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Abstract: Organize the matter on an increasingly small scale is sought in order to increase the perfor-
mance of materials. In the case of porous materials, such as filtration membranes, a compromise must
be found between the selectivity provided by this nanostructuring and a permeability in particular
linked to the existing pore volume. In this work, we propose an innovative waterborne approach
consisting in co-assembling peptide amphiphiles (PA) which will provide nanostructuring and
polyelectrolytes which will provide them with sufficient mechanical properties to sustain water pres-
sure. C16-V3A3K3G-NH2 PA nanocylinders were synthesized and co-assembled with poly(sodium
4-styrenesulfonate) (PSSNa) into porous nano-fibrous network via electrostatic interactions. The
ratio between C16-V3A3K3G-NH2 and PSSNa was studied to optimize the material structure. Since
spontaneous gelation between the two precursors does not allow the material to be shaped, various
production methods have been studied, in particular via tape casting and spray-coating. Whereas
self-supported membranes were mechanically weak, co-assemblies supported onto commercial
ultrafiltration membranes could sustain water pressure up to 3 bars while a moderate permeability
was measured confirming the existence of a percolated network. The produced membrane material
falls into the ultrafiltration range with a pore radius of about 7.6 nm.

Keywords: membrane; peptide amphiphile; polyelectrolyte; self-assembly

1. Introduction

Electrostatic interactions are known to provide a strong driving force towards stable
co-assemblies of molecules, polyelectrolytes, or particles. If the presence of electrostatic
charges ensures the solubility or the dispersibility of the objects, then charge compensation
will often lead to an anarchical precipitation of the ensembles. Therefore, an additional
strategy is required to build a material in order to control and predict its structural or-
ganization. For example, in the layer-by-layer technique (LbL), a polyelectrolyte is first
coated onto a substrate, the excess is rinsed off and then a second complimentary charged
polyelectrolyte is coated to grow the film [1–3]. In other cases, interesting complexes were
scaled up forming nanomaterials made from oppositely charge precursors through charge
compensation after mixing or diffusion of their aqueous solutions [4–6]. A particularly
suitable molecule is peptide amphiphiles (PA) since they can self-assemble in a robust and
predictable way. They can form gels and can have a charged sequence in its structure. PA
are a family of self-assembling molecules consisting of a hydrophobic alkyl chain attached
to a peptide sequence [7,8]. Interestingly, if a β-sheet forming peptide sequence is inserted,
then the assembly is driven towards mono dimensional nanostructures such as cylindrical
nanofibers [9]. A peptide sequence carrying charges could be incorporated as well in order
to improve the amphiphilicity and possibly to bring bioactivity in the frame of biomedical
applications [10].

The presence of charges has been used to trigger a higher level of assembly and obtain
for example nanofibrous materials through controlled charge neutralization or through
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electrostatic interactions. As an example, Bulut et al. have reported Lauryl-VVAGK PA-
oligonucleotide (ODN) hydrogel thanks to a charge screening for the cellular delivery of
ODN in the scope of gene therapy [11]. In another work, a complex between heparin and
PA has been studied by Rajangam et al. as a binding gel substrate for signaling molecules
such as angiogenic growth factor. Here, it is the rigidity of an amphiphilic peptide network
to be compared to that of a hydrogel formed from a polymer which was sought so as to
better orient the growth factors and thus maximize their activity [12]. The combination
of two oppositely charged PAs was found to self-assemble into nanofibers, enabling the
bringing of different bioactive epitopes into a gel network [13]. The same strategy was
later used in conjunction of building an independent poly(ethylene glycol) hydrogel as
a versatile synthetic mimics of natural extracellular matrix for tissue engineering and
regenerative medicine applications [14]. A very large contribution in this field can be
attributed to the team of S. Stupp, with in particular the preparation of nanofibrous
networks formed from a high molecular weight polyanion (hyaluronic acid, HA) and a
positively charged PA C16V3A3K3 [15]. Each component in a separated aqueous solution
was put into contact and a well-ordered solid assembly was formed in milliseconds at
the interface to yield hierarchical membranes with tunable water permeability [16]. The
intrinsic structure of these membranes depends directly on the nature of the interactions
between HA and PA [17] and can be altered on demand by an electric field [18]. Other
polysaccharides were more recently tested such as alginate which self-assemble with Pro-
K-(Phe-K)5-Pro into nanofiber network [19]. A LbL technique between alginate and lauryl-
V2AGK3-Am PA has amplified the preparation scale towards multilayered biomaterials
by repeating the alternate deposition of both components [20]. Self-assembling peptides–
alginate composite hydrogel has demonstrated improved mechanical properties to serve
as injectable biomaterial for bone regeneration [21]. In a comprehensive study, various
polyelectrolytes such as λ-carrageenan or poly(acrylic acid) were studied together with
heparin, alginate or hyaluronic acid in order to vary the aggregation strength with the
PA, and the resulting membrane structure was discussed accordingly [22]. Bulk gels with
lamellar microstructure were formed by vortexing solutions of chitosan and C16V3A3E3–
OH with potential applications for protein delivery in regenerative medicine and wound
healing [23]. Finally, poly(sodium 4-styrenesulfonate) (PSSNa) hydrogels were reported by
Radvar et al. with sulfonate groups chosen to promote hydrogel mineralization, as well
as binding sites for basic proteins. This dual functionality enables to retain and control
the release of charged proteins with potential application in 3D environments for cell
differentiation [24].

