 600 importantly, two of these simulations $[A_{sp} = 40 \text{ My}; A_{op} = 20 \text{ My}]$ (ref. simulation 601 for the WAL case) and $[A_{sp}\ =\ 65\ {\rm My}; A_{op}\ =\ 65\ {\rm My}]$ display $K_r\ >\ 2$ even after the 602 first slab-660 interaction: the presence of a weak layer favors the excess accumulation 603 of subducted material in the mantle relative to the accommodation by motion of both 604 the trench and slab tip, resulting in substantial slab folding. The simulation $[A_{sp}=100 \text{ My}; A_{op}=65 \text{ My}]$ 605 shows values of K_r close to 1 at all times after initial slab-660 interaction, consistent with 606

-28-

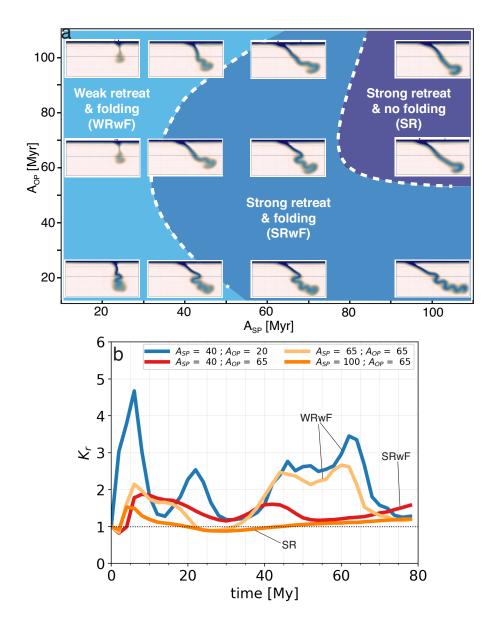


Figure 10. a) Regime diagram of WAL models with two-fold viscosity reduction ($\alpha = 0.5$). Panels and plotting styles as in Fig. 7.

- the standard case, lying in the SR regime. WAL simulation $[A_{sp}=65 \text{ My}; A_{op}=65 \text{ My}]$
- exhibits intermediate behavior, with oscillations of K_r up to 1.5, while its standard equiv-
- alent show values close to 1. This is because the former clearly lies in the SRwF regime
- while its equivalent standard case lies near the transition from the SRwF to the SR regime.

4.2.4 Pronounced WAL cases with $\alpha = 0.2$

611

We finally run a series of simulations for a five-fold weakened WAL with $\alpha = 0.2$ 612 (Fig. 11a). The most striking difference to all previous cases is that the SR regime (strong 613 retreat without folding) no longer appears within the range of plate ages investigated, 614 spanning $A_{sp} = [20 My, 100 My]$ and $A_{op} = [20 My, 100 My]$. Instead, slab folding 615 becomes pervasive throughout the age parameter space. Moreover, the boundary between 616 the WRwF and SRwF regimes shifts to subducting plate ages older than 65 My ,and over-617 riding plate ages older than 20 My. Hence strong trench retreat ($v_t > 1 \text{ cm/yr}$) now 618 only occurs for dense and stiff subducting plates, with the WRwF regime (folding un-619 der quasi-stationary trenches) becoming dominant. In particular, when the overriding 620 plate is weak $(A_{op} \simeq 20 \text{ My})$, ubiquitously folding slabs pile up almost vertically in the 621 lower mantle. The $\alpha = 0.2$ simulations also sustain higher K_r values (1.5-4) well af-622 ter the first slab-600 interaction (Fig. 11b). 623

In most of the pronounced-WAL simulations, soon after the initiation of the model thermal diffusion (cooling from the surface) prevails over advection, and the ridge on the OP side disappears. This enforces a quasi-null trench retreat and enhances vertical folding. As a consequence, the WRwF regime becomes self-sustained from early stages of these simulations.

In most of the pronounced-WAL ($\alpha = 0.2$) simulations, transient thermal insta-629 bilities form within the weak layer for simulations with relative old and thick OPs. Drips 630 of cold lithosphere are generated beneath the OP as the lithosphere thicken by conduc-631 tive cooling. The drips are then advected by lateral mantle flow and mix with the un-632 derlying mantle. They only occur when WAL viscosity is close to or below $\sim 10^{19}$ Pa s, 633 consistent with previous studies (van Hunen et al., 2003; Ballmer et al., 2011; Le Voci 634 et al., 2014; D. R. Davies et al., 2016). Finally, simulations run with $\alpha = 0.1$ (not shown) 635 exhibit pronounced thermal instabilities beneath both OP and SP, over a wide range of 636 plate ages (thicknesses). A more detailed analysis of this small-scale convection, how-637 ever, out of the scope of this study. 638

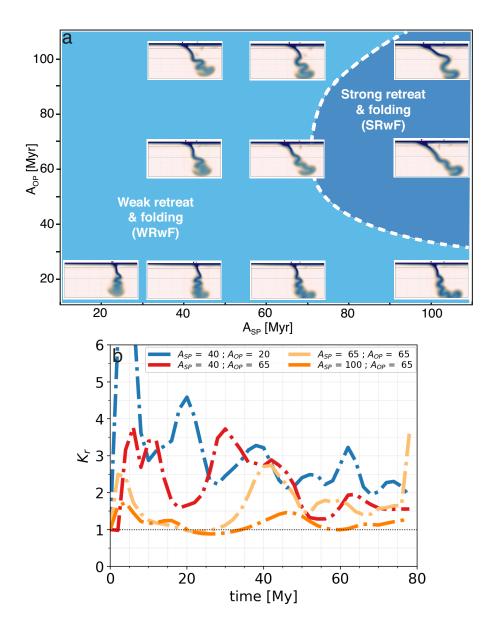


Figure 11. Regime diagram of WAL models with a five-fold viscosity reduction ($\alpha = 0.2$). Panels and plotting styles as in Fig. 7. The models remain in the weak retreat and folding regime over the entire run time, unless they feature very old plate ages.

5 Discussion

640

5.1 Surface velocities and kinematic ratios

On Earth, subduction rates are typically 3 to 5 times higher than absolute trench velocities, and 5 times higher than estimated slab sinking velocities (see Section 2). This yields kinematic ratio K_r estimates above 1 for most subduction zones, implying that slab thickening/folding is the default regime (see section 2.2).

