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Abstract :   
 
Reliable and efficient techniques are urgently needed to monitor elasmobranch populations that face 
increasing threats worldwide. Aerial video-surveys provide precise and verifiable observations for the 
rapid assessment of species distribution and abundance in coral reefs, but the manual processing of 
videos is a major bottleneck for timely conservation applications. In this study, we applied deep learning 
for the automated detection and mapping of vulnerable eagle rays from aerial videos. A light aircraft 
dedicated to touristic flights allowed us to collect 42 h of aerial video footage over a shallow coral lagoon 
in New Caledonia (Southwest Pacific). We extracted the videos at a rate of one image per second before 
annotating them, yielding 314 images with eagle rays. We then trained a convolutional neural network 
with 80% of the eagle ray images and evaluated its accuracy on the remaining 20% (independent data 
sets). Our deep learning model detected 92% of the annotated eagle rays in a diversity of habitats and 
acquisition conditions across the studied coral lagoon. Our study offers a potential breakthrough for the 
monitoring of ray populations in coral reef ecosystems by providing a fast and accurate alternative to the 
manual processing of aerial videos. Our deep learning approach can be extended to the detection of other 
elasmobranchs and applied to systematic aerial surveys to not only detect individuals but also estimate 
species density in coral reef habitats. 
 
 

Highlights 

► Efficient techniques are needed to monitor vulnerable elasmobranchs in space and time. ► Deep 
learning applied to images is a powerful tool for automated wildlife monitoring. ► Our deep learning model 
successfully detected 92% of eagle rays on images. ► This study is a step forward for ray monitoring in 
coral reef ecosystems. 
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1. Introduction 

Elasmobranchs, a subclass of cartilaginous fishes composed of sharks, rays, skates and sawfish, 

are among the most endangered animal taxa in the oceans (Dulvy et al. 2021). These species are 

intrinsically sensitive to human activities due to their slow growth rate and limited reproduction 

capacity, preventing them from quickly recovering from overexploitation (Pacoureau et al., 2021). 

Elasmobranchs are primarily threatened by targeted fisheries and incidental catches, although 

habitat degradation is a growing threat for coastal species (Dulvy et al. 2021; Yan et al. 2021). 

Within the 1,199 species of elasmobranchs assessed by the IUCN in 2021, 10.4% were listed as 

near-threatened, 15% as vulnerable, 10.1% as endangered (compared to 4.1% in 2010), 7.5% as 

critically endangered, and 12.9% as data deficient (Dulvy et al. 2021). Rays are even more 

threatened than sharks with 36% of all species threatened compared to 31.2% (Dulvy et al. 2021). 

Currently, the limited knowledge and monitoring of elasmobranch abundance and distribution is a 

major impediment to the implementation of targeted conservation measures (Jabado et al., 2018). 

To fill these knowledge gaps, new techniques are urgently needed to efficiently and rapidly monitor 

threatened elasmobranchs in space and time in order to identify their key habitats and provide 

abundance estimates at the basis of IUCN assessments. 

Video-surveys from drones or light aircraft are increasingly used to assess the distribution, 

behavior and abundance of marine megafauna (Hodgson, Kelly, and Peel 2013; Kelaher et al. 

2020; Schofield et al. 2017). Such digital surveys are particularly suited to study sharks and rays in 

coral lagoons where clear and shallow waters facilitate their detection (Kiszka et al., 2016; Rieucau 

et al., 2018). Video-surveys offer important advantages over traditional observer-based surveys by 

generating precise and verifiable observations that are free from observer fatigue and subjectivity 

(Colefax, Butcher, and Kelaher 2018; Kelaher et al. 2019). However, manual video analysis is a 

major bottleneck for timely conservation applications, as visualizing hours of footage is both 

extremely time-consuming and error-prone (Ditria, 2020; Norouzzadeh et al., 2018; Villon et al., 

2018). Deep learning algorithms offer great promises to overcome this limitation by allowing the 

automated identification and detection of species on images (Christin, Hervet, and Lecomte 2019; 

Norouzzadeh et al. 2018; Torney et al. 2019; Eikelboom et al. 2019). Such models have been 

successfully applied for the detection of sea turtles (Dujon et al., 2021; Gray et al., 2018), dugongs 

