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Abstract 1

Human activities put ecosystems under increasing pressure, often resulting in local extinctions. 2

However, it is unclear how local extinctions affect regional processes, such as the distribution of 3

diversity in space, especially if extinctions show spatial patterns, such as being clustered.Therefore, 4

it is crucial to investigate extinctions and their consequences in a spatially explicit framework. Using 5

highly controlled microcosm experiments and theoretical models, we here ask how the number and 6

spatial autocorrelation of extinctions interactively affect metacommunity dynamics. We found that 7

local patch extinctions increased local (α-) and inter-patch (β -) diversity by delaying the exclusion 8

of inferior competitors. Importantly, recolonization dynamics depended more strongly on the spatial 9

distribution than on the number of patch extinctions: clustered local patch extinctions resulted in 10

slower recovery, lower α-diversity and higher β -diversity. Our results highlight that the spatial 11

distribution of perturbations should be taken into account when studying and managing spatially 12

structured communities. 13
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Introduction 14

Understanding the causes and consequences of local extinctions and how they affect biological 15

systems at larger spatial scales lies at the heart of metapopulation and metacommunity ecology. 16

Natural metapopulations and metacommunities — sets of local populations and communities linked 17

by dispersal (Levins, 1969) — naturally experience local extinctions (Hanski & Kuussaari, 1995; 18

Altermatt & Ebert, 2010; Fronhofer et al., 2012), for instance, due to demographic stochasticity, 19

natural disasters or disease outbreaks. In addition, global changes — including climate change, 20

habitat loss and fragmentation due to land-use changes, deforestation and urbanization — put 21

increasing stress on ecological communities (Millennium Ecosystem Assessment, 2005; IPBES, 22

2019) which contributes to local patch extinctions. 23

Local patch extinctions, which we here define as the disappearance of all species from a patch, 24

can have various consequences. In trophic systems, sustained local patch extinctions can induce 25

regional species extinctions (Liao et al., 2017; Ryser et al., 2019) and thus reduce regional diversity. 26

Top predators are more likely to go extinct than intermediate and basal species. As a consequence, 27

prey species can benefit at the regional scale from local patch extinctions due to release from 28

predation. In competitive communities with a competition-colonization trade-off occasional local 29

patch extinctions can even prevent regional extinctions and increase regional diversity by allowing 30

less competitive species to persist (Cadotte, 2007). 31

Clearly, the relationship between local processes, such as extinctions, and regional patterns, 32

such as distributions of biodiversity, is non-trivial. This is because metacommunities consist of 33

more or less independent units, patches, harbouring local communities, which are linked in space 34

by dispersal events. The coupling of spatially distinct communities can reduce the effect of local 35

extinctions if these are asynchronous: extinct patches can be recolonized from occupied ones. 36

However, dispersal between local communities can also have detrimental effects by synchronizing 37

populations and thereby decreasing spatial insurance effects (Abbott, 2011). Under strong dispersal, 38

the effects of local extinctions can even spread throughout a metacommunity such that local events 39

have a regional effect (Gilarranz et al., 2017; Zelnik et al., 2019). For example, biomass could 40
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decrease in unperturbed patches as they receive reduced biomass fluxes from perturbed patches, or 41

their species composition could change if they exchange individuals with perturbed patches whose 42

species composition differs during the recolonization process. At the metacommunity level, strong 43

dispersal might homogenize the composition of perturbed and unperturbed patches, thus reducing 44

inter-patch (β -) diversity. 45

One likely important factor that modulates the effects discussed above is the spatial distribution 46

of local patch extinctions, that is, whether they are clustered in space or not. An increase in the spatial 47

autocorrelation of local extinction events could have a destabilizing effect at the metacommunity 48

scale by coupling local dynamics and thus increasing global extinction risk (Ruokolainen, 2013; 49

Kahilainen et al., 2018). Indeed, climate models have predicted an increase in the spatial and 50

temporal autocorrelation of temperature (Di Cecco & Gouhier, 2018), implying an increase in the 51

environmental similarity between communities in space and time. This is expected to result in more 52

climate extremes, such as heatwaves, droughts or frosts, affecting increasingly larger areas and for 53

a longer time. Such climatic extremes can lead to local extinctions of populations of organisms 54

sensitive to temperature changes, as seen in episodes of coral bleaching (Carpenter et al., 2008) or 55

forest die-offs (Allen et al., 2010). 56

Despite these trends that foreshadow greater numbers and especially stronger spatial 57

autocorrelation of climate-induced local extinctions, few studies have taken an appropriate, 58

spatially explicit view of disturbances and their effects on metacommunity dynamics. This leaves a 59

gap in our understanding of how spatially clustered extinctions may affect the dynamics of 60

ecological systems. 61

Here, we investigate how the number and spatial distribution of local patch extinctions affect 62

recolonization dynamics in metacommunities. We are particularly interested in the effects on local 63