Simulations without a WAL produce surface kinematics at odds with these obser-645 vational constraints because once the slab has interacted with the transition zone, the 646 subducting plate v_{sp} slows down to approach slab sinking rates of 1 cm/yr. The addi-647 tion of a WAL renders the simulations more compatible with observational constraints, 648 in that v_{sp} up to 5 cm/yr are maintained long after initial slab-660 interaction (Fig. S3-649 S4 in Supp Info), and trench velocities v_t are attenuated to typically lower than 1 cm/yr. 650 Our simulations with WAL thus reproduce the rapid subduction rate, near-stationary 651 trenches, and slow slab-sinking rates observed on Earth. WAL simulations have higher 652 K_r values than the standard models, as summarized by Figure 12. The time-averaged 653 kinematic ratio \bar{K}_r (after initial slab-660 interaction, i.e., averaged between 20-80 My) 654 ranges from 1.0–1.3 in the standard models (Fig. 12a, except for the youngest SP plate 655 ages). In contrast, K_r ranges between 1.0–3.1 in the WAL simulations ($\alpha = 0.5$, Fig. 12b), 656 and between 1.0–2.9 for the pronounced-WAL simulations ($\alpha = 0.2$, Fig. 12c). \bar{K}_r is 657 generally higher in the pronounced-WAL simulations (although the maximum value of 658 $\bar{K}_r = 3.1$ occurs for $\alpha = 0.5$ and the youngest plate ages). 659

Simulations with a WAL also show higher peak values of (non-averaged) K_r , before and after first slab 660-interaction. In the standard models, K_r mostly ranges between 1–2 (see Fig. 7 and Supp Info Fig. S9a), whereas the simulations with a WAL exhibit peak K_r values above 2 and up to 6-7 (Figs. 10 and Fig. 11 – see also Figs. S9b,c in Supp. Info.). Hence only the models with a WAL produce kinematic ratios K_r that are comparable to those estimated for subduction zones in nature (Fig. 4).

Behr and Becker (2018) have suggested the lubrication effect of a weak sedimen-666 tary layer above the subducting plate, which gets wedged against the overriding plate 667 at the plate interface, as an alternative mechanism for increasing v_{sp} in models of sub-668 duction dynamics (see also Duarte et al., 2013). They showed that v_{sp} could increase by 669 one to two orders of magnitude if sediments reduced viscous resistance at the interface 670 by a comparable amount. Pokornỳ et al. (2021) demonstrated these possible feedbacks 671 in a subduction system where the weak interface layer has a strain-rate dependent rhe-672 ology, which may undergo viscosity variations according to the changes in the dynam-673 ics of the system. Hence we sought to clarify the role of a weakened plate interface in 674 our own simulations. First we verified that the viscosity of the subduction interface is 675 similar in the WAL and in the standard reference models, at all temporal stages (Fig. 676 S13). This confirms that the very different kinematics of these two models really are due 677

-32-

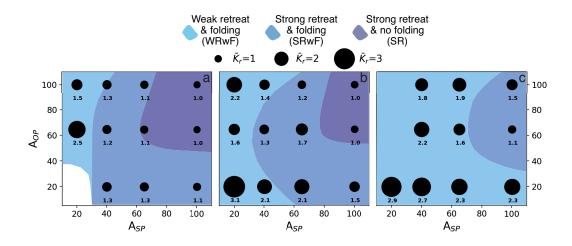


Figure 12. Summary of modeling runs and regime diagrams. Time-averaged kinematic ratio \bar{K}_r after the first slab-600 interaction, plotted in the two-dimensional space of SP and OP plate ages (unit Myr). for (a) standard non-WAL simulations; (b) WAL simulations with $\alpha = 0.5$; (c) pronounced-WAL simulations with $\alpha = 0.2$. \bar{K}_r is represented by black dots with sizes proportional to \bar{K}_r values, which are also printed. Background colors denote folding regimes as in previous figures. The time-averaging window for obtaining \bar{K}_r is [20-80] My.

to the lubrication effect by the WAL, rather than an indirect effect of weaker interface 678 coupling in one model but not the other. Moreover, recent models have shown that a weaker 679 plate interface tends to produce increased trench retreat v_t (Pusok et al., PREPRINT; 680 Behr et al., 2022). We attempted to reproduce this finding by running a standard sim-681 ulation featuring a plate interface layer with a two-fold reduction in maximum viscos-682 ity (see Fig. S8). Relative to the equivalent standard case, v_t did indeed increase slightly, 683 and so did v_{sp} . In combination, K_r hardly changed compared to the standard model, 684 thus remaining too low compared to observations. Hence a weaker plate interface does 685 not narrow the gap between standard model predictions and the available observational 686 constraints and is thus not considered a valid alternative to the WAL hypothesis. 687

688

5.2 Slab morphologies

The presence of a WAL strongly impacts the subduction regimes and lower mantle slab morphologies, as encapsulated by the proxy of K_r . Simulations without a WAL produce low-to-moderate values of K_r , and moderate-to-high trench retreat rates. Without a WAL, strong-retreat regimes are thus dominant across the parameter space exam-

ined, and only models with the youngest, weakest overriding plate (20 My) exhibit some 693 slab-folding behaviour. In the simulation with a WAL and a weakening factor $\alpha = 0.2$, 694 the (non-folding) SR regime disappears and the SRwF regime only occurs in simulations 695 with relatively stiff and buoyant plates ($A_{sp} > 80 \text{ My}, A_{sp} > 40 \text{ My}$). Hence, folding 696 slabs and vertically piling in the lower mantle, beneath near-stationary trenches, become 697 the prevailing morphologies when accounting for a WAL in the simulations (light blue 698 shading in Fig.12). These results demonstrate, for the first time, that models of subduc-699 tion dynamics (without external forcing) are able to produce lower-mantle slab morpholo-700 gies observed by tomography, while also honouring the plate and trench velocities mea-701 sured at the surface. 702

We note that the amplitude of lower-mantle slab folds in our simulations is con-703 sistent with theoretical predictions based on a thin-sheet mathematical formulation. Ribe 704 (2003) and Ribe et al. (2007) used these formulations to derive a scaling law for the am-705 plitude of folds of a vertically descending, viscous sheet that buckles as it encounters re-706 sistance at a sharp viscosity jump, or a rigid barrier. The predicted fold amplitude is half 707 the fall height, which would be half the thickness of the upper mantle in the context of 708 subduction: approximately 330 km. Our simulations with more pronounced vertical slab 709 folding produce 300 to 500-km wide folds in the lower mantle, that are consistent with 710 this theory. We note that the presence of a WAL enhances the frequency of folding in 711 the models but leaves their width reasonably unchanged. The modeled fold amplitudes 712 of 300-500 km are moderately smaller than the 400-700 km wide "slab walls" imaged by 713 seismic tomography (e. g. Sigloch & Mihalynuk, 2013). It remains to be investigated whether 714 this difference is due to shortcomings of the physical approximations used in our dynamic 715 models, or due to tomographic blur. 716

From models of subduction dynamics, it has been suggested that sustained, quasi-717 periodic slab folding, over tens of millions of years after initial slab-660 interaction, can 718 occur only if the mineralogical phase transition around 410 and 660 km were included 719 in the models (Běhounková & Čížková, 2008; Čížková & Bina, 2013; Agrusta et al., 2017; 720 Briaud et al., 2020), and/or if the subducting slab was quite weak, e.g., made of young 721 seafloor (Garel et al., 2014; Agrusta et al., 2017; Strak & Schellart, 2021). While we ac-722 knowledge that these factors may further enhance slab folding, we stress that our sim-723 ulations with a WAL did not require the phase transitions in order to produce sustained 724 slab folding. The Clapeyron slopes of the phase transitions remain under discussion (see 725

-34-

e.g. Agrusta et al., 2017, and references therein), so their relative role in slab folding re-726 mains to be clarified. In a similar vein, the inclusion of a WAL yielded slab folding of 727 relatively thick and stiff subducting plates (Fig.12). No additional slab-weakening mech-728 anism or slab-buoyancy variation was required. We note that it has also been suggested 729 that vertical piles of lower-mantle slabs are more easily produced in the context of a fixed 730 overriding plate (Lee & King, 2011; Běhounková & Čížková, 2008; Čížková & Bina, 2013; 731 Billen & Arredondo, 2018). Here we have demonstrated that vertical slab folding slab 732 can also occur in simulations with a WAL, in which trench retreat remains self-consistently 733 limited (Fig. 8). 734

