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Abstract

Reef fishes are closely connected to many human populations, yet their contributions to

society are mostly considered through their economic and ecological values. Cultural and

intrinsic values of reef fishes to the public can be critical drivers of conservation investment

and success, but remain challenging to quantify. Aesthetic value represents one of the most

immediate and direct means by which human societies engage with biodiversity, and can be

evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-

finned reef fish species by combining intensive evaluation of photographs of fishes by

humans with predicted values from machine learning. We identified important biases in spe-

cies’ aesthetic value relating to evolutionary history, ecological traits, and International

Union for Conservation of Nature (IUCN)AU : PleasedefineIUCNatfirstmentionintheabstractandtext:threat status. The most beautiful fishes are tightly

packed into small parts of both the phylogenetic tree and the ecological trait space. In con-

trast, the less attractive fishes are the most ecologically and evolutionary distinct species

and those recognized as threatened. Our study highlights likely important mismatches

between potential public support for conservation and the species most in need of this sup-

port. It also provides a pathway for scaling-up our understanding of what are both an impor-

tant nonmaterial facet of biodiversity and a key component of nature’s contribution to

people, which could help better anticipate consequences of species loss and assist in devel-

oping appropriate communication strategies.
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Introduction

Numerous nonmaterial facets of biodiversity comprise important components of nature’s con-

tribution to people (NCP) [1,2]. Among these, aesthetic value (or less formally called “beauty”)

is one of the most direct emotional links humans can experience with nature [3,4] and can

occur through direct (first-hand experience) but also indirect mechanisms (for example, social

media, television). It therefore engages a broader cross-section of the human population than

most other NCP, but remains relatively poorly studied. The implications of aesthetic value for

biodiversity conservation are likely to be substantial [5]. This lack of scientific attention is

probably, at least in part, associated with a difficulty in defining aesthetic value [6], and an

associated difficulty in consistently and quantitatively measuring the aesthetic value of biodi-

versity [5,7]. While also applicable to communities and ecosystems, the aesthetic value of indi-

vidual species is the simplest and most intuitive unit of measurement for understanding this

form of connection between humans and nature. Measuring species’ aesthetic value thus

remains an important step in better understanding and predicting the willingness and motiva-

tion of societies to protect species, and the reasons behind success or failure of conservation

efforts [8,9].

Biases in research and conservation efforts have been documented for many taxa. For

example, vertebrates are far better represented than invertebrates among articles published in

conservation journals [10,11] and in biodiversity datasets [12]. More than half of the billions

of occurrences reported in Global Biodiversity Information Facility (GBIF) are for birds, while

they represent only 1% of the total number of species in GBIF [12]. These biases are explained

by human preferences for particular taxa [13–15], with aesthetic value being an important

underlying factor in these preferences. For example, fishes and birds displaying bright colors

are considered more beautiful by the general public [16,17] and are more likely to be identified

and reported in databases of public observations. Such bias is not limited to data collected by

the public; Bellwood and colleagues [18] found evidence for potential subconscious bias

towards yellow fishes in the published literature on coral reefs.

Previous studies working on aesthetic value have used either expert knowledge or public

surveys based on photographic datasets [19]. Such studies are resource and time intensive, and

thus they have been limited to a small number of species. Alternative approaches tried to use

visual features (that is, pattern analysis, color distribution) in images known to positively influ-

ence aesthetic value [20]. These methods are promising but assume prior knowledge on which

features, among a myriad, contribute to the aesthetic value and on their relative importance

when it comes to compute a single index. Machine learning models, specifically convolutional

neural networks (CNNs), have recently become advanced enough to accurately identify pat-

terns (classification tasks) and predict continuous variables on images [21], opening up a new

avenue for investigating the visual perception of our environment, without needing to assume

or define important features a priori. CNN have already successfully assessed the beauty of out-

door places [22] and coralligenous reefs [23] but have not yet been applied to species level.

Here, we used traditional photographic surveys augmented by a CNN approach to evaluate

the aesthetic value of the world’s reef ray-finned fish fauna. Our photographic survey, includ-

ing 13,000 respondents from the broad public, generated a learning dataset for the CNN that

allowed estimation of the aesthetic value for 2,417 reef fish species with high predictive accu-

racy, based on 4,881 species images, and without a priori knowledge on the features which

contribute to fish beauty.