(Mannocci et al., 2021), pinnipeds (Dujon et al., 2021; Padubidri et al., 2021) and whales (Gray et 

al. 2019; Guirado et al. 2019). Although there are a few applications for elasmobranchs, these are 

generally dedicated to monitoring shark risks (Gorkin et al., 2020) rather than conservation 

objectives requiring abundance and distribution estimates. Accurate deep learning models would 

drastically increase the efficiency of aerial monitoring for these threatened species. 

https://www.zotero.org/google-docs/?c5De4H
https://www.zotero.org/google-docs/?c5De4H
https://www.zotero.org/google-docs/?c5De4H
https://www.zotero.org/google-docs/?HkK67V
https://www.zotero.org/google-docs/?Oke50u
https://www.zotero.org/google-docs/?kNIb3G
https://www.zotero.org/google-docs/?8WjxK7
https://www.zotero.org/google-docs/?DyubPJ
https://www.zotero.org/google-docs/?w72Dx5
https://www.zotero.org/google-docs/?w72Dx5
https://www.zotero.org/google-docs/?w72Dx5
https://www.zotero.org/google-docs/?w72Dx5
https://www.zotero.org/google-docs/?w72Dx5
https://www.zotero.org/google-docs/?pdUBJf
https://www.zotero.org/google-docs/?pdUBJf
https://www.zotero.org/google-docs/?jIbhqS
https://www.zotero.org/google-docs/?jIbhqS
https://www.zotero.org/google-docs/?jIbhqS
https://www.zotero.org/google-docs/?DD0NJd
https://www.zotero.org/google-docs/?DD0NJd
https://www.zotero.org/google-docs/?1a7zvp
https://www.zotero.org/google-docs/?1a7zvp
https://www.zotero.org/google-docs/?1a7zvp
https://www.zotero.org/google-docs/?1a7zvp
https://www.zotero.org/google-docs/?HF5Bmo
https://www.zotero.org/google-docs/?PgvOn9
https://www.zotero.org/google-docs/?CUY0FB
https://www.zotero.org/google-docs/?rCwl4O
https://www.zotero.org/google-docs/?rCwl4O
https://www.zotero.org/google-docs/?GAjH67
https://www.zotero.org/google-docs/?GAjH67
https://www.zotero.org/google-docs/?cNiQul
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In this study, we combined aerial video-surveys and deep learning to detect eagle rays and map 

their distribution throughout a lagoon in New Caledonia, Southwest Pacific. New Caledonia hosts 

exceptional coral reefs and lagoons, which form one of the three most extensive reef systems in 

the world (Ceccarelli et al., 2013). Eagle rays are conspicuous rays of the Myliobatidae family that 

are easily spotted from the surface owing to their relatively large size and characteristic diamond 

shape (Last, White, and Pogonoski 2010), making them good candidates for automated detection 

on aerial images. Two species of Myliobatidae are present in New Caledonia, the spotted eagle 

ray, Aetobatus narinari which is common, and the rarer mottled eagle ray, Aetomylaeus maculatus 

(Fricke, Kulbicki, and Wantiez 2011). These species have been classified as globally endangered 

by the IUCN in 2020 (Dulvy et al. 2020; Rigby et al. 2020), stressing the urgent need to monitor the 

trends of their populations to feed global indicators like the Living Planet Index (Pacoureau et al., 

2021). We trained and evaluated a deep learning model to automatically detect eagle rays on 

aerial images collected from an ultra-light motor plane (ULM). We then mapped their distribution 

across the studied lagoon. Our study unravels the potential of deep learning applied to aerial 

surveys for monitoring the distribution of vulnerable elasmobranchs in coral reefs.  

2. Material and methods 

2.1. Video data collection 

Video-surveys were conducted from an amphibious ULM (AirMax SeaMax) operating touristic 

flights over the Poé lagoon on the Western coast of New Caledonia (Supplementary Figure A). 

This lagoon is shallower than 5 m and characterized by shallow reef, seagrass and sandy habitats. 

The barrier reef includes three deep passes and channels reaching 30 m. Part of the Poé lagoon 

was declared as a natural reserve (IUCN category IV) in 2006 and is located within the broader 

South Province Park created in 2009 and the UNESCO World Heritage area established in 2008. 

A GoPro Hero Black 7 camera was mounted under the right wing of the ULM, pointing downward. 