735 6 Conclusion

Previous numerical and analogue models of subduction dynamics tend to produce 736 surface kinematics and lower-mantle slab morphologies that do not match first-order ob-737 servational constraints. We have shown that including a weak asthenospheric layer be-738 low the lithosphere into numerical models of subduction dynamics eliminates these mis-739 matches. The lubricating effect of the asthenosphere produces a velocity increase of the 740 subducting plate and a reduction of trench retreat, yielding predicted velocities that closely 741 match those recorded on Earth. These velocity changes are sustained long after the sub-742 ducting slab has penetrated into the lower mantle. The surplus of rapidly subducting 743 lithosphere is accommodated by folding, rather than by accelerating trench retreat or 744 slab sinking. This leads to an apparent horizontal widening of the slab in the lower man-745 tle, as is observed by seismic tomography. Substantial near-vertical slab piles accumu-746 late over time because trench motion is limited. We find that a viscosity reduction be-747 low the plate by a factor of only 2 to 5 is sufficient to completely shift the dynamics in 748 these models - from non-folding with slow subduction and substantial trench retreat, 749 to regimes of multiply folded, wall-like slab piles under near-stationary trenches. The lat-750 ter then dominate across a wide parameter space of subducting and overriding plate ages. 751 Our results provide strong independent support for the presence of a weak asthenospheric 752 layer beneath Earth's lithosphere. 753

754 7 Open Research

The data used for Figure 1 and for the estimates of K_r in Fig. 4 is provided in the Supplementary Information Table S1, and is available through the 'SubMAP' website

-35-

- ⁷⁵⁷ http://submap.gm.univ-montp2.fr/. The tomography model DETOX-P2 used in Fig.
- 4 is freely available through the 'SubMachine' tomography web portal: http://submachine.earth.ox.ac.uk/.
- The numerical code, Fluidity, used for the 2-D simulations is open source and available
- ⁷⁶⁰ from https://fluidityproject.github.io/. The input files required to reproduce all simu-
- lations have been made available in the Zenodo repository https://doi.org/10.5281/zenodo.6817177
- which also contains the output files of the reference simulations of both the standard and
- ⁷⁶³ the WAL cases.

764 Acknowledgments

- N. C. and K.S. were supported by funding to K.S. from the European Research Coun-
- cil (ERC) under the European Union's Horizon 2020 research and innovation program
- ⁷⁶⁷ (grant agreement 639003 DEEP TIME). This work was supported by the French gov-
- reason renner, through the UCAJEDI Investments in the Future project managed by the Na-
- tional Research Agency (ANR) under reference number ANR-15-IDEX-01. The authors
- are grateful to the OPAL infrastructure from Université Côte d'Azur and the Univer-
- sité Côte d'Azur's Center for High-Performance Computing for providing resources and
 support.

773 **References**

- Agrusta, R., Goes, S., & van Hunen, J. (2017). Subducting-slab transition-zone
 interaction: Stagnation, penetration and mode switches. *Earth and Planetary Science Letters*, 464, 10–23. Retrieved from https://doi.org/10.1016/
 j.epsl.2017.02.005 doi: 10.1016/j.epsl.2017.02.005
- Alsaif, M., Garel, F., Gueydan, F., & Davies, D. R. (2020). Upper plate deformation
 and trench retreat modulated by subduction-driven shallow asthenospheric
 flows. *Earth and Planetary Science Letters*, 532, 116013.
- Amaru, M. (2007). Global travel time tomography with 3-d reference models
 (Vol. 274). Utrecht University.
- Arcay, D., Lallemand, S., & Doin, M.-P. (2008). Back-arc strain in subduction zones:
 Statistical observations versus numerical modeling. *Geochemistry, Geophysics, Geosystems*, 9(5).
- Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion
 of 56 plates relative to the no-net-rotation reference frame. *Geochemistry*,

788	Geophysics, Geosystems, 12(11). Retrieved from https://doi.org/10.1029/
789	2011GC003751 doi: 10.1029/2011GC003751
790	Arredondo, K. M., & Billen, M. I. (2017). Coupled effects of phase transitions and
791	rheology in 2-d dynamical models of subduction. Journal of Geophysical Re-
792	search: Solid Earth, 122(7), 5813-5830. Retrieved from https://doi.org/10
793	.1002/2017JB014374 doi: 10.1002/2017JB014374
794	Ballmer, M. D., Ito, G., Van Hunen, J., & Tackley, P. J. (2011). Spatial and tempo-
795	ral variability in hawaiian hotspot volcanism induced by small-scale convection.
796	Nature Geoscience, $4(7)$, 457–460.
797	Barruol, G., Sigloch, K., Scholz, JR., Mazzullo, A., Stutzmann, E., Montag-
798	ner, JP., others (2019). Large-scale flow of indian ocean astheno-
799	sphere driven by réunion plume. Nature Geoscience, $12(12)$, 1043–1049.
800	Retrieved from https://doi.org/10.1038/s41561-019-0479-3 doi:
801	10.1038/s41561-019-0479-3
802	Becker, T. W. (2017). Superweak asthenosphere in light of upper mantle seis-
803	mic anisotropy. Geochemistry, Geophysics, Geosystems, 18(5), 1986–
804	2003. Retrieved from https://doi.org/10.1002/2017GC006886 doi:
805	10.1002/2017GC006886
806	Becker, T. W., & Faccenna, C. (2009). A review of the role of subduction dynamics
807	for regional and global plate motions. In Subduction zone geodynamics (pp. 3–
808	34). Springer.
809	Becker, T. W., Schaeffer, A. J., Lebedev, S., & Conrad, C. P. (2015). Toward a
810	generalized plate motion reference frame. Geophysical Research Letters, $42(9)$,
811	3188-3196. Retrieved from https://doi.org/10.1002/2015GL063695 doi: 10
812	.1002/2015GL063695
813	Běhounková, M., & Čížková, H. (2008). Long-wavelength character of subducted
814	slabs in the lower mantle. Earth and Planetary Science Letters, 275 (1-2), 43–
815	53. Retrieved from https://doi.org/10.1016/j.epsl.2008.07.059 doi: 10
816	.1016/j.epsl.2008.07.059
817	Behr, W. M., & Becker, T. W. (2018). Sediment control on subduction plate speeds.
818	Earth and Planetary Science Letters, 502, 166–173. Retrieved from https://
819	doi.org/10.1016/j.epsl.2018.08.057 doi: 10.1016/j.epsl.2018.08.057
820	Behr, W. M., Holt, A. F., Becker, T. W., & Faccenna, C. (2022). The effects of plate