We chose to evaluate reef fishes because this group is emblematic of highly valued reef eco-

systems and is known for its exceptional morphological diversity [18], which is presumably

associated with a large range of aesthetic values. Reef fishes are also essential to the functioning
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of some of the most important and endangered ecosystems on Earth [24,25], and are of vital

importance for a large part of humanity, including the poorest [26,27], by supporting several

economic activities like subsistence fishing, recreational scuba diving, and aquarium trade

[24,26,28]. We used data from the widespread and standardized Reef Life Survey (RLS) pro-

gram [29] to objectively select from all of the world’s reef fish species to a more manageable

collection of those most commonly encountered by divers, providing us with a subset of 2,417

species. We then mapped fish aesthetic value across the Tree of Life, and considered ecological

traits, IUCN threat categories, and importance for fisheries to better understand the potential

implications of human aesthetic bias for reef fish conservation.

Results

Building the CNN training dataset

Our first task was to build a set of fish images for direct evaluation of aesthetic value by

humans that could be used for training a CNN (Fig 1A). We combined a set of 157 fish images

previously evaluated [16] with a new set of 345 images independently evaluated in an online

survey (see Methods and Text A and B in S1 File). The online survey presented images in pairs

Fig 1. Evaluation and prediction of fish aesthetic values. (a) Workflow of the online survey and deep learning prediction of aesthetic

values. (1) Pairs of images were presented to the public during the online survey and scored using the Elo algorithm (see Methods). Left

Parma bicolor and right Abudefduf luridus. (2) Once the 345 new images were evaluated online, the values of the 157 images previously

evaluated [16] were corrected using the 21 images shared between the 2 surveys. (3) The resulting 481 images with evaluated aesthetic

values were used to train a ResNet50 algorithm (see Text E and Fig L in S1 File). Illustration inspired from the PlotNeuralNet [31]. (b)

Left: The r2 of the linear relationship between the predicted values averaged across the 5 validation sets and the evaluated values is 0.79 ±

SD 0.04 (the color of points indicates the 5 sets used to perform the cross validation). This algorithm was used to predict the aesthetic

values of the 4,400 unevaluated images of our dataset. Right: Distribution of the 481 evaluated values in light blue and of the 4,400

predicted aesthetic values in dark blue. The dots at the bottom of the plot indicate the predicted aesthetic values of the images shown in

panel (c). Data and code required to generate this Figure can be found in https://github.com/nmouquet/RLS_AESTHE. (c) Examples of

fishes representative of the range of predicted aesthetic values. Decreasing aesthetic value from left to right and top to bottom:

Holacanthus ciliaris, Aracana aurita, Amphiprion ephippium, Ctenochaetus marginatus, Scarus spinus, Amphiprion bicinctus,
Epinephelides armatus, Fusigobius signipinnis, Diplodus annularis, Odontoscion dentex, Nemadactylus bergi, Mendosoma lineatum. See

S1 Data for image copyright.

https://doi.org/10.1371/journal.pbio.3001640.g001
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to the public (hereafter called “respondents”) and asked to choose the image they found the

most beautiful. For the analyses, we kept 13,000 respondents without self-reported color vision

issues (see Text C in S1 File). We then estimated each fish aesthetic value through Elo scores

computation, a rating system based on pairwise comparison (see Methods) [30].

We tested the potential effect of respondents’ sociocultural background and geographic ori-

gins on their selections (see Text C in S1 File) using a backward sequential selection procedure

with a generalized linear model (see Methods). We found no significant effect of any of the

considered variables on selections; we thus computed the Elo scores by pooling across the

13,000 respondents. Among the 345 images evaluated in the new survey, 21 were deliberate

duplications from a previous survey [16], included to test for consistency with previous results

and increase our learning dataset. For these 21 images, we found a strong correlation between

the 2 evaluations (r2 = 0.89, p-value< 0.001, Text D in S1 File) and used this relationship to

correct the scores of the 157 images previously evaluated [16] and pool the 2 datasets. This

resulted in a combined dataset of 481 images with empirically evaluated aesthetic scores rang-

ing from 1,085 to 1,910, which was used as the learning dataset for a CNN (Fig 1A).

Predicting the aesthetic values with the CNN

We trained a CNN to estimate the aesthetic value of new fish images and eventually predict

values for the remaining 4,400 images in our collection (Fig 1A). We used a ResNet50 model

pretrained on ImageNet [32], a popular CNN used for image classification. We replaced the

last classification layer by a regression layer, and performed a 5-fold cross-validation to fine-

tune this layer and the last convolutional block (see Methods and Text E in S1 File). The r2 of

the linear regression between the values predicted by the CNN and the evaluated values from

the validation set (averaged over the 5 folds of the cross-validation) was 0.79 ± SD 0.04 (Fig

1B). Applying the trained model to the 4,400 unevaluated fish images, the predicted values ran-

ged from 1,153 to 1,980 (Fig 1B and 1C). The remaining analyses of our study were based on

the values of 4,881 images: the 481 evaluated during the online surveys and the 4,400 with pre-

dictions from the CNN. We used several images per species to account for intraspecific mor-

phological differences