In the race to the production of high performance materials, controlling their struc-
ture/morphology at the lowest scale has become vital. The nanofabrication process be-
comes more complex when a percolating porosity is required in applications, such as in
filtration membranes. In that case, one strategy to introduce a porous volume is to use
nano-building blocks which will leave a space between them after assembly [25–33]. Here,
the outstanding properties of PA molecules to self-assemble into nanofibers are combined
to the mechanical properties of polyelectrolytes to yield porous composite materials. The
objective of this work is to design new membrane materials via the mixture of a charged
PA and a polyelectrolyte. These two precursors being water-soluble, a waterborne mem-
brane production strategy is developed which fits with the objective of minimizing the
environmental impact of membrane preparation. In this work, C16-V3A3K3G-NH2 PA was
synthesized and co-assembled in water with PSSNa into porous nanofibrous network. As
stated above, mixtures of PA and polyelectrolytes generally produce spontaneous gels,
which makes difficult to shape the membrane. Thereby, the ratio between PA and the poly-
electrolytes was studied to optimize the material structure. Porous films were elaborated
by tape casting and spray coating. Whereas self-supported membranes were mechanically
weak, co-assemblies supported onto commercial ultrafiltration membranes could sustain
water pressure up to 3 bars while a moderate permeability was measured confirming
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the existence of a percolated network. The produced membrane material falls into the
ultrafiltration range with a pore radius of about 7.6 nm.

2. Materials and Methods
2.1. Materials

Rink amide AM-PS crosslinked 1%; DVB 100–200 mesh 0.87 mmol/g (SENN CHEMICALS);
Glycine: Fmoc-Gly-OH ≥ 98% (ALDRICH); Lysine: Fmoc-Lys(Boc)-OH ≥ 98% (ALDRICH);
Alanine: Fmoc-Ala-OH 95% (ALDRICH); Valine: Fmoc-Val-OH ≥ 98% (ALDRICH);
BOP: benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate≥ 99.0%
(ALDRICH); DIC: Diisopropylcarbodiimide 99% (ALDRICH); HOBt: Hydroxybenzotri-
azole ≥ 97% (ALDRICH); Palm-Cl: Palmitoyl Chloride ≥ 98% (ALDRICH); TFA: Trifluo-
roacetic acid ≥ 99% (ALDRICH); PSSNa: poly(sodium 4-styrenesulfonate) Mw = 70,000 g/mol
(ALDRICH); Fmoc Rink amide resin Piperidine; 1,8-diazabicyclo[5.4.0]undéc-7-ène (DBU);
1-Hydroxybenzotriazole (HOBt); N,N′-Diisopropylcarbodiimide (DIC); Dimethylformamide
(DMF); dichloromethane; methanol; diethylether were purchased from Merck.