-37-

manuscript submitted to JGR: Solid Earth

821	interface rheology on subduction kinematics and dynamics. $Geophysical Jour-$
822	nal International. Retrieved from https://doi.org/10.1093/gji/ggac075
823	doi: $10.1093/gji/ggac075$
824	Billen, M. I. (2010). Slab dynamics in the transition zone. <i>Physics of the Earth</i>
825	and planetary interiors, 183(1-2), 296-308. Retrieved from https://doi.org/
826	10.1016/j.pepi.2010.05.005 doi: 10.1016/j.pepi.2010.05.005
827	Billen, M. I., & Arredondo, K. M. (2018). Decoupling of plate-asthenosphere
828	motion caused by non-linear viscosity during slab folding in the transi-
829	tion zone. Physics of the Earth and Planetary Interiors, 281, 17–30. Re-
830	trieved from https://doi.org/10.1016/j.pepi.2018.04.011 doi:
831	10.1016/j.pepi.2018.04.011
832	Briaud, A., Agrusta, R., Faccenna, C., Funiciello, F., & van Hunen, J. (2020).
833	Topographic fingerprint of deep mantle subduction. Journal of Geo-
834	physical Research: Solid Earth, 125(1), e2019JB017962. Retrieved from
835	https://doi.org/10.1029/2019JB017962 doi: 10.1029/2019JB017962
836	Butterworth, N., Talsma, A., Müller, R., Seton, M., Bunge, HP., Schuberth, B.,
837	\dots Heine, C. (2014). Geological, tomographic, kinematic and geodynamic
838	constraints on the dynamics of sinking slabs. Journal of Geodynamics, 73,
839	1-13. Retrieved from https://doi.org/10.1016/j.jog.2013.10.006 doi:
840	10.1016/j.jog.2013.10.006
841	Čadek, O., & Fleitout, L. (1999). A global geoid model with imposed plate velocities
842	and partial layering. Journal of Geophysical Research: Solid Earth, 104 (B12),
843	29055-29075. Retrieved from https://doi.org/10.1029/1999JB900150 doi:
844	10.1029/1999JB900150
845	Capitanio, F., Morra, G., & Goes, S. (2007). Dynamic models of downgoing
846	plate-buoyancy driven subduction: Subduction motions and energy dis-
847	sipation. Earth and Planetary Science Letters, 262(1), 284–297. doi:
848	10.1016/j.epsl.2007.07.039
849	Carluccio, R., Kaus, B., Capitanio, F. A., & Moresi, L. (2019). The impact of a
850	very weak and thin upper as thenosphere on subduction motions. $Geophysical$
851	Research Letters, 46(21), 11893-11905. Retrieved from https://doi.org/10
852	.1029/2019GL085212 doi: 10.1029/2019GL085212
853	Cerpa, N. G., Araya, R., Gerbault, M., & Hassani, R. (2015). Relationship between

-38-

manuscript submitted to JGR: Solid Earth

854	slab dip and topography segmentation in an oblique subduction zone: Insights
855	from numerical modeling. $Geophysical Research Letters, 42(14), 5786-5795.$
856	doi: 10.1002/2015GL064047
857	Cerpa, N. G., Guillaume, B., & Martinod, J. (2018). The interplay between over-
858	riding plate kinematics, slab dip and tectonics. Geophysical Journal Interna-
859	tional, 215(3), 1789-1802. doi: 10.1093/gji/ggy365
860	Cerpa, N. G., Hassani, R., Gerbault, M., & Prévost, JH. (2014). A fictitious do-
861	main method for lithosphere-asthenosphere interaction: Application to periodic
862	slab folding in the upper mantle. Geochemistry, Geophysics, Geosystems,
863	15(5), 1852–1877. Retrieved from https://doi.org/10.1002/2014GC005241
864	doi: 10.1002/2014GC005241
865	Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., & Wang, Y. (2016).
866	Experimental evidence supports mantle partial melting in the asthenosphere.
867	Science advances, 2(5), e1600246. Retrieved from https://doi.org/10.1126/
868	sciadv.1600246
869	Christensen, U. R. (1996). The influence of trench migration on slab penetration
870	into the lower mantle. Earth and Planetary Science Letters, $140(1)$, 27–39.
871	doi: 10.1016/0012-821X(96)00023-4
872	Čížková, H., & Bina, C. (2013). Effects of mantle and subduction-interface rheolo-
873	gies on slab stagnation and trench rollback. Earth and Planetary Science Let-
874	ters, 379, 95–103. doi: 10.1016/j.epsl.2013.08.011
875	Čížková, H., & Bina, C. R. (2015). Geodynamics of trench advance: Insights from a
876	philippine-sea-style geometry. Earth and Planetary Science Letters, 430, 408–
877	415. Retrieved from https://doi.org/10.1016/j.epsl.2015.07.004 doi: 10
878	.1016/j.epsl.2015.07.004
879	Čížková, H., van den Berg, A. P., Spakman, W., & Matyska, C. (2012). The
880	viscosity of earth's lower mantle inferred from sinking speed of subducted
881	lithosphere. Physics of the earth and Planetary Interiors, 200, 56–62.
882	Retrieved from https://doi.org/10.1016/j.pepi.2012.02.010 doi:
883	10.1016/j.pepi.2012.02.010
884	Coltice, N., Rolf, T., Tackley, P. J., & Labrosse, S. (2012). Dynamic causes of the
885	relation between area and age of the ocean floor. Science, $336(6079)$, $335-338$.
886	Retrieved from https://doi.org/10.1126/science.1219120 doi: 10.1126/

-39-

science.1219120

887

888	Conrad, C. P., & Behn, M. D. (2010). Constraints on lithosphere net rotation
889	and as thenospheric viscosity from global mantle flow models and seismic
890	anisotropy. $Geochemistry, Geophysics, Geosystems, 11(5)$. Retrieved from
891	https://doi.org/10.1029/2009GC002970 doi: 10.1029/2009GC002970
892	Cooper, R., & Kohlstedt, D. (1986). Rheology and structure of olivine-basalt par-
893	tial melts. Journal of Geophysical Research: Solid Earth, 91(B9), 9315–9323.
894	Retrieved from https://doi.org/10.1029/JB091iB09p09315 doi: 10.1029/
895	$\rm JB091iB09p09315$
896	Davies, D. R., Le Voci, G., Goes, S., Kramer, S. C., & Wilson, C. R. (2016). The
897	mantle wedge's transient 3-D flow regime and thermal structure. Geochem.
898	Geophys. Geosys., 17, 78-100. doi: 10.1002/2015GC006125
899	Davies, D. R., Wilson, C., & Kramer, S. (2011). Fluidity: A fully unstructured
900	anisotropic adaptive mesh computational modeling framework for geody-
901	namics. Geochemistry, Geophysics, Geosystems, 12(6). Retrieved from
902	https://doi.org/10.1029/2011GC003551 doi: 10.1029/2011GC003551
903	Davies, G. (1981). Regional compensation of subducted lithosphere: effects on geoid,
904	gravity and topography from a preliminary model. Earth and Planetary Sci-
905	ence Letters, 54(3), 431-441. Retrieved from https://doi.org/10.1016/0012
906	-821X(81)90059-5 doi: 10.1016/0012-821X(81)90059-5
907	Debayle, E., Bodin, T., Durand, S., & Ricard, Y. (2020). Seismic evidence
908	for partial melt below tectonic plates. Nature, $586(7830)$, $555-559$. Re-
909	trieved from https://doi.org/10.1038/s41586-020-2809-4 doi:
910	10.1038/s41586-020-2809-4
911	Debayle, E., & Ricard, Y. (2013). Seismic observations of large-scale deformation at
912	the bottom of fast-moving plates. Earth and Planetary Science Letters, 376,
913	165-177. Retrieved from https://doi.org/10.1016/j.epsl.2013.06.025
914	doi: 10.1016/j.epsl.2013.06.025
915	Di Giuseppe, E., Van Hunen, J., Funiciello, F., Faccenna, C., & Giardini, D. (2008).
916	Slab stiffness control of trench motion: Insights from numerical models. Geo -
917	chemistry, Geophysics, Geosystems, $9(2)$.
918	Doglioni, C., Carminati, E., Cuffaro, M., & Scrocca, D. (2007). Subduction kinemat-

⁹¹⁹ ics and dynamic constraints. *Earth-Science Reviews*, 83(3), 125–175.