(α-) and inter-patch (β -) diversity which act together to determine regional diversity. Previous 64

theory on landscape moderation of biodiversity (Tscharntke et al., 2012) led us to speculate that 65

local extinctions could increase β -diversity if different species thrive in perturbed and unperturbed 66

patches, and α-diversity if mass effect dynamics take place between perturbed and unperturbed 67
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patches with different species. Using a full factorial design crossing three levels of extinction 68

numbers and two levels of spatial autocorrelation, we forced local patch extinctions in experimental 69

and simulated metacommunities and followed metacommunity dynamics. We focused on the 70

dynamics of the recolonization process (i.e., shortly after the extinctions) to capture the transient 71

effects of extinctions. We were able to show that local patch extinctions can increase both α- and β - 72

diversity, and that this effect depends strongly on the spatial autocorrelation of extinctions: dispersed 73

extinctions increase α-diversity more, while clustered extinctions increase mainly β -diversity. 74

Methods 75

We used a combination of laboratory experiments with metacommunities of three freshwater ciliates 76

(Tetrahymena thermophila, Colpidium sp. and Blepharisma sp.) in microcosm landscapes and 77

mathematical modelling of metacommunities to address our main research question. To do so, we 78

forced local patch extinctions (not sustained in time, i.e., ‘pulse’ perturbations; see Bender et al. 79

1984) in experimental microcosm landscapes (Altermatt et al., 2015) and followed metacommunity 80

recovery in terms of species diversity and biomass as a function of the intensity (amount of 81

extinctions) and spatial distribution (clustered vs. dispersed) of the extinctions. Experiments and 82

simulations followed the dynamics of metacommunities in landscapes made of 16 patches arranged 83

in a square lattice and connected by tubes allowing active dispersal. We present here a summary 84

description of our methods. A more detailed account is provided in the supplement S3. 85

Experiments 86

Experimental landscapes were made of 16 vials (volume: 20 mL) arranged on a grid and connected 87

to their 4 nearest neighbours, allowing individuals to disperse from one patch to another. Local 88

patch extinctions consisted in removing all individuals of all species in a given patch. Each patch 89

was initially inoculated with one of the three species at half its carrying capacity. Extinctions 90

were implemented once, two weeks after inoculation to allow community assembly to have taken 91
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Figure 1: Overview of the experimental design: Species density over time of Blepharisma sp. (Ble,
red), Colpidium sp. (Col, green) and Tetrahymena thermophila (Tet, blue), in experiments (a, c, e)
and simulations under the “competition-colonization trade-off” scenario (b, d, f). (a, b) Dynamics
in patches from control landscapes. (c, d) Dynamics in perturbed patches from landscapes with
4 clustered extinctions. (e, f) Dynamics in perturbed patches from landscapes with 4 dispersed
extinctions. Black arrows represent the extinctions. Note that 2 treatments (8 clustered extinctions
and 8 dispersed extinctions) are not shown here.

place. Subsequently, we observed the recovery of the landscapes (Fig. 1). Since we expected 92

the extinctions to have only a transient effect before the metacommunity reached an equilibrium 93

dominated by the best competitor (Blepharisma sp.), we followed the recovery dynamics just after 94

the extinctions for a duration of two weeks (which is the time it takes for Blepharisma sp. to 95

exclude the other species in a single patch co-culture; Fig. S1.12 h-j). In order to explore the 96

effects of the number of local patch extinctions and their spatial autocorrelation on the dynamics of 97

metacommunities, we used a full factorial design crossing three levels of local patch extinctions (0, 98

4 or 8 extinctions out of 16 patches) with two levels of spatial autocorrelation (clustered: Fig. S1.8 99
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landscapes 7-9 and 13-15; dispersed: Fig. S1.8 landscapes 4-6 and 10-12). This design yielded 100

a total of 5 treatments (no extinction, 4 clustered extinctions, 4 dispersed extinctions, 8 clustered 101

extinctions, 8 dispersed extinctions) that were each replicated in 3 landscapes, for a total of 15 102

landscapes and 240 patches. 103

We followed metacommunity dynamics through time by measuring the density of each species 104

in each patch using automated video analysis. Three times per week, 2 mL of medium were 105

sampled from all microcosms and replaced with fresh medium. For each microcosm, a sub- 106

sample of 250 µL was placed between two microscope slides (height: 500 µm) and filmed using an 107

optical stereo-microscope (Perfex Pro 10) coupled with a camera (Perfex SC38800) for 10 seconds 108