2.2. Methods

PA synthesis. Fmoc Rink amide resin (1.15 g, 0.87 mmol/g loading, 1 mmol) was used
after removing of the fmoc protecting group using a mixture of piperidine/DBU/DMF
(2:2:96) following by several rinsing steps with dichloromethane and methanol. In a SPPS
glass reactor charged with deprotected resin was added 1-Hydroxybenzotriazole (HOBt)
(0.41 g, 3 mmole), N,N′-Diisopropylcarbodiimide (DIC) (0.5 mL, 3 mmole) and 3 mmol of
the Fmoc Amino acid in DMF. The coupling reaction was carried out for 3 h followed by
several rinsing steps with dichloromethane and methanol. At the end of each coupling
step, a Kaiser test was performed to ensure the completion of the reaction. After the
removal of the Fmoc protecting group, this coupling step was repeated to obtain H-Val-
Val-Val-Ala-Ala-Ala-Lys-Lys-Lys-Gly-resin sequence. A last acylation step was carried out
on the peptide-resin with a solution of palmitoyl chloride in dichlorometane (10% v/v,
8 mL) for 1 h. The resin bound protected peptide chain was then treated with a mixture
(6 mL) of trifluoroacetic acid (TFA) containing 5% (v/v) of distilled water. After 5 h the
resin was filtered off and the solution was precipitated in diethylether. The resulting PA
(Mw = 1207.66 g/mol) was collected, dried, resolubilized in distilled water and lyophilized
(yield 90%). After characterization by MS (MH+ = 1207.93 g/mol), PA was used without
further purification step.

Membrane preparation. Tape-casting: 300 µL of solution are deposited with a knife
250 µm high. The speed of movement of the knife is 1 cm/s. The solutions are applied
using a syringe to form a strip of 3 mm wide and 18 mm long. This solution is spread either
directly on a glass slide or on a hydrophilic PVDF filter 25 mm in diameter (Durapore
Membrane, hydrophilic PVDF, 0.45 µm, 25 mm, Millipore). The tape-casting was performed
on an Elcometer 4350.

Spray-coating. The PSSNa solution injected is 6 g/L. The deposition pattern is a rectangle
30 mm by 75 mm. This rectangle is divided into three sections in the width (30 mm). The
nozzle passes through each section. The nozzle is located 60 mm from the sample, the
speed 250 mm/min and the flow is set to 100 mL/h. The spray-coating was carried out on
a ND-SP from Nadetech.

Scanning electron microscopy. SEM analyses were performed using a Hitachi S-4500
instrument operating at a spatial resolution of 1.50 nm at an energy of 15 kV. The sam-
ples were dried and covered with an ultra thin layer of electrically conductive Platinum
deposited by high vacuum evaporation.

Rheology. The rheology analyzes were carried out on a Physica MCR 301 from Anton
Paar with a conical spindle: CP50-1. The mixtures are carried out directly on the rheometer
stage to minimize changes in the medium.

Water permeation. The filtration studies were performed in a 10 mL filtration cell with
25 mm diameter. The fluid is pressurized through the membrane using compressed air.
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The pressure drops studied are between 0 and 3 bar. For the filtration tests, the prepared
membrane (d = 2.5 cm) was placed in a 10 mL filtration cell (Amicon 8010 stirred cell).
Then, the filtration cell was connected to a water tank and a compressed air line. The
mass of water passing through the membrane (permeate) was recorded with SartoConnect
software during 20 min for each pressure drop. All filtration experiments were performed
at 25 ◦C with dust free ultrapure water (filtered through a 400 µm filter).

AFM. AFM images were taken with tips oscillating at a frequency of 300 kHz in
intermittent contact mode. The scan speed is 0.74 lines per second. Parameters such as
gain, setpoint or drive are determined for each image and no value is preset. However,
a low setpoint and drive are favored, as well as a gain close to 30% for the integral and
proportional values. The approach percentage is set at 90%. AFM analyzes were performed
on a PicoSPM II.

Circular dichroism (CD) spectroscopy. Circular dichroism solutions were performed
in mQ water. The peptides (4 mg) were dissolved in 1 mL of water. The cuvette used for
this analysis has an optical path of 0.2 mm. Circular dichroism analyzes were carried out
on the following devices: PMS450; MOS450; ALX250; MM450 from ScienceInstrument.