The camera was configured to record videos at a rate of 24 frames per second in linear field of 

view mode at a resolution of 2.7 K (2,704 x 1,520 pixels) with integrated image stabilization. The 

camera was manually triggered by the pilot before each flight. Telemetry data, including GPS 

coordinates and altitudes, were also recorded by the GoPro along each flight (at a rate of 8 to 12 

positions per second). The mean altitude across all flights was 152 m (standard deviation SD= 52 

m). At this altitude the image covered a mean surface area of 161 m × 287 m corresponding to a 

ground sampling distance of 11 cm per pixel. In total, over 42 hours of videos representing 36 fly 

days were collected from September 2019 to January 2020 in good weather conditions. 

https://www.zotero.org/google-docs/?esRVIb
https://www.zotero.org/google-docs/?a1swiI
https://www.zotero.org/google-docs/?a1swiI
https://www.zotero.org/google-docs/?a1swiI
https://www.zotero.org/google-docs/?4DUykH
https://www.zotero.org/google-docs/?4DUykH
https://www.zotero.org/google-docs/?4DUykH
https://www.zotero.org/google-docs/?P8hJxD
https://www.zotero.org/google-docs/?AdKA5f
https://www.zotero.org/google-docs/?AdKA5f
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2.2. Image annotation 

Image annotation is a crucial prerequisite before applying deep learning models (Gray et al., 2018; 

Norouzzadeh et al., 2018; Villon et al., 2020). All videos were first visualized by a team of students 

who recorded the times at which they spotted eagle rays (and other megafauna species). Videos 

that contained at least one eagle ray (representing 114 videos from a total of 228 (Table 1)) were 

then imported into a custom online application (http://webfish.mbb.univ-montp2.fr/) (Supplementary 

Figure B). Next, images were extracted from all videos at a rate of one image per second, 

representing a compromise between image diversity and annotation time. 

The annotation procedure consisted in manually drawing rectangle bounding boxes around 

identified eagle rays and associating labels to these individuals. Only individuals that could be 

identified without ambiguity as eagle rays, owing to their large size, diamond shape and dark 

colour, were annotated. Although Aetomylaeus maculatus is generally smaller than Aetobatus 

narinari, their color patterns are similar (light spots on a dark disc) so they are easily confused in 

situ. The presence of a long spine near the tail’s base of A. narinari can help to differentiate it from 

A. maculatus which has a long but spineless tail (Froese and Pauly 2021). Since we could not 

distinguish one or the other species on aerial videos we built a generic eagle ray (i.e., 

Myliobatidae) detector, although most sightings were likely of A. narinari which is much more 

common in New Caledonia (Fricke et al., 2011). Each annotation yielded a text file containing the 

coordinates and label of the bounding box, along with the corresponding image in jpeg format 

(examples of images are provided in Supplementary Figure C). 

2.3. Eagle ray detection model 

We used a convolutional neural network (CNN), a class of deep learning models that is widely 

applied for image classification and object detection, i.e., the task of simultaneously localizing and 

classifying objects on images (LeCun, Bengio, and Hinton 2015). CNNs represent by far the most 

commonly used category of deep learning models in ecology (Christin, Hervet, and Lecomte 2019). 

They are formed by stacked groups of convolutional layers and pooling layers that are particularly 

suited to process image inputs. Convolutional layers extract local combinations of pixels known as 

‘features’ from images. In the convolution operation, a filter defined by a set of weights computes 

the local weighted sum of pixels over the three colour channels of a given image (LeCun, Bengio, 

and Hinton 2015). In practice, CNNs are fed with large amounts of images in which target objects 

have been manually annotated so they can be trained to associate labels to a given object. During 

this training phase, the weights are iteratively modified to obtain the desired answer by minimizing 

the error function between the output of the CNN and the correct answer through a process called 

backpropagation (LeCun, Bengio, and Hinton 2015). The final output of the CNN is a confidence 

score for each of the learned objects. 