(150 frames). We used the Bemovi R-package (version 1.0) (Pennekamp et al., 2015) to extract 109

individuals characteristics (shape, speed, size...) from the videos. We identified individuals from 110

their characteristics using a random forest algorithm (R-package randomForest version 4.6-14) 111

trained on videos of the monocultures filmed on the same day (Pennekamp et al., 2017). We rejected 112

all individuals with an identification confidence (proportion of trees leading to that identification) 113

lower than 0.8 as a compromise between the number of observations discarded and the confidence 114

of identification (Fig. S1.11). 115

α-diversity was measured as the inverse of Simpson’s index, which represents an effective 116

number of species (Jost, 2006), and takes the relative abundance of species into account. We used 117

the function beta.div.comp (R-package adespatial version 0.3-8, Ruzicka-based index) to compute 118

the total β -diversity among the patches of a landscape (Legendre & De Cáceres, 2013). 119

All statistical analyses were conducted in R (version 4.0.2). To test the relative effects of 120

spatial autocorrelation and number of local extinctions on metacommunitiy properties, we studied 4 121

metrics (biomass, α-diversity, β -diversity and biomass recovery time) using mixed-effects models 122

(R-package lme4 version 1.1-23) with the measurement point and landscape ID (for patch level 123

metrics) as random effects to account for non-independence of measures taken the same day and 124

measures taken within one landscape. Fixed effects were the autocorrelation of extinctions, the 125

number of extinctions, as well as their interaction. We normalized the response variables using the 126
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R-package bestNormalize (version 1.6.1): we used the function bestNormalize (which finds the best 127

transformation to render some data Gaussian while losing the fewest degrees of freedom using a 128

Pearson P statistic) on each response variable (β -diversity: no normalization needed; α-diversity, 129

biomass and recovery time normalized using the Ordered Quantiles technique, function orderNorm). 130

The biomass in each patch was estimated using the bioarea per volume, a measure of the total 131

surface of organisms visible in a video divided by the volume of medium in the camera field. The 132

biomass recovery from extinction was estimated as the time needed to reach a biomass higher that 133

the 2.5% quantile of pre-extinction biomass in a given patch. This time span is hereafter referred to 134

as recovery time. 135

For each statistical model, we performed AICc-based model selection on all models from the 136

intercept to the full model. We used the weighted average of the model predictions for visualization. 137

Because we use measurements taken at different times, the temporal autocorrelation of the 138

data acquired in a patch could lead us to artificially increase our statistical power and report non- 139

significant results as significant. To assess the robustness of our analysis, we reproduced it using a 140

total pooling (McElreath, 2020) at the patch level by analyzing the average (Fig. S1.4) or the median 141

(Fig. S1.5) of post-extinction data from a given patch. Both approaches are very conservative and 142

free from issues of autocorrelation, yet they closely reproduce the patterns observed in the main text 143

(Fig. 2). 144

The experimental data and the code for the statistical analysis are available on GitHub via 145

Zenodo: https://doi.org/10.5281/zenodo.6364903. 146

Metacommunity model 147

We also developed a metacommunity model to replicate and generalize the experiment in silico. We 148

used a set of ordinary differential equations to describe the dynamics of metacommunities (Eq. 1), 149

where the terms describe the local dynamics ( f ), the emigration (g) and the immigration (h) of 150

species i in patch k, with Ni,k as the density of species i in patch k. 151
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dNi,k

dt
= f (N•,k)−g(Ni,k)+h(Ni,•) (1)

The local dynamics are described by a competitive Lotka-Volterra equation (Eq. 2) were Ni,k 152

grows logistically (ri: growth rate, αi,i: intraspecific competition) and is additionally impacted by 153

inter-specific competition (αi, j). 154

f (N•,k) = ri Ni,k −
n

∑
j=1

αi, j Ni,k N j,k (2)

The number of individuals emigrating from a patch k is defined by a constant dispersal rate mi 155

(Eq. 3). 156

g(Ni,k) = mi Ni,k (3)

In analogy, we obtain the number of individuals immigrating into patch k as follows (Eq. 4) : 157

h(Ni,•) = ∑
l

mi Ni,l

cl
(4)

where l are the patches adjacent to k and cl is the number of connections leaving the patch l. 158

We used four different parameterizations (see supplement S3) to investigate which biological 159

processes may explain the patterns observed experimentally, hereafter described as “scenarios of 160

species interactions” (Tab. S2.7). The scenarios “empirical interactions” and 161