3. Results and Discussion

C16-V3A3K3G-NH2 lipidated PA (Figure 1) has been synthesized using standard 9-
fluorenylmethoxycarbonyl-based solid phase procedure. It integrates three valines and
three alanines as structuring part, which impart a polarity gradient between the hydropho-
bic part C16 and the hydrophilic part K3G-NH2, known to help alignment of PA thus
leading to robust cylindrical micelles containing β-sheet secondary structure in the V3A3
peptide domain [9].
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Figure 1. Schematic representation of a nanofibrous membrane from peptide amphiphile C16V3A3K3G-NH2 and
poly(sodium 4-styrenesulfonate) (PSSNa) co-assembly.

PA self-assemble into fibrils as shown in AFM (Figure 2) with a size and global shape
depending on the initial PA concentration going from 0.05 to 20 mg.mL−1. Solutions
were spin-coated onto a silicon wafer in sort that a water evaporation along with solu-
tion spreading lead to a progressive—although quick—PA concentration driving the PA
assembly from almost individualized PA cylindrical micelles (Figure 2C) at low concen-
tration (0.05 mg.mL−1) towards larger aggregates, such as ribbon-like fibrils at higher
concentration (20 mg.mL−1) (Figure 2A).
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The signature of β-sheet formation of the C16V3A3K3G-NH2 in aqueous solution is
confirmed in Circular dichroism (CD) spectroscopy (Figure 3). In addition, the importance
of the length of the alkyl chain is also underlined as shown by the signal, shifted to random
coil, observed with the same PA except with regard to its hydrophobic part, reduced from a
C16 to a C2. PA cylindrical micelles could be disturbed by the presence of other amphiphilic
molecules, such as surfactant. As an illustration, CD spectrum of the PA in presence of
Triton X-100 surfactant shows a decrease in CD intensity at 206 nm which is a marker of
β-sheet content.
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PA cylinders were then used as structuring agent for the membrane formation and
electrostatic interactions with PSSNa were promoted to yield membranes able to sustain
water pressure (Figure 1). PSSNa is a polyanion able to interact with the K3 sequence of
the lipidated PA as demonstrated in literature [24]. In doing so, PSSNa should be able to
amplify the cylindrical structure of the PA micelle to another scale allowing the formation
of gels or functional materials. Concretely, the polymer will line the external surface of
the PA micelles via electrostatic interactions. Therefore, the balance between the number
of charges brought by the PA and the number of charges brought by the polymer is an
important parameter.

Depending on the ratio PA (+) charges /polymer (−) charges (R+/−) used, the appear-
ance of a gel was visually observed with the highest rigidity when R+/− is equal to 1, that
is to say for a total compensation of electrostatic charges (Figure 4D–F). However, it is ad-
visable to be very careful with this indicator, which should only be considered as a relative
reference. Indeed, R+/− assumes that all charges are accessible which cannot be the case
with the use of polymer due to the steric hindrance and chain folding. In addition, when
the two aqueous solutions are put into contact, an almost instantaneous structuring of the
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interface occurs, then limiting the inter-diffusion of the solutions [17]. Therefore, the charge
balance is in fact distorted by a partial segregation of the solutions components. AFM
images show a similar material organization for R+/− > 1 with a polymer homogeneously
distributed within the nanostructure (Figure 4C). However, in the presence of an excess of
polymer (R+/− < 1), inhomogeneity can be observed with the appearance of accumulation
zones of the polymer which no longer integrate the PA network. The change in the average
fibril diameter as a function of R+/− (Figure 4G) shows a plateau regime in the presence
of a polymer excess followed by a size decrease while increasing the PA amount in the
mixture. It seems logical to observe an increase in the size of the fibrils when increasing
the polymer concentration if we consider that the polymer coils between the PA micelles
and aggregates them. However, beyond a critical threshold (R+/−~0.6), which differs from
the theoretical value as explained previously, the increase in the size of the fibrils stops,
the polymer is no longer integrated into the PA network and accumulates. The excess of
polymer is undesirable because it induces unstructured areas formed from water-soluble
polymers that may gradually dissolve and degrade the final material. To minimize these
heterogeneity problems in the material, a R+/− equal to 1 was targeted for the rest of this
work, leading to formation of fibrils with an approximate size of 60 nm.
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(C,F): R+/− = 3. (G) Average fibril diameter, estimated by AFM, as a function of the PA (+) charges
/polymer (−) charge ratios (R+/−), standard deviation.