-40-

920	Domeier, M., Doubrovine, P. V., Torsvik, T. H., Spakman, W., & Bull, A. L. (2016).
921	Global correlation of lower mantle structure and past subduction. Geophysi-
922	cal Research Letters, 43(10), 4945-4953. Retrieved from https://doi.org/10
923	.1002/2016GL068827 doi: 10.1002/2016GL068827
924	Doubrovine, P. V., Steinberger, B., & Torsvik, T. H. (2012). Absolute plate
925	motions in a reference frame defined by moving hot spots in the pacific, at-
926	lantic, and indian oceans. Journal of Geophysical Research: Solid Earth,
927	117(B9). Retrieved from https://doi.org/10.1029/2011JB009072 doi:
928	10.1029/2011JB009072
929	Duarte, J. C., Schellart, W. P., & Cruden, A. R. (2013). Three-dimensional dy-
930	namic laboratory models of subduction with an overriding plate and variable
931	interplate rheology. Geophysical Journal International, ggt257.
932	Forsyth, D., & Uyeda, S. (1975). On the relative importance of the driving forces of
933	plate motion. Geophysical Journal International, 43(1), 163–200.
934	French, S., Lekic, V., & Romanowicz, B. (2013). Waveform tomography reveals
935	channeled flow at the base of the oceanic asthenosphere. Science, $342(6155)$,
936	227-230. Retrieved from https://doi.org/10.1126/science.1241514 doi:
937	10.1126/science.1241514
938	Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating
939	through, and trapped below the 660 km discontinuity. Journal of Geophysical
940	Research: Solid Earth, $118(11)$, 5920–5938. doi: 10.1002/2013 JB010466
941	Fukao, Y., Obayashi, M., Inoue, H., & Nenbai, M. (1992). Subducting slabs stagnant
942	in the mantle transition zone. Journal of Geophysical Research: Solid Earth
943	$(1978-2012), \ 97(B4), \ 4809-4822.$
944	Funiciello, F., Faccenna, C., & Giardini, D. (2004). Role of lateral mantle flow in the
945	evolution of subduction systems: insights from laboratory experiments. Geo -
946	physical Journal International, $157(3)$, $1393-1406$. doi: $10.1111/j.1365-246X$
947	.2004.02313.x
948	Funiciello, F., Faccenna, C., Heuret, A., Lallemand, S., Di Giuseppe, E., & Becker,
949	T. (2008). Trench migration, net rotation and slab–mantle coupling. Earth and
950	Planetary Science Letters, 271(1), 233–240. doi: 10.1016/j.epsl.2008.04.006
951	Garel, F., Goes, S., Davies, D. R., Davies, J., Kramer, S., & Wilson, C. (2014).
952	Interaction of subducted slabs with the mantle transition-zone: A regime

953	diagram from 2-d thermo-mechanical models with a mobile trench and an
954	overriding plate. Geochemistry, Geophysics, Geosystems. Retrieved from
955	https://doi.org/10.1002/2014GC005257 doi: 10.1002/2014GC005257
956	Garel, F., Thoraval, C., Tommasi, A., Demouchy, S., & Davies, D. R. (2020). Using
957	thermo-mechanical models of subduction to constrain effective mantle viscos-
958	ity. Earth and Planetary Science Letters, 539, 116243.
959	Gibert, G., Gerbault, M., Hassani, R., & Tric, E. (2012). Dependency of slab geom-
960	etry on absolute velocities and conditions for cyclicity: insights from numerical
961	modelling. Geophysical Journal International, 189(2), 747–760. Retrieved
962	2013-12-05, from https://doi.org/10.1111/j.1365-246X.2012.05426.x
963	doi: $10.1111/j.1365-246X.2012.05426.x$
964	Goes, S., Agrusta, R., Van Hunen, J., & Garel, F. (2017). Subduction-transition
965	zone interaction: A review. Geosphere, 13(3), 644–664. Retrieved from
966	https://doi.org/10.1130/GES01476.1 doi: 10.1130/GES01476.1
967	Goes, S., Capitanio, F. A., Morra, G., Seton, M., & Giardini, D. (2011). Sig-
968	natures of downgoing plate-buoyancy driven subduction in cenozoic plate
969	motions. Physics of the Earth and Planetary Interiors, 184(1), 1–13.
970	Retrieved from https://doi.org/10.1016/j.pepi.2010.10.007 doi:
971	10.1016/j.pepi.2010.10.007
972	Guillaume, B., Hertgen, S., Martinod, J., & Cerpa, N. (2018). Slab dip,
973	surface tectonics: How and when do they change following an accelera-
974	tion/slow down of the overriding plate? $Tectonophysics, 726, 110-120.$ doi:
975	10.1016/j.tecto.2018.01.030
976	Guillou-Frottier, L., Buttles, J., & Olson, P. (1995). Laboratory experiments on
977	the structure of subducted lithosphere. Earth and Planetary Science Letters,
978	133(1), 19-34.
979	Gurnis, M. (1993). Phanerozoic marine inundation of continents driven by dynamic
980	topography above subducting slabs. Nature, $364(6438)$, $589-593$. Retrieved
981	from https://doi.org/10.1038/364589a0 doi: 10.1038/364589a0
982	Gurnis, M., & Hager, B. H. (1988). Controls of the structure of subducted slabs.
983	<i>Nature</i> , 335(6188), 317-321. Retrieved from https://doi.org/10.1038/
984	335317a0 doi: 10.1038/335317a0
985	Hager, B., & Richards, M. (1989). Long-wavelength variations in earth's geoid:

-42-

986	physical models and dynamical implications. Philosophical Transactions
987	of the Royal Society of London. Series A, Mathematical and Physical Sci-
988	ences, 328(1599), 309-327. Retrieved from https://doi.org/10.1098/
989	rsta.1989.0038 doi: 10.1098/rsta.1989.0038
990	Hager, B. H. (1984). Subducted slabs and the geoid: Constraints on mantle rhe-
991	ology and flow. Journal of Geophysical Research: Solid Earth, 89(B7), 6003–
992	6015. Retrieved from https://doi.org/10.1029/JB089iB07p06003 doi: 10
993	.1029/JB089iB07p06003
994	Hertgen, S., Yamato, P., Guillaume, B., Magni, V., Schliffke, N., & van Hunen,
995	J. (2020). Influence of the thickness of the overriding plate on conver-
996	gence zone dynamics. $Geochemistry, Geophysics, Geosystems, 21(2),$
997	e2019GC008678. Retrieved from https://doi.org/10.1029/2019GC008678
998	doi: 10.1029/2019GC008678
999	Heuret, A., Funiciello, F., Faccenna, C., & Lallemand, S. (2007). Plate kinemat-
1000	ics, slab shape and back-arc stress: a comparison between laboratory models
1001	and current subduction zones. Earth and Planetary Science Letters, $256(3)$,
1002	473–483. doi: 10.1016/j.epsl.2007.02.004
1003	Heuret, A., & Lallemand, S. (2005). Plate motions, slab dynamics and back-arc de-
1004	formation. Physics of the Earth and Planetary Interiors, $149(1)$, $31-51$. doi:
1005	10.1016/j.pepi.2004.08.022
1006	Höink, T., Lenardic, A., & Richards, M. (2012). Depth-dependent viscosity and
1007	mantle stress amplification: implications for the role of the asthenosphere in
1008	maintaining plate tectonics. Geophysical Journal International, $191(1)$, $30-41$.
1009	Retrieved from https://doi.org/10.1111/j.1365-246X.2012.05621.x doi:
1010	10.1111/j.1365-246X.2012.05621.x
1011	Holt, A., Becker, T., & Buffett, B. (2015). Trench migration and overriding plate
1012	stress in dynamic subduction models. Geophysical Journal International,
1013	201(1), 172-192. Retrieved from https://doi.org/10.1093/gji/ggv011 doi:
1014	10.1093/gji/ggv011
1015	Holt, A. F., & Becker, T. W. (2016). The effect of a power-law mantle viscosity on
1016	trench retreat rate. Geophysical Journal International, ggw392. Retrieved from
1017	https://doi.org/10.1093/gji/ggw392 doi: 10.1093/gji/ggw392
1018	Holtzman, B. K. (2016). Questions on the existence, persistence, and me-

-43-

1019	chanical effects of a very small melt fraction in the asthenosphere. Geo-
1020	chemistry, Geophysics, Geosystems, 17(2), 470–484. Retrieved from
1021	https://doi.org/10.1002/2015GC006102 doi: 10.1002/2015GC006102
1022	Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., &
1023	Igel, H. (2020). Global mantle structure from multifrequency tomogra-
1024	phy using p, pp and p-diffracted waves. Geophysical Journal International,
1025	220(1), 96-141. Retrieved from https://doi.org/10.1093/gji/ggz394 doi:
1026	10.1093/gji/ggz394
1027	Jarrard, R. D. (1986). Relations among subduction parameters. Reviews of Geo-
1028	physics, 24(2), 217–284. doi: 10.1029/RG024i002p00217
1029	Jones, T., Davies, D., Campbell, I., Wilson, C., & Kramer, S. (2016). Do man-
1030	tle plumes preserve the heterogeneous structure of their deep-mantle source?
1031	Earth Planet. Sci. Lett., 434, 10 - 17. doi: 10.1016/j.epsl.2015.11.016
1032	Karason, H., & Van Der Hilst, R. D. (2000). Constraints on mantle convection from
1033	seismic tomography. The History and Dynamics of Global Plate Motions, 277–
1034	288.
1035	Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., &
1036	Suyehiro, K. (2009). Seismic evidence for sharp lithosphere-asthenosphere
1037	boundaries of oceanic plates. science, $324(5926)$, $499-502$. Retrieved from
1038	https://doi.org/10.1126/science.1169499 doi: 10.1126/science.1169499
1039	Kohlstedt, D. L., & Zimmerman, M. E. (1996). Rheology of partially molten man-
1040	tle rocks. Annual Review of Earth and Planetary Sciences, 24(1), 41–62.
1041	Retrieved from https://doi.org/10.1146/annurev.earth.24.1.41 doi:
1042	10.1146/annurev.earth.24.1.41
1043	Kramer, S., Wilson, C., & Davies, D. R. (2012). An implicit free surface algorithm
1044	for geodynamical simulations. Physics of the Earth and Planetary Interiors,
1045	194, 25-37. Retrieved from https://doi.org/10.1016/j.pepi.2012.01.001
1046	doi: 10.1016/j.pepi.2012.01.001
1047	Kramer, S. C., Davies, D. R., & Wilson, C. R. (2021). Analytical solutions for man-
1048	tle flow in cylindrical and spherical shells. Geosci. Model Dev., 14, 1899–1919.
1049	doi: 10.5194/gmd-14-1899-2021
1050	Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships between
1051	slab dip, back-arc stress, upper plate absolute motion, and crustal nature

-44-

1052	in subduction zones. Geochemistry, Geophysics, Geosystems, $6(9)$. doi:
1053	10.1029/2005 GC 000917
1054	Lee, C., & King, S. D. (2011). Dynamic buckling of subducting slabs reconciles
1055	geological and geophysical observations. Earth and Planetary Science Letters,
1056	312(3), 360-370.
1057	Lenardic, A., Richards, M., & Busse, F. H. (2006). Depth-dependent rheology and
1058	the horizontal length scale of mantle convection. Journal of Geophysical Re-
1059	search: Solid Earth, 111(B7).
1060	Le Voci, G., Davies, D. R., Goes, S., Kramer, S. C., & Wilson, C. R. (2014).
1061	A systematic 2-D investigation into the mantle wedge's transient flow
1062	regime and thermal structure: complexities arising from a hydrated rheol-
1063	ogy and thermal buoyancy. Geochem. Geophys. Geosys., 15, 28–51. doi:
1064	10.1002/2013GC005022
1065	Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global
1066	model for p wave speed variations in earth's mantle. Geochemistry, Geo-
1067	physics, Geosystems, 9(5).
1068	Li, ZH., Gerya, T., & Connolly, J. A. (2019). Variability of subducting slab
1069	morphologies in the mantle transition zone: Insight from petrological-
1070	thermomechanical modeling. <i>Earth-Science Reviews</i> , 196, 102874. Re-
1071	trieved from https://doi.org/10.1016/j.earscirev.2019.05.018 doi:
1072	10.1016/j.earscirev.2019.05.018
1073	Loiselet, C., Braun, J., Husson, L., Le Carlier de Veslud, C., Thieulot, C., Yam-
1074	ato, P., & Grujic, D. (2010). Subducting slabs: Jellyfishes in the earth's
1075	mantle. Geochemistry, Geophysics, Geosystems, 11(8). Retrieved from
1076	https://doi.org/10.1029/2010GC003172 doi: 10.1029/2010GC003172
1077	Lyu, T., Zhu, Z., & Wu, B. (2019). Subducting slab morphology and mantle tran-
1078	sition zone upwelling in double-slab subduction models with inward-dipping
1079	directions. Geophysical Journal International, 218(3), 2089–2105. Retrieved
1080	from https://doi.org/10.1093/gji/ggz268 doi: 10.1093/gji/ggz268
1081	Meyers, C. D., & Kohlstedt, D. L. (2021). Experimental measurements of
1082	anisotropic viscosity in naturally sourced dunite with a preexisting cpo.
1083	Tectonophysics, 815, 228949. Retrieved from https://doi.org/10.1016/
1084	j.tecto.2021.228949 doi: 10.1016/j.tecto.2021.228949