“competition-colonization trade-off” use growth rate and interaction parameters fitted from 162

experimental data (Fig. S1.12 and S1.27) with equal dispersal rates for all species in the former and 163

dispersal rate inversely proportional to the competitive ability in the latter. The scenario 164

“randomized interactions” used the same parameters as the “empirical interactions” scenario but 165

with randomized interspecific interaction rates in order to test whether our results held for other 166

community structures. Lastly, we used a scenario without competition (“no interspecific 167

interactions”) as a null model. We also used this model to conduct sensitivity analysis on the 168
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landscape size and dispersal rate in order to test the generality of our results. 169

The simulations were run in R (version 4.0.2), using the ode45 solver from the library deSolve 170

(version 1.30). We simulated dynamics using the same extinction plans as in the microcosm 171

experiments with 100 replicates for each treatment. While the simulations are deterministic, the 172

initial distribution of species was drawn randomly in each replicate of each treatment, leading to 173

variability between replicates at a given timestep. To check that our integrator choice did not result 174

in numerical errors, we also reproduced 10% or the simulations with a second integrator (lsoda) 175

with very low error tolerance parameters (rtol = 10−9, atol = 10−9). These simulations (Fig. S1.6 176

and S1.7) match the main simulations (Fig. 2 and 4), ruling out integrator-related numerical errors. 177

The model is available on GitHub via Zenodo: https://doi.org/10.5281/zenodo.6364903. 178

Results 179

The effect of the spatial distribution of extinctions 180

In the experiments, both local and regional effects of local patch extinctions were mainly 181

determined by the spatial autocorrelation of extinctions. Except for β -diversity, the number of 182

extinctions alone only had a marginal effect on the outcome of the experiment as indicated by 183

model selection (Fig. 2; Tab. S2.3 and S2.5). For the local variables studied (α-diversity, biomass 184

and biomass recovery time), the autocorrelation of extinctions was found to be more important than 185

the number of extinctions (Tab. S2.3 and S2.5). Both α-diversity in unperturbed patches 186

(Tab. S2.4b and S2.6b) and β -diversity (Tab. S2.3b and S2.5b) were mostly explained by the 187

interaction between autocorrelation and number of extinctions (statistical models without the 188

interactions had either a null (for β -diversity) or low (for α-diversity) weight). 189

Numerical simulations of our metacommunity model with the same spatial configuration and 190

extinctions patterns confirmed this important effect of the spatial arrangement of extinctions 191

compared to that of their number for all competition scenarios (Fig. 3 and 5). 192
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Figure 2: Observed response variables in the experiments (dots) and averaged mixed model
predictions (medians and 95% confidence intervals; Tab. S2.3) from the extinction events to the end
of the experiments. (a) Biomass in perturbed patches (blue: dispersed extinctions, red: clustered
extinctions) and patches from landscapes with no extinctions (green), (b) biomass recovery time in
perturbed patches, (c) α-diversity (measured as Simpson’s index) in perturbed patches and patches
from landscapes with no extinctions and (d) β -diversity in all landscapes.

Direct effects — recolonization dynamics in perturbed patches 193

Biomass 194

The biomass in a given patch after local patch extinctions was slightly higher in perturbed patches 195

from landscapes with dispersed extinctions than in perturbed patches from landscapes with clustered 196

extinctions (Fig. 2a; median predictions : 6076µm2 mL−1 vs. 4855µm2 mL−1, 5-95% quantiles: 197

4274−7436µm2 mL−1 vs. 2224−6372µm2 mL−1). Note that this effect is weak as indicated by 198

model selection which ranks the intercept model second with an AICc weight of 0.27 (Tab. S2.3). 199

The recovery time needed to reach a biomass higher than the 2.5% quantile of the pre-extinction 200

11



comp.-col. emp. no_int. rand.

0 4 8 0 4 8 0 4 8 0 4 8

4

6

8

Extinctions

lo
g

(B
io

m
a

ss
)

a
comp.-col. emp. no_int. rand.

4 8 4 8 4 8 4 8

50

100

150

Extinctions

R
e

co
ve

ry
 t

im
e

b

comp.-col. emp. no_int. rand.

0 4 8 0 4 8 0 4 8 0 4 8

1.0

1.5

2.0

2.5

3.0

Extinctions

α
-d

iv
e

rs
ity

 (
S

im
p

so
n

's
 i
n

d
ex

)

c
comp.-col. emp. no_int. rand.