Strain sweep rheological experiments performed on 10 wt.% C16V3A3K3G-NH2 aque-
ous solution (Figure 5A) at a constant frequency of 10 rad/s, showed that the mechanical
properties deviated from the linear viscoelastic region above 0.5 % strain. Overall moduli
are low when the PA is alone and the cross-over point from gel to liquid (G′ = G′′ occurred
at about 3% strain. When the aqueous solutions of PA and polymer, prepared separately,
are brought into contact, the medium becomes cloudy instantly (Figure 5B). A simple
hand stirring makes it possible to homogenize the medium which forms a gel (Figure 5C).
However, this gel is relatively weak and can break down irreversibly upon vortexing
(Figure 5D). The presence of PSSNa increases the storage and the loss moduli by 4 order of
magnitude and the cross-over point was pushed towards values of strain close to 100%.

An oscillatory frequency sweep performed (Figure 6B) at a constant strain of 0.1%
shows an almost independent frequency behavior over the explored range. It should be
noted that for an R+/− of 0.6, the curve presents an erratic shape which is the result of
a macroscopic separation observed under shear. The flow curve presented in Figure 6A
demonstrates a marked shear thinning behavior. The elaboration of a membrane material
from C16V3A3K3G-NH2–PSSNa mixtures requires casting a solution that has a sufficient
viscosity to control the final material thickness and thus avoid the presence of imperfection
linked to a film that is too thin. Consequently, a premixing of C16V3A3K3G-NH2 and
PSSNa solutions followed by casting on a support will not make it possible to obtain the
expected morphology due to the too low viscosity of the solution under shear. One strategy
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then consists of depositing the two aqueous solutions successively and allowing the gel to
form directly under its final geometry without subsequent manipulation.
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Figure 5. (A) Storage (G′) and loss (G′′) modulus of a 10 wt.% solution of C16V3A3K3G-NH2 (black)
or C16V3A3K3G-NH2—PSSNa (red) in water as a function of strain at a constant frequency of 10 rad/s.
Aqueous solution mixture between C16-V3A3K3G-NH2 (15 mg in 0.5 mL mQ water) and PSSNa
(6 mg in 0.5 mL mQ water) (R+/− = 1) just after complete addition (B), after slight hand stirring (C),
and after vortexing (D).
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Figure 6. (A) Viscosity versus shear rate of the PA/PSSNa physical gel. (B) Storage (G’) and loss (G”)
modulus for 10 wt.% solutions of C16V3A3K3G-NH2–PSSNa in water as a function of frequency at a
constant strain of 0.1% and different R+/−.

In order to estimate the time required for the formation of a sufficiently solid gel before
immersing the obtained membrane in a water bath to wash out the unreacted precursors,
the loss and storage moduli were followed over time at different concentrations going
from 0.1 wt% to 10 wt% (Figure 7). Moduli values logically increase with the total solid
concentration. The kinetic monitoring shows two stages with a first part characterized
by a steep increase in moduli following the contacting of the aqueous solutions. It has
to be noted that the time, although short, necessary to start the analysis after mixing the
solutions does not allow us to observe the initiation of this step. On the other hand, this
rapid increase is followed by a quasi-plateau for which the moduli evolve only modestly.
This observation is in agreement with the previously cited literature on the rapidity of
formation of a solid interface in the case of a strong interaction between the PA and the
polymer, which is precisely our case. Conventionally, the membranes are produced by
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a phase inversion process in which the polymer in a good solvent is immersed in a non-
solvent which allows the appearance of a phase rich in polymer (matrix) and a phase
poor in polymer (pores). This technique cannot be carried out here because of the high
attraction between the two components, which is moreover a conventional problem with
polyelectrolyte layers. In a first attempt, a PSSNa solution was tape-casted onto a glass
support, then completely covered with a solution of the PA. After a waiting time of 2 h
30 min, the support is then immersed in a water bath so as to wash off the excess unreacted
products. A self-supporting material of about 9 µm in thickness (as judged by SEM images
of the film cross sections) is obtained (Figure 8A) but it was too brittle to withstand water
pressure during filtration.
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Figure 8. SEM pictures of PA-PSSNa films. (A) Cross section of the self-standing membrane formed
by tape-casting of a PSSNa solution then covered with C16V3A3K3G-NH2 solution; (B) Top view
of virgin hydrophilic PVDF membrane; (C) Top view and (D) Cross section SEM images of the
film deposited on hydrophilic PVDF by impregnation of PSSNa followed by C16V3A3K3G-NH2

tape-casting.