-45-

1085	Mitrovica, J., & Forte, A. (2004). A new inference of mantle viscosity based upon
1086	joint inversion of convection and glacial isostatic adjustment data. Earth and
1087	Planetary Science Letters, 225(1), 177–189. doi: 10.1016/j.epsl.2004.06.005
1088	Mohammadzaheri, A., Sigloch, K., Hosseini, K., & Mihalynuk, M. G. (2021). Sub-
1089	ducted lithosphere under south america from multi-frequency p-wave tomog-
1090	raphy. Journal of Geophysical Research: Solid Earth, 126, e2020JB020704.
1091	Retrieved from https://doi.org/10.1029/2020JB020704 doi: 10.1029/
1092	2020JB020704
1093	Montagner, JP., & Tanimoto, T. (1991). Global upper mantle tomography of seis-
1094	mic velocities and anisotropies. Journal of Geophysical Research: Solid Earth,
1095	96(B12), 20337-20351. Retrieved from https://doi.org/10.1029/91JB01890
1096	doi: 10.1029/91JB01890
1097	Naif, S., Key, K., Constable, S., & Evans, R. (2013). Melt-rich channel ob-
1098	served at the lithosphere–asthenosphere boundary. $Nature, 495 (7441),$
1099	356-359. Retrieved from https://doi.org/10.1038/nature11939 doi:
1100	10.1038/nature 11939
1101	Parsons, B., & Richter, F. (1980). A relation between the driving force and geoid
1102	anomaly associated with mid-ocean ridges. Earth and Planetary Science Let-
1103	ters, 51(2), 445-450.
1104	Paulson, A., & Richards, M. A. (2009). On the resolution of radial viscosity struc-
1105	ture in modelling long-wavelength postglacial rebound data. Geophysical Jour-
1106	nal International, 179(3), 1516–1526. Retrieved from https://doi.org/10
1107	.1111/j.1365-246X.2009.04362.x doi: 10.1111/j.1365-246X.2009.04362.x
1108	Phipps Morgan, J., Morgan, W. J., Zhang, YS., & Smith, W. H. (1995). Ob-
1109	servational hints for a plume-fed, suboceanic asthenosphere and its role in
1110	mantle convection. Journal of Geophysical Research: Solid Earth, 100(B7),
1111	12753-12767. Retrieved from https://doi.org/10.1029/95JB00041 doi:
1112	10.1029/95JB00041
1113	Pokornỳ, J., Čížková, H., & van den Berg, A. (2021). Feedbacks between subduc-
1114	tion dynamics and slab deformation: Combined effects of nonlinear rheology
1115	of a weak decoupling layer and phase transitions. Physics of the Earth and
1116	Planetary Interiors, 313, 106679. Retrieved from https://doi.org/10.1016/

j.pepi.2021.106679 doi: 10.1016/j.pepi.2021.106679

- Pusok, A. E., Stegman, D. R., & Kerr, M. (PREPRINT). The effect of sediments on
 the dynamics and accretionary style of subduction margins. Solid Earth Dis cussions, 1–30.
- Raterron, P., Chen, J., Geenen, T., & Girard, J. (2011). Pressure effect on forsterite
 dislocation slip systems: Implications for upper-mantle lpo and low viscosity
 zone. Physics of the Earth and Planetary Interiors, 188(1-2), 26–36.
- Ren, Y., Stutzmann, E., van Der Hilst, R. D., & Besse, J. (2007). Understanding
 seismic heterogeneities in the lower mantle beneath the americas from seismic
 tomography and plate tectonic history. Journal of Geophysical Research: Solid *Earth*, 112(B1). Retrieved from https://doi.org/10.1029/2005JB004154
 doi: 10.1029/2005JB004154
- Ribe, N. M. (2003). Periodic folding of viscous sheets. *Physical Review E*, 68(3),
 036305. doi: 10.1103/PhysRevE.68.036305
- Ribe, N. M. (2010). Bending mechanics and mode selection in free subduction: a
 thin-sheet analysis. *Geophysical Journal International*, 180(2), 559–576. Retrieved from https://doi.org/10.1111/j.1365-246X.2009.04460.x doi: 10
 .1111/j.1365-246X.2009.04460.x
- Ribe, N. M., Stutzmann, E., Ren, Y., & Van Der Hilst, R. (2007). Buckling instabilities of subducted lithosphere beneath the transition zone. *Earth and Planetary Science Letters*, 254(1), 173–179.
- Ricard, Y., Doglioni, C., & Sabadini, R. (1991). Differential rotation between litho sphere and mantle: a consequence of lateral mantle viscosity variations. Jour nal of Geophysical Research: Solid Earth, 96 (B5), 8407–8415. Retrieved from
 https://doi.org/10.1029/91JB00204 doi: 10.1029/91JB00204
- 1142Ricard, Y., Richards, M., Lithgow-Bertelloni, C., & Le Stunff, Y.(1993).A1143geodynamic model of mantle density heterogeneity.Journal of Geo-1144physical Research: Solid Earth, 98 (B12), 21895–21909.Retrieved from1145https://doi.org/10.1029/93JB02216doi: 10.1029/93JB02216
- Richards, M. A. (1991). Hotspots and the case for a high viscosity lower mantle.
 In *Glacial isostasy, sea-level and mantle rheology* (pp. 571–587). Springer.
 Retrieved from https://doi.org/10.1007/978-94-011-3374-6_27 doi:
 10.1007/978-94-011-3374-6_27
- 1150 Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., Urakawa, S., Katayama, Y., ...

1151	Ballmer, M. D. (2013). Ponded melt at the boundary between the lithosphere
1152	and asthenosphere. Nature Geoscience, $6(12)$, 1041–1044. Retrieved from
1153	https://doi.org/10.1038/ngeo1982 doi: 10.1038/ngeo1982
1154	Schellart, W. P. (2005). Influence of the subducting plate velocity on the geometry
1155	of the slab and migration of the subduction hinge. Earth and Planetary Sci-
1156	ence Letters, 231(3-4), 197-219. Retrieved from https://doi.org/10.1016/j
1157	.epsl.2004.12.019 doi: 10.1016/j.epsl.2004.12.019
1158	Schellart, W. P. (2008a). Kinematics and flow patterns in deep mantle and up-
1159	per mantle subduction models: Influence of the mantle depth and slab to
1160	mantle viscosity ratio. $Geochemistry, Geophysics, Geosystems, 9(3)$. Re-
1161	trieved from https://doi.org/10.1111/10.1029/2004JB002970 doi:
1162	10.1029/2004JB002970
1163	Schellart, W. P. (2008b). Subduction zone trench migration: Slab driven or
1164	overriding-plate-driven? Physics of the Earth and Planetary Interiors, 170(1-
1165	2), 73-88. Retrieved from https://doi.org/10.1016/j.pepi.2008.07.040
1166	doi: 10.1016/j.pepi.2008.07.040
1167	Schmerr, N. (2012). The gutenberg discontinuity: Melt at the lithosphere-
1168	asthenosphere boundary. Science, 335(6075), 1480–1483. Retrieved from
1169	https://doi.org/10.1126/science.1215433 doi: 10.1126/science.1215433
1170	Sdrolias, M., & Müller, R. (2006). Controls on back-arc basin formation. Geochem-
1171	istry, Geophysics, Geosystems, 7(4). doi: $10.1029/2005$ GC001090
1172	Sharples, W., Jadamec, M., Moresi, L., & Capitanio, F. (2014). Overriding plate
1173	controls on subduction evolution. Journal of Geophysical Research: Solid
1174	<i>Earth</i> , 119(8), 6684–6704. Retrieved from https://doi.org/10.1002/
1175	2014JB011163 doi: 10.1002/2014JB011163
1176	Shephard, G. E., Matthews, K. J., Hosseini, K., & Domeier, M. (2017). On the con-
1177	sistency of seismically imaged lower mantle slabs. Scientific reports, $7(1)$, 1–
1178	17. Retrieved from https://doi.org/10.1038/s41598-017-11039-w doi: 10
1179	.1038/s41598-017-11039-w
1180	Sigloch, K., McQuarrie, N., & Nolet, G. (2008). Two-stage subduction history un-
1181	der north america inferred from multiple-frequency tomography. Nature Geo-
1182	science, 1(7), 458-462.
1183	Sigloch, K., & Mihalynuk, M. G. (2013). Intra-oceanic subduction shaped the as-