0 4 8 0 4 8 0 4 8 0 4 8

0.0

0.1

0.2

0.3

0.4

Extinctions

β
-d

iv
e

rs
ity

d

Treatment Clustered extinctions Dispersed extinctions No extinction

Figure 3: Observed response variables in numerical simulations of the metacommunity model
displaying different metrics after the extinction events (all biomass and diversity values of all
perturbed patches between Textinction +50 and Textinction +150). (a) Biomass in perturbed patches
(blue: dispersed extinctions, red: clustered extinctions) and patches from landscapes with no
extinctions (green), (b) biomass recovery time in perturbed patches, (c) α-diversity (measured as
Simpson’s index) in perturbed patches and patches from landscapes with no extinctions and (d)
β -diversity in all landscapes. The top labels denote the scenarios of species interactions: “emp.”
for “empirical interactions”, “comp.-col.” for “competition-colonization trade-off”, “rand.” for
“randomized interactions” and “no int.” for “no interspecific interactions”.

biomass was shorter in case of dispersed extinctions compared to clustered extinctions, and it slightly 201

increased with the number of extinctions (Tab. S2.3 and S2.5, Fig. 2b and S1.2; median (5-95% 202

quantiles) mixed model predictions: 4 dispersed: 122 h (85-152), 8 dispersed: 129 h (94-164), 4 203

clustered: 139 h (100-172), 8 clustered: 152 h (122-185)). 204

In simulations of the metacommunity model, recovery times (Fig. 3b) qualitatively matched 205

the experimental patterns in all scenarios. Quantitatively, the recovery times were much shorter 206

(less than 100 time units) than what we found experimentally, probably because dispersal in the 207
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experiments happened over discrete time intervals (4 h periods, three times per week) resulting in a 208

lag in recolonization dynamics. 209

In simulations with fitted interaction terms (“empirical interactions” and 210

“competition-colonization trade-off”), the biomass of perturbed patches during the recolonization 211

process was on average higher than the biomass of patches from control landscapes (fig. 3a) 212

because of the fast recolonization and higher carrying capacity of the less competitive species (T. 213

thermophila and Copidium sp.) compared to the most competitive species (Blepharisma sp.). In the 214

other simulations, the biomass during recolonization did not differ much between the perturbed 215

patches and the patches from control landscapes (fig. 3a) and was only slightly lower in perturbed 216

patches. 217

α-diversity 218

In patches from control landscapes, α-diversity increased at first as species dispersed between 219

patches but quickly fell to 1 as Blepharisma sp. finally excluded the two other species and dominated 220

the community (Fig. S1.1). In perturbed patches of the landscapes with extinction treatments, α- 221

diversity was higher during the recolonization process in comparison to patches from control 222

landscapes since the species were present in more even densities in the former (Fig. 2c and S1.1). 223

This effect was stronger for dispersed extinctions than for clustered extinctions (Fig. 2c). 224

In simulations from the metacommunity model, the empirical α-diversity pattern was best 225

recaptured by the “empirical” and “randomized” scenarios (Fig. 3c), as well as transiently in 226

the “competition-colonization trade-off” scenario (Fig. S1.23). In the absence of interspecific 227

interactions, all species coexisted locally and the α-diversity was high in all patches. 228
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Figure 5: Observed response variables in numerical simulations of the metacommunity model
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Indirect effects — spread of extinctions effects to unperturbed patches and at 229

the regional scale 230

Biomass 231

In both experiments and simulations, we observed no strong difference in biomass between 232

treatments (Fig. 4a, 5a and S1.28a-c). 233
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α-diversity 234

Experimentally, α-diversity was higher in unperturbed patches than in patches from control 235

landscapes, particularly for dispersed extinctions (Fig. 4b and S1.28d-f). Most of the variation 236

between treatments was explained by the spatial autocorrelation of extinctions rather than the 237

number of extinctions (Tab. S2.4b and S2.6b). Interestingly, the effect of the number of extinctions 238

depended on their spatial organization: under clustered extinctions, the α-diversity in unperturbed 239

patches decreased with the number of extinctions but it increased under dispersed extinctions 240

(Fig. 4b and S1.28d-f). Note that this was not observed in simulations. This discrepancy could be 241

due to either condition-dependant dispersal not accounted for in simulations, or to the low statistical 242

power when it comes to indirect effect. 243

In simulations lacking interspecific competition, α-diversity levels were similar in unperturbed 244

patches (across all treatments) and patches from control landscapes. In all simulations that included 245

interspecific competition, α−diversity increased with both the number of extinctions and their spatial 246

autocorrelation (Fig. 5b). Nevertheless, the effect sizes were variable: empirical interactions yielded 247

effect sizes consistent with the experimental results (according to qualitative visual inspection), 248

while randomized interactions yielded smaller effects and the “competition-colonization trade-off” 249

scenario yielded stronger effects. 250

β -diversity 251

In control landscapes, β -diversity was fairly low because the patches ended up being homogeneous 252

and dominated by Blepharisma sp. (Fig. S1.1). β -diversity was higher in landscapes with extinctions 253

than in control landscapes because of differences in species composition and density between 254

perturbed and unperturbed patches (Fig. S1.1). This effect was stronger for 8 extinctions than for 4 255

extinctions, particularly for clustered extinctions (Fig. 2d). 256

In simulations of the metacommunity model, these results held qualitatively for all scenarios 257