https://www.zotero.org/google-docs/?SxUlCG
https://www.zotero.org/google-docs/?SxUlCG
http://webfish.mbb.univ-montp2.fr/
https://www.zotero.org/google-docs/?z822wV
https://www.zotero.org/google-docs/?z822wV
https://www.zotero.org/google-docs/?z822wV
https://www.zotero.org/google-docs/?jMT3ix
https://www.zotero.org/google-docs/?v1xwef
https://www.zotero.org/google-docs/?v1xwef
https://www.zotero.org/google-docs/?v1xwef
https://www.zotero.org/google-docs/?LCWQ56
https://www.zotero.org/google-docs/?LCWQ56
https://www.zotero.org/google-docs/?LCWQ56
https://www.zotero.org/google-docs/?7cjJuX
https://www.zotero.org/google-docs/?7cjJuX
https://www.zotero.org/google-docs/?7cjJuX
https://www.zotero.org/google-docs/?7cjJuX
https://www.zotero.org/google-docs/?okwgDw
https://www.zotero.org/google-docs/?okwgDw
https://www.zotero.org/google-docs/?okwgDw
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We selected a Faster R-CNN network (Ren et al. 2016) publicly available from the Tensorflow 

model zoo and tuned it for eagle ray detection on aerial images. The Faster R-CNN is a deep 

learning algorithm specialized for object detection that consists of two fully-convolutional networks: 

(1) a region proposal network, which predicts object positions along with their ‘objectness’ scores 

and (2) a detection network, which extracts features from the proposed regions and provides class 

labels for the bounding boxes. We specifically used a Faster-RCNN with a ResNet-101 backbone, 

a deep architecture in which layers have been reformulated as residual functions of input layers, 

leading to better optimization and increased accuracy. Our eagle ray detection framework followed 

the three main steps detailed below: 1) Image pre-processing, 2) Model training and 3) Model 

accuracy assessment. The eagle ray detection framework is illustrated in Figure 1. 

2.4. Image pre-processing 

A total of 314 ULM images containing at least one eagle ray (representing 372 individual 

encounters) were extracted out of the 79,325 collected images (Table 1). Bounding boxes 

surrounding eagle rays spanned on average 25 x 25 pixels (pi) on the 2,704 x 1,520 pi images, 

corresponding to a ratio of 0.0002 between the bounding box area and the image area. To 

maximize the detection of small eagle rays on ULM images, we split each image into four images 

with half the original size (i.e., 1,352 x 760 pi). This yielded 308 images with eagle rays (353 

individual encounters), as rays located across image boundaries were lost. Image splitting 

approaches are known to efficiently boost detection accuracy by increasing the relative pixel area 

of small objects with respect to the entire images, thereby limiting detail losses when images are 

processed throughout the network (Unel, Ozkalayci, and Cigla 2019) . 

Next, images were randomly partitioned, using 80% of images for the training (and validation) 

subset (corresponding to approximately 250 images) and 20% of images (approx. 60 images) for 

the testing subset. Full independence between subsets was ensured by selecting images 

belonging to different videos between the subsets. The training subset was then artificially 

augmented by applying random transformations to images, including rotations (by -10 to +10 

degrees), translations (by -10 to +10 %), scaling (by 80 to 120%), horizontal and vertical flipping, 

and contrast modification (i.e., multiplying all image pixels with a value ranging from 0.6 to 1.4). 

Artificial data augmentation is a particularly efficient technique for improving the generalization 

performance and accuracy of object detection models (Zoph et al., 2019). 

2.5 Model training  

We initialized our Faster R-CNN with pre-trained weights based on  the COCO (Common Objects 

in Context) dataset (Lin et al., 2015) downloaded from the Tensorflow model zoo. This process of 

applying previously learned knowledge to solve a new problem, called transfer learning, improves 

https://www.zotero.org/google-docs/?rnZUL5
https://www.zotero.org/google-docs/?ITH2Ti
https://www.zotero.org/google-docs/?ITH2Ti
https://www.zotero.org/google-docs/?ITH2Ti
https://www.zotero.org/google-docs/?mSk3ei
https://www.zotero.org/google-docs/?EeBMGx
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model accuracy and generalization when a limited annotated dataset is available (Chen, Zhang, 

and Ouyang 2018). We then trained the Faster R-CNN using a stochastic gradient descent 

optimizer with a momentum of 0.9 for the loss function (Qian, 1999). We applied a learning rate of 

10−3, a L2 regularization (with a lambda of 0.004), and a dropout of 50% to mitigate overfitting 

(Srivastava et al., 2014). The training was stopped after 50,000 iterations to prevent overfitting as 

indicated by an increasing loss function for the validation subset (Sarle, 1995). 