Thus, in a second attempt, a supported membrane with a PVDF ultrafiltration mem-
brane as a support layer was developed. For this, the PVDF membrane is first immersed
in a solution of PSSNa. The C16V3A3K3G-NH2 solution is then tape-casted on the sur-
face of the impregnated support. After a waiting time of 2h30, the film is immersed in
demineralized water. Figure 8C shows an apparent decrease in the surface porosity of the
PVDF membrane, compared to the virgin membrane (Figure 8B). However, the coverage is
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only partial and the presence of this selective layer in the thickness of the material is not
observed (Figure 8D).

In order to enhance the chance of forming a continuous membrane selective layer
rather than randomly distributed inside the PVDF commercial membrane material, spray-
coating technique was explored. In a first attempt, a solution of PA was tape-casted on
a glass support and then a solution of PSSNa was sprayed on the surface so as to form
fine droplets which will coalesce to form a thin layer. As shown in Figure 9A,B, a material
is well formed but has a surface punctuated with cavities. These are the result of a rapid
interaction between the PSSNa and the PA since the interface seems to have been formed
when the PSSNa droplets came in touch with the aqueous layer of PA (Figure 9C), without
allowing the time required for these droplets to coalesce in a continuous layer. Although
the result is interesting by illustrating how fast are the interactions to yield a solid interface,
the material obtained is too fragile for the envisaged application. Finally, when a PSSNa
solution was tape-casted on a PVDF support membrane, followed by a spray of the PA
solution, a relatively uniform material is obtained (Figure 9D). The imprint left by the
droplets is much less present as shown by the cross section of the material. The thickness
of the selective layer is 4.5 µm. Good adhesion is observed between the PVDF support
and the self-assembled PA-PSSNa selective layer. The mechanical properties are also better
and allowed an AFM analysis which demonstrates the presence of structuring network of
fibers as expected (Figure 9E). The diameter of the fibers are of the order of 45 nm.
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Figure 9. SEM surface pictures of PA-PSSNa self-standing membranes made by tape-casting of a PA solution followed
by spray-coating of PSSNa solution (A,B) as illustrated in (C). SEM pictures of cross section (D) and AFM (E) of the
PVDF-supported membrane.

The membrane was then mounted in a dead-end filtration cell and three full pressure
cycles (increasing and decreasing) were performed (Figure 10). Relatively linear curves
with a low hysteresis between the up and down cycles were observed. The calculated
membrane permeability of 10 L·h−1·m−2·bar−1 is moderate, which could be ascribed to the
relatively high thickness of the selective layer (4.5 µm). The slight decrease in flux observed
between the filtration cycles can be explained by the electrostatic nature of the interactions
between the PA and PSSNa. Indeed, it is possible that a reorganization of the interactions
under pressure could be at the origin of this moderate decrease by compressing the selective
layer. The pore size of the membrane was estimated from filtration experiments using
polyethylene glycol (PEG) of different molecular weights. The solute rejection versus the
solute diameter is plotted in Figure 10B. Using the Einstein–Stokes radius of the solute, the
mean pore size is considered as the solute diameter that corresponds to a retention of 50%,
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whereas the geometric standard deviation is obtained from the ratio of solute diameter
at retentions of 84.13% and 50% [34]. The membrane material falls into the ultrafiltration
range with a pore radius of 7.61± 1.90 nm. Based on these values, the pore size distribution
was plotted in Figure 10B by using a log-normal model [35].To the best of our knowledge,
this is the first example of a composite filtration membrane formed from water-soluble
polyelectrolytes structured by a self-assembling peptide.
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4. Conclusions

In conclusion, we have reported a novel method to prepare nanofibrous network able
to sustain the water pressure in the scope of membrane filtration. Nanocylinders of C16-
V3A3K3G-NH2 were synthesized and their co-assembly with PSSNa chains were explored
to produce the targeted materials. The charge ratio between the peptide amphiphiles and
the polymer was optimized to link to nanocylinders together via electrostatic interactions.
The tape-casting of PSSNa solution on a PVDF support membrane, followed by a spray-
coating of the C16-V3A3K3G-NH2 solution produced a relatively uniform membrane with
a thickness of 4.5 µm able to sustain a water pressure of 3 bars.
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