(Fig. 3d). These effects were strong and on par with experimental effect sizes for realistic 258

interaction matrices (scenarios “empirical interactions” and “competition-colonization trade-off”). 259
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They were weaker for randomized interaction matrices and negligible in the absence of interspecific 260

interactions. 261

Sensitivity to landscape size and dispersal rates 262

The simulations on larger landscapes (16*16 patches) yielded results (Fig. S1.13 and S1.14) 263

remarkably consistent with those discussed above. Our results were more sensitive to dispersal 264

rates, but most qualitative patterns described for the “empirical interactions” and “competition- 265

colonization trade-off” scenarios (e.g., stronger influence of the spatial autocorrelation than the 266

number of extinctions, higher β -diversity for clustered extinctions, higher α-diversity spillover and 267

faster biomass recovery for dispersed extinctions) were coherent for dispersal rates up to 2 times 268

stronger/weaker than our standard simulations (Fig. S1.15 to S1.22). 269

Discussion 270

The role of the spatial distribution of the extinctions 271

We found that the spatial autocorrelation of extinctions had a stronger effect than the number 272

of extinctions per se on all metrics measured, both in experiments and in simulations. Since 273

our simulations suggest that this effect is independent of community structure, this result must 274

be explained by the connectivity and distance between perturbed and unperturbed patches: if 275

extinctions are dispersed, perturbed patches are closer and better connected to unperturbed patches 276

than when extinctions are clustered (Tab. S2.2; Fig. S1.2 and S1.3). 277

The analysis of the simulations of large landscapes indicates that patch-level metrics in perturbed 278

patches (recovery time and α-diversity; Fig. S1.24 and S1.25) depend only on the distance to the 279

closest unperturbed patch and not on the connectivity to unperturbed patches. This is coherent 280

with our experimental results, where perturbed patches that were two links away from unperturbed 281

patches had a longer recovery time (Fig. S1.2, in red) and a lower α-diversity (Fig. S1.3, in red) 282
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than the patches adjacent to at least one unperturbed patch. These findings also explain why the 283

number of extinctions had a marginal effect in dispersed treatments compared to clustered treatments 284

(Fig. 2 and 3): increasing the number of extinctions did not increase the distance from perturbed 285

to unperturbed patches for dispersed extinctions (Tab. S2.2). On the contrary, more clustered 286

extinctions resulted in larger clusters and thus in a greater distance from perturbed to unperturbed 287

patches (Tab. S2.2). 288

Direct effects of extinctions 289

Biomass recovery 290

Experimental data and simulations support the conclusion that simultaneously increasing the 291

number and autocorrelation of extinctions increases the time needed for a metacommunity to 292

recover its pre-extinction biomass (Fig. 2b and 3b). These results were surprisingly consistent 293

between the experiments and the various simulations scenarios, highlighting that this pattern does 294

not depend on species interactions but rather on the geometry of the patches to be recolonized. A 295

high number of spatially clustered extinctions increases the recovery time by creating large areas 296

of perturbed patches, thus increasing the average distance and reducing the average connectivity 297

between perturbed and unperturbed patches (Tab. S2.2). Clustered extinctions therefore result in 298

what Zelnik et al. (2019) have termed “rescue recovery regime” where biomass recovery relies 299

mainly on local population growth and is thus slower. 300

Additionally, both experimentally and in model simulations, perturbed patches had a slightly 301

higher biomass after recovery than patches from unperturbed landscapes (Fig. 2a and 3a). This is 302

because unperturbed patches mainly had the better competitor left (Blepharisma sp., Fig. S1.1), 303

while all three species persisted in perturbed patches. Since poorly competitive species (especially 304