2.6 Model accuracy assessment 

The Faster R-CNN was then applied for eagle ray detection on the test subset and its accuracy 

was evaluated using a 5-fold cross-validation. K-fold cross-validation is a common procedure for 

evaluating machine learning models while preventing systematic biases due to the partitioning of 

data subsets (Wong, 2015). The initialized model was trained five times, each time with a different 

training subset and its accuracy was evaluated five times, each time on an independent test 

subset. 

We applied lenient thresholds of 50% for both the confidence score of predictions and the overlap 

of predictions with observations, since minimizing false negatives is more crucial than avoiding 

false positives in the case of rare megafauna species (Villon et al., 2020). As such, a predicted 

bounding box that was associated with a confidence score of at least 50% and that overlapped at 

least 50% in surface with an annotated eagle ray was considered a true positive (TP). Predicted 

bounding boxes not corresponding to an annotated bounding box were false positives (FP), while 

annotated  bounding boxes not corresponding to a predicted bounding box were false negatives 

(FN). For each cross-validation test subset, the number of TPs, FPs and FNs were computed and 

performance metrics were calculated as described below. 

Precision is the percentage of TPs with respect to all predictions (Equation (1)). It represents the 

percentage of predictions that are correct (the closest to 1, the fewest false positives): 

Precision= TP / (TP + FP)       (1) 

Recall (or sensitivity) is the percentage of TPs with respect to all annotated objects (Equation (2)). 

It represents the percentage of positives that are actually predicted (the closest to 1, the fewest 

false negatives): 

Recall= TP / (TP + FN)       (2)  

Finally, the f1-score evaluates the balance between FPs and FNs. It is an overall measure of 

accuracy calculated as the harmonic mean of precision and recall (Equation (3)). 

F1-score= 2 x Recall x Precision / (Recall + Precision)   (3) 

https://www.zotero.org/google-docs/?eylGjl
https://www.zotero.org/google-docs/?eylGjl
https://www.zotero.org/google-docs/?eylGjl
https://www.zotero.org/google-docs/?eylGjl
https://www.zotero.org/google-docs/?mDVs3I
https://www.zotero.org/google-docs/?AE9A6p
https://www.zotero.org/google-docs/?Gplhpy
https://www.zotero.org/google-docs/?mzIvYW
https://www.zotero.org/google-docs/?HPdurp
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Finally, the mean and standard deviation of the performance metrics were computed across the 5-

fold cross-validations splits.  

We used the open-source Tensorflow object detection API version 1 (Abadi et al., 2016) in Python 

version 3 for the training and testing of our model. One training process lasted on average 3 hours 

on a NVIDIA Quadro P6000 GPU with 64 GB of RAM. The application of the model took on 

average 5 seconds per image. 

2.7 Spatial distribution of eagle rays   

Locations of eagle ray occurrences obtained from both manual annotation and the deep learning 

model were mapped in the study area by retrieving the GPS coordinates of their image identifiers. 

Locations of all ULM tracks were also mapped by retrieving the GPS coordinates of all video 

images. To account for the heterogeneous sampling effort, the encounter rate (individuals/km) was 

mapped throughout the study area. To do so, we created a spatial grid of 0.005° longitude x 0.005° 

latitude and summed the number of eagle rays and the length of ULM tracks in each cell. The 

number of individuals was then divided by the length of ULM tracks per cell to obtain the encounter 

rate. All maps were produced in R (version 4.0.3) with the OpenStreetMap (Fellows, 2019) and 

ggplot2 packages (Wickham et al., 2020). 

3. Results  

3.1 Deep learning model accuracy 

Our deep learning model trained with 255 images on average (range= 252 - 259 between cross-

validations) accurately detected eagle rays on independent images from the same lagoon. The 

model reached a mean precision of 0.90 on test images (SD= 0.08), meaning that 90% of the 

model predictions corresponded to a manually annotated eagle ray (i.e., were TPs) (Figure 2). 

False positives were primarily associated with coral patches. The mean recall was 0.92 (SD= 

0.06), meaning that 92% of the annotated eagle rays were detected (Figure 2). The model 

successfully detected eagle rays in various contexts, as illustrated in Figure 2 and Supplementary 

Figure D. The mean f1-score balancing FPs and FNs was 0.91 (SD= 0.06). Precision, recall and 

the f1-score showed little sensitivity to the prediction confidence score (Figure 3).  