1184	sembly of cordiller an north america. Nature, $496(7443)$, 50–56. Retrieved from
1185	https://doi.org/10.1038/nature12019 doi: 10.1038/nature12019
1186	Stegman, D., Farrington, R., Capitanio, F. A., & Schellart, W. P. (2010). A regime
1187	diagram for subduction styles from 3-d numerical models of free subduction.
1188	Tectonophysics, 483(1), 29-45. Retrieved from https://doi.org/10.1016/
1189	j.tecto.2009.08.041 doi: 10.1016/j.tecto.2009.08.041
1190	Stern, T., Henrys, S. A., Okaya, D., Louie, J. N., Savage, M. K., Lamb, S.,
1191	Iwasaki, T. (2015). A seismic reflection image for the base of a tectonic
1192	plate. <i>Nature</i> , 518(7537), 85–88. Retrieved from https://doi.org/10.1038/
1193	nature14146 doi: 10.1038/nature14146
1194	Strak, V., & Schellart, W. (2021). Thermo-mechanical numerical modeling of the
1195	south american subduction zone: A multi-parametric investigation. $Journal$
1196	of Geophysical Research: Solid Earth, 126(4), e2020JB021527. Retrieved from
1197	https://doi.org/10.1029/2020JB021527 doi: 10.1029/2020JB021527
1198	Suchoy, L., Goes, S., Maunder, B., Garel, F., & Davies, D. R. (2021). Effects of
1199	basal drag on subduction dynamics from 2d numerical models. Solid Earth,
1200	12(1), 79-93. Retrieved from https://doi.org/10.5194/se-12-79-2021
1201	doi: 10.5194/se-12-79-2021
1202	Torii, Y., & Yoshioka, S. (2007). Physical conditions producing slab stagnation:
1203	Constraints of the clapeyron slope, mantle viscosity, trench retreat, and dip
1204	angles. Tectonophysics, 445(3), 200-209. Retrieved from https://doi.org/
1205	10.1016/j.tecto.2007.08.003 doi: 10.1016/j.tecto.2007.08.003
1206	Tovish, A., Schubert, G., & Luyendyk, B. P. (1978). Mantle flow pressure and the
1207	angle of subduction: Non-newtonian corner flows. Journal of Geophysical Re-
1208	search: Solid Earth (1978–2012), 83 (B12), 5892–5898.
1209	Turcotte, D. L., & Schubert, G. (2002). <i>Geodynamics</i> . Cambridge Univ. Press, New
1210	York.
1211	Uyeda, S., & Kanamori, H. (1979). Back-arc opening and the mode of subduction.
1212	Journal of Geophysical Research: Solid Earth (1978–2012), 84(B3), 1049–
1213	1061. Retrieved from https://doi.org/10.1029/JB084iB03p01049 doi:
1214	10.1029/JB084iB03p01049
1215	Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L., &
1216	Torsvik, T. H. (2010). Towards absolute plate motions constrained by

-49-

1217	lower-mantle slab remnants. Nature Geoscience, $3(1)$, $36-40$. Retrieved		
1218	from https://doi.org/10.1038/ngeo708 doi: 10.1038/ngeo708		
1219	Van der Meer, D. G., Van Hinsbergen, D. J., & Spakman, W. (2018). Atlas of		
1220	the underworld: Slab remnants in the mantle, their sinking history, and		
1221	a new outlook on lower mantle viscosity. <i>Tectonophysics</i> , 723, 309–448.		
1222	Retrieved from https://doi.org/10.1016/j.tecto.2017.10.004 doi:		
1223	10.1016/j.tecto.2017.10.004		
1224	Van der Voo, R., Spakman, W., & Bijwaard, H. (1999). Tethyan subducted		
1225	slabs under india. Earth and Planetary Science Letters, 171(1), 7–20. Re-		
1226	trieved from https://doi.org/10.1016/S0012-821X(99)00131-4 doi:		
1227	10.1016/S0012-821X(99)00131-4		
1228	van Hunen, J., Huang, J., & Zhong, S. (2003). The effect of shearing on the on-		
1229	set and vigor of small-scale convection in a newtonian rheology. Geophysical re-		
1230	search letters, $30(19)$.		
1231	Wang, S., Yu, H., Zhang, Q., & Zhao, Y. (2018). Absolute plate motions relative		
1232	to deep mantle plumes. Earth and Planetary Science Letters, 490, 88–99. Re-		
1233	trieved from https://doi.org/10.1016/j.epsl.2018.03.021 doi: 10.1016/		
1234	j.epsl.2018.03.021		
1235	Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine sea and east asian		
1236	plate tectonics since 52 ma constrained by new subducted slab reconstruc-		
1237	tion methods. Journal of Geophysical Research: Solid Earth, 121(6), 4670–		
1238	4741. Retrieved from https://doi.org/10.1002/2016JB012923 doi:		
1239	10.1002/2016JB012923		
1240	Yang, T., Moresi, L., Zhao, D., Sandiford, D., & Whittaker, J. (2018). Cenozoic		
1241	lithospheric deformation in northeast asia and the rapidly-aging pacific plate.		
1242	Earth and Planetary Science Letters, 492, 1–11. Retrieved from https://		
1243	doi.org/10.1016/j.epsl.2018.03.057 doi: 10.1016/j.epsl.2018.03.057		
1244	Yang, Y., Forsyth, D. W., & Weeraratne, D. S. (2007). Seismic attenuation near		
1245	the east pacific rise and the origin of the low-velocity zone. Earth and Plane-		
1246	tary Science Letters, 258(1-2), 260-268. Retrieved from https://doi.org/10		
1247	.1016/j.epsl.2007.03.040 doi: 10.1016/j.epsl.2007.03.040		
1248	Zhang, H., Wang, F., Myhill, R., & Guo, H. (2019). Slab morphology and defor-		
1249	mation beneath izu-bonin. Nature communications, $10(1)$, 1–8. Retrieved		

1250	from https://doi.org/10.1038/s41467-0	019-09279-7 doi: 10.1038/s41467
1251	-019-09279-7	
1252	Zindler, A., & Hart, S. (1986). Chemical geo	odynamics. Annual review of earth
1253	and planetary sciences, $14(1)$, $493-571$.	Retrieved from https://doi.org/
1254	10.1146/annurev.ea.14.050186.002425	doi: 10.1146/annurev.ea.14.050186
1255	.002425	