Colpidium sp.) reached a higher biomass than Blepharisma sp., perturbed patches had a higher 305

biomass. This result should hold for communities dominated by highly competitive but slowly 306

reproducing species that do not reach high densities (e.g., if there is a trade-off between population 307

growth rate and competitive ability, see Mallet 2012) or when populations are able to overshoot 308
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their equilibrium density. This should however not be the case for communities where the dominant 309

species happens to reach higher equilibrium densities, as it is the case in forests, for instance, where 310

transiently recolonising species (e.g., grasses or shrubs) do not accumulate biomass and are slowly 311

replaced by dominant species that do (trees). 312

α-diversity 313

Local patch extinctions generally increased α-diversity as delayed competitive exclusion of inferior 314

competitors. The persistence of less competitive species in perturbed patches during the 315

recolonisation process can be explained both by the decrease in population density and by a 316

competition-colonization trade-off across the three species: the low population density after 317

extinction events decreases the intensity of competition, while the competition-colonization 318

trade-off delays the recolonization by Blepharisma sp., both processes resulting in the delay of 319

competitive exclusion. These results are similar to the effect described in the intermediate 320

disturbance hypothesis which predicts that some degree of perturbation should result in a higher 321

local and regional biodiversity by reducing the abundance of competitively dominant species and 322

allowing the persistence of early succesional species (Wilkinson, 1999; Shea et al., 2004). However, 323

previous experiments on similar systems found that local patch extinctions decreased local diversity 324

(Cadotte, 2007). This can be explained by differences in metacommunity composition: 325

metacommunities skewed towards early-succesional species should exhibit the α-diversity increase 326

observed here, while metacommunities skewed towards late-succesional species (as in Cadotte, 327

2007) should see α-diversity decrease with local patch extinctions. 328

Clearly, these effects may be relevant in the context of ecosystem management: while local 329

perturbations decrease biomass, they can also allow the persistence of species that would otherwise 330

be excluded and lead to an increased local diversity. 331
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Indirect effects 332

Besides the direct effects discussed above, local patch extinctions may also have indirect effects at 333

the regional scale by altering species densities and composition in unperturbed patches (Gilarranz 334

et al., 2017; Zelnik et al., 2019). 335

α-diversity 336

Unperturbed patches in landscapes with extinctions had a higher α-diversity than unperturbed 337

patches from control landscapes (Fig. 4b). This is because dispersal of less competitive species (T. 338

thermophila and Colpidium sp.) from perturbed patches, where they were present in high density 339

during the recolonization process, allowed persistence in both patches (Fig. S1.1) with perturbed 340

patches acting as sources and unperturbed patches as sinks. These source-sink dynamics correspond 341

to the cross-habitat spillover hypothesis discussed by Tscharntke et al. (2012). The increase of 342

α-diversity was stronger in unperturbed patches from dispersed extinction treatments, as these 343

patches were connected to more perturbed patches and thus received an increased number of less 344

competitive dispersers than unperturbed patches from clustered extinction treatments. 345

The patterns observed experimentally were recovered in all simulations that included 346

interspecific competition (Fig. 5b), showing that local diversity maintenance by local extinctions is 347

not restricted to our particular experimental community but can occur as long a some species 348

excludes others. 349

It is worth noting that the increase in α-diversity was only observed in patches adjacent to 350

perturbed patches, which could be described as an edge effect. This means that isolated extinction 351

events don’t have large scale effects in our setting, as perturbed patches only have an effect on their 352

local neighbourhood. Indirect effects, however, can affect large proportions of the landscape if 353

extinctions are numerous and spatially dispersed. Dispersed extinctions thus have both a stronger 354

effect on unperturbed patches and affect a greater number of unperturbed patches. 355
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β -diversity 356

β -diversity was higher in landscapes that experienced local patch extinctions in comparison to 357

control landscapes, both in experiments and in simulations including interspecific competition 358

(Fig. 2d and 3d). This can be explained by the fact that perturbed patches had a different species 359

composition than unperturbed patches. In unperturbed patches communities were mainly composed 360

of Blepharisma sp., while perturbed patches allowed less competitive species to persist during the 361

recolonization process. While we find a strictly increasing relationship between the number of 362

extinctions and β -diversity (Fig. 2d and 3d), Cadotte (2007) found a unimodal relationship between 363

β -diversity and local patch extinction number. While this seems contradictory, it is also possible that 364

we did not use enough extinctions to reveal a unimodal relationship, as β -diversity could decrease 365

when extinctions affect more patches. 366

Perspectives 367

The strong effect of the spatial distribution of extinctions we report can be interpreted as differences 368

in recovery regimes across spatial treatments: clustered extinctions, characterized by a weak 369

connectivity between perturbed and unperturbed patches, result in what Zelnik et al. (2019) described 370

as a “rescue recovery regime”, while dispersed extinctions, characterized by a strong connectivity 371

between perturbed and unperturbed patches, result in a “mixing recovery regime”. Under the 372