3.2 Spatial distribution of eagle rays 

Eagle rays detected from the deep learning model were distributed throughout the study area, but 

appeared concentrated in a more intensively surveyed portion of the barrier reef near the 

easternmost channel (Figure 4-a). The few FPs and FNs were scattered across the lagoon and on 

the barrier reef (Supplementary Figure E-1). The encounter rate map, accounting for the 

https://www.zotero.org/google-docs/?DM386A
https://www.zotero.org/google-docs/?h8YVDK
https://www.zotero.org/google-docs/?DnnQc3
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heterogeneous sampling effort, confirmed the slightly higher occurrence of eagle rays on the 

barrier reef compared to the lagoon (Figure 4-b). The spatial distributions of detected eagle rays 

and their encounter rates were similar to that of all annotated eagle rays (Supplementary Figures 

E-2 and E-3). 

4. Discussion  

More than one third of all cartilaginous fishes are threatened with extinction, primarily due to 

overfishing (Dulvy et al. 2021). Rays are no exception as they represent 56.3% of threatened 

chondrichthyan and 12.3% of ray species are still lacking sufficient data for assessment (Dulvy et 

al. 2021). As human activities continue to jeopardize these species (Pacoureau et al., 2021; Yan et 

al., 2021), there is an urgent need for reliable and efficient approaches for monitoring populations. 

Our study revealed the potential of deep learning for the accurate detection of eagle rays in coral 

reef ecosystems. Our model trained with fewer than 260 aerial images was able to detect 92% of 

the eagle rays on independent images from the same lagoon. Our study paves the way towards 

automated ray population monitoring in coral reefs by providing a fast and accurate alternative to 

the manual processing of aerial images (Kelaher et al. 2020; Kiszka et al. 2016). While deep 

learning for elasmobranch aerial detection has been applied in the context of beach surveillance 

(Gorkin et al. 2020), we present its first implementation towards ecological and conservation 

applications, including species distribution mapping). 

4.1. Eagle ray detection accuracy  

Our model achieved a very good detection performance despite the modest size of the training 

dataset. Obtaining large amounts of images for training deep learning models is a major bottleneck 

for ecological and conservation applications (Christin, Hervet, and Lecomte 2019). To overcome 

this limitation, we relied on transfer learning and artificial data augmentation, two efficient 

techniques that are widely used for training models in data-limited situations (Schneider et al., 

2020). The model was successful at avoiding missed occurrences (false negatives), which is most 

critical when the objective is to detect vulnerable species that occur in low numbers such as rays 

and sharks (Villon et al., 2020). Eagle rays were consistently detected across the diversity of 

habitats (e.g., soft bottom and barrier reef) and acquisition conditions (e.g., luminosity, altitude and 

camera angle) in our study area. The robustness of the model at detecting eagle rays in more 

contexts and its generalization to new data could be further increased by expanding the size of 

both the training and the test datasets and the contextual variety at new sites in New-Caledonia 

and beyond. Moreover, there is a need to test the model’s generalizability to a larger dataset in the 

future, as the size of the test dataset is also limited. The model was equally successful at avoiding 

false positives, with few misdetections primarily associated with coral patches. To eliminate these 

https://www.zotero.org/google-docs/?DKl0UM
https://www.zotero.org/google-docs/?DKl0UM
https://www.zotero.org/google-docs/?QldbXY
https://www.zotero.org/google-docs/?QldbXY
https://www.zotero.org/google-docs/?7lO3AN
https://www.zotero.org/google-docs/?7lO3AN
https://www.zotero.org/google-docs/?5VP61T
https://www.zotero.org/google-docs/?broken=KCloKw
https://www.zotero.org/google-docs/?L1KJcj
https://www.zotero.org/google-docs/?L1KJcj
https://www.zotero.org/google-docs/?L1KJcj
https://www.zotero.org/google-docs/?NNtdib
https://www.zotero.org/google-docs/?NNtdib
https://www.zotero.org/google-docs/?N0kwRv
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false positives, coral patch annotations could be incorporated into the training dataset so that the 

model explicitly learns this class. As deep learning algorithms rapidly improve, we could further 

enhance our eagle ray detection method by using most up-to-date object detection CNNs such as 

the YOLOv3 that achieved a high performance on fish detection (Jalal et al., 2020). 

4.2. Comparison with other monitoring methods 

Effective conservation requires up-to-date and high quality data collected with limited monetary 

and human costs over repeated periods (Fust and Loos 2020). Previous studies on the distribution 

and movements of eagle rays have relied on acoustic (DeGroot et al., 2020) and satellite telemetry 

(Ajemian and Powers 2014). Active acoustic telemetry implies following the individuals in order to 

determine their movements in the water column, but is generally restricted to few individuals and 

necessitates a large array of hydrophones (DeGroot et al., 2020). Satellite telemetry allows 

tracking rays over potentially large spatial scales, but is constrained by the frequency and precision 

of GPS data and associated costs (Ajemian and Powers 2014). Both methods are intrusive as they 

require catching and manipulating individuals to attach the tags properly. Surveys from scuba 

divers and baited remote underwater videos (Rizzari, Frisch, and Magnenat 2014; Ward-Paige 

2017) are also used for elasmobranch censuses, especially for species that live further from the 

surface . However, these underwater surveys are limited in their spatial extent and may fail to 

detect the most elusive species (Juhel et al., 2017). Moreover, observations may not be precisely 

located and are not verifiable, unlike those derived from video footage.  

In this study, aerial images collected from an off-the-shelf camera and processed with a deep 

learning algorithm allowed us to precisely locate eagle rays in a coral lagoon at low financial and 

operational costs. The opportunistic use of an aircraft dedicated to touristic flights led to an 

heterogeneous survey effort, preventing the estimation of  abundance from the traditional strip 

transect methodology (Kiszka et al., 2016; Sykora-Bodie et al., 2017). Nevertheless, our accurate 

algorithm will be applicable to images collected along systematically-designed transects for 

abundance estimation in the future. Despite the heterogeneous survey effort, the current method 

suggests a widespread distribution of eagle rays across a variety of coral reef habitats, which is in 

accordance with previous study (Ajemian and Powers 2014). Future studies should seek to 

quantify habitat preferences of eagle rays by linking effort-corrected encounter rates to local habitat 

information (Ajemian, Powers, and Murdoch 2012; DeGroot et al. 2020). 

Shark and ray monitoring requires detection and census methods that are adapted to the studied 

habitats. While aerial surveys are very efficient in coral reefs with clear and shallow waters, open 

water or turbid waters (e.g., estuaries, mangroves) require non-visual methods such as acoustic 

telemetry. Environmental DNA is also an innovative method at the species level that can be 

notably used to detect rare species including elasmobranchs (Boussarie et al., 2018). Coral 

https://www.zotero.org/google-docs/?Ta3iTs
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https://www.zotero.org/google-docs/?j8DF4h
https://www.zotero.org/google-docs/?j8DF4h
https://www.zotero.org/google-docs/?mh6lVH
https://www.zotero.org/google-docs/?GxMkqi
https://www.zotero.org/google-docs/?GxMkqi
https://www.zotero.org/google-docs/?GxMkqi
https://www.zotero.org/google-docs/?YevUoE
https://www.zotero.org/google-docs/?8H24Bs
https://www.zotero.org/google-docs/?8H24Bs
https://www.zotero.org/google-docs/?BaJALh
https://www.zotero.org/google-docs/?BaJALh
https://www.zotero.org/google-docs/?BaJALh
https://www.zotero.org/google-docs/?BaJALh
https://www.zotero.org/google-docs/?G8QwWW
https://www.zotero.org/google-docs/?XIvUFl
https://www.zotero.org/google-docs/?RRQ1QM
https://www.zotero.org/google-docs/?RRQ1QM
https://www.zotero.org/google-docs/?RRQ1QM
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lagoons are major habitats for eagle rays (DeGroot et al. 2020; Ajemian, Powers, and Murdoch 

2012) and  our aerial approach proved  efficient for monitoring populations in these habitats. Our 

approach can be complemented by other methods (e.g., eDNA, acoustic telemetry) in habitats 

where eagle rays can occur (Ajemian and  Powers 2014; Sellas et al. 2015) but waters are deep or 

turbid. 

4.3. Implications for elasmobranchs monitoring in coral reefs 

Data on population trends and distributions of rays and sharks are difficult to collect; yet, such 

information is critical to establish appropriate conservation and management actions (Dwyer et al., 

2020; MacNeil et al., 2020; Pacoureau et al., 2021). Our approach combining video-surveys and 

deep learning offers a potential breakthrough for the automated monitoring of eagle rays in coral 

reef ecosystems. The ability of our model at detecting eagle rays in the variety of habitats and 

conditions encompassed by our data highlights its potential robustness in a broad range of 

contexts. Future work should assess the model transferability to other coral lagoons in New 

Caledonia and beyond. Robust detection models would be particularly beneficial for ray monitoring 

in the Indo-Pacific biodiversity triangle where conservation efforts are most urgent due to 

pronounced levels of human threats (Dulvy et al. 2021). Our deep learning approach could be 

applied to other distinctive elasmobranchs, provided sufficient images of these species are 

available for training the model.  