“rescue” regime, dispersal between perturbed and unperturbed patches is marginal compared to 373

local dynamics. Perturbed and unperturbed patches are strongly differentiated, and the recovery 374

dynamics mainly rely on local growth. Because of this strong differentiation, β -diversity was higher 375

than in the “clustered extinctions” treatment, but the high α-diversity of perturbed patches did not 376

spill over much to unperturbed patches. Under the “mixing” regime, dispersal between perturbed 377

and unperturbed patches is on a par with local dynamics. Perturbed and unperturbed patches are 378

well mixed, and both local growth and dispersal from perturbed patches participate substantially to 379

the recovery. Because of the mixing between perturbed and unperturbed patches, α-diversity in the 380

“dispersed extinctions” treatment in unperturbed patches increased greatly (due to dispersal from 381
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perturbed patches), but β -diversity was lower than in the “clustered extinctions” treatment. 382

Strictly speaking, our experimental settings, with discrete patches, homogeneous conditions and 383

only three non-redundant species, may be thought to conform best to the patch dynamics paradigm 384

(Leibold et al., 2004), making extrapolations potentially difficult. However, as Thompson et al. 385

(2020) point out, metacommunity dynamics are more complex that what is captured by the four 386

archetypes described by Leibold et al. (2004). Here, by looking at the transient recolonization 387

dynamics, we were able to observe patterns consistent with both species sorting (good competitors 388

are found mainly in unperturbed patches, good colonizers in perturbed patches), and mass effects 389

(perturbed patches act as a source of less competitive species), highlighting that these mechanisms 390

may often act simultaneously (Fournier et al., 2017). Our work also showcases the importance 391

of transient dynamics in shaping biodiversity patterns, especially when we consider that local 392

patch extinctions in nature should be recurring and asynchronous, leaving patches at different 393

stages of recolonization and potentially enhancing metacommunity stability (Fox et al., 2017) 394

and β -diversity. Moreover, the spatial treatment strongly influenced which patterns we observed 395

during the recolonization: landscapes with clustered extinctions verged more on species sorting 396

while landscapes with dispersed extinctions were more in line with the mass effects paradigm 397

because the spatial autocorrelation of extinctions decreased the overall dispersal between perturbed 398

and unperturbed patches. The spatial patterns of local perturbations can thus deeply alter the 399

functioning of a metacommunity, here driving it from one metacommunity paradigm to another. 400

This is particularly concerning when we consider that climate change could increase the spatial 401

and temporal autocorrelation of climatic events (Di Cecco & Gouhier, 2018), as observed in the 402

metapopulation of Melitaea cinxia (Kahilainen et al., 2018). Our study thus warrants the inclusion 403

of finer processes into existing metacommunity theory in order to better understand how the 404

spatial structure of perturbations and the following transient dynamics affect the functioning of 405

metacommunities. 406
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Conclusion 407

Overall, our study shows that the effects of local patch extinctions in metacommunities strongly 408

depend on the spatial distributions of extinctions. Local patch extinctions can increase both α- 409

diversity and β -diversity by allowing weak competitors to persist in the metacommunity and by 410

forcing a differentiation between perturbed and unperturbed patches. 411

Dispersal and connectivity between patches are central to recovery as they allow the 412

recolonization of perturbed patches but also a mixing between perturbed and unperturbed patches, 413

which can result in the spread of local extinction effects to unperturbed patches. In our setting, this 414

spread was characterised by an increase in α-diversity in unperturbed patches through dispersal 415

from species-rich, previously perturbed patches to species poor, unperturbed patches. 416

By determining the connectivity between perturbed and unperturbed patches, the spatial 417

autocorrelation of extinctions modulates the dynamics after extinction events: when extinctions are 418

clustered, perturbed and unperturbed patches are weakly connected. This results in a slower 419

biomass recovery, a weak spread of α-diversity and high β -diversity as perturbed and unperturbed 420

patches are differentiated. On the contrary, dispersed extinctions imply higher connectivity between 421

perturbed and unperturbed patches which translates into a faster biomass recovery, a stronger spread 422

of α-diversity and a lower β -diversity as perturbed and unperturbed patches are better mixed. 423

Our highly controlled experiment in combination with the theoretical model provide a proof- 424

of-concept for the importance of taking into account the spatial distribution of disturbances in 425

biodiversity research. Of course, applying our findings to specific, real-world ecosystems will 426

require a combination of field data and system-specific models to obtain better estimates of the 427

effects of local extinctions in more realistic settings. Nevertheless, our work highlights the relevance 428

of the spatial distribution of local extinctions when doing so. 429
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