Finally, our approach could be extended to systematic video-surveys from manned aircraft or 

drones to not only detect individuals, but also count them to derive abundance estimates and 

species density maps in a study area. Drones make a viable alternative to manned aircraft for 

marine megafauna surveys (Gray et al., 2018; Hodgson et al., 2013; Kelaher et al., 2020; Kiszka et 

al., 2016), alleviating safety risks, monetary costs and carbon emissions (Hodgson et al., 2013). 

However, the use of drones is subject to strict airspace regulations, and legislation in many areas 

necessitates the pilot to maintain visual-line-of-sight with the drone (Raoult et al., 2020).  The 

platform choice will ultimately depend on the study question and the required imagery 

characteristics. Using an aircraft dedicated to touristic flights allowed us to achieve greater spatial 

and temporal coverage than would have been possible with a single drone and with no need to 

acquire permits. This method could be implemented in other touristic locations (e.g., Australia, 

French Polynesia, the Caribbean) where local companies operate scenic, low altitude flights over 

coastal areas. 

Overall, our cost-effective approach succeeded in collecting high-quality images for training a deep 

learning model able to detect 92% of eagle rays in coral reefs. This new eagle ray detector will be 

critical for deriving abundance estimates in order to closely monitor these vulnerable populations in 

the future. 
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Tables 

Table 1: Overview of the New Caledonia video database. Abbreviations: SD= standard deviation, 

pi= pixels. 

Number of 

videos 

Mean video 

duration 

Total video 

duration 

Total 

number of 

images 

Number of images with ≥ 

1 eagle ray 

Number of individual 

encounters 

114 

11.70 min  

(SD= 0.93 

min) 

equivalent 

to  

11 min 42 s  

22 h 14 min  

19 s  79,325 

2,704 x 

1,520 pi 

images 

1,352 x 760 

pi images 

2,704 x 

1,520 pi 

images 

1,352 x 760 

pi images 

314 308 372 353 
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Figures 

 

Figure 1: Eagle ray detection framework with three main steps. 1) Image pre-processing: Images 

are extracted from the ULM videos and manually annotated. These images are then partitioned 

into independant training, validation and test sets. Training and validation sets are augmented by 

applying random transformations such as rotations and translations to images. 2) Training: A 

Faster R-CNN with weights pre-trained on the COCO dataset is downloaded from the Tensorflow 

model zoo and trained on the training set. The training is stopped before overfitting as indicated by 

an increasing loss function for the validation set. 3) Model accuracy assessment: The trained 

Faster R-CNN is applied for eagle ray detection on the test set. Precision, recall and the f1-score 

are then derived to evaluate the model accuracy. The final output is a detected bounding box with 

an associated confidence score for each of the detected eagle rays. These steps are detailed in 

sections 2.4., 2.5. and 2.6. 
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Figure 2: Results of eagle ray detection on test images for a prediction confidence score of 50%. 

The left graph shows the mean percentage of true positives (TPs) and false positives (FPs) with 

respect to all predictions. The right graph shows the mean percentage of TPs and false negatives 

(FNs) in the observations. The error bars are the standard deviations from the means. Examples 

are provided below the graphs for a TP in green (prediction associated with an annotation shown in 

white), a FP in red (prediction not corresponding to an annotation; here a coral patch) and a FN 

(annotation not corresponding to a prediction). Further examples of detection results are provided 

in Appendix D.  
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Figure 3: Mean precision, recall and f1-score on the test images for varying prediction confidence 

scores. The standard deviation is represented by the shaded area. 
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Figure 4: Spatial distribution of (a) eagle ray detections (dots) from the deep learning model 

mapped by retrieving the GPS coordinates of their image identifiers and the corresponding ULM 

flight tracks (black lines) and (b) the encounter rate (individuals/km) of detected eagle rays 

calculated on a spatial grid of 0.005° longitude x 0.005° latitude (the calculation is detailed in 

section 2.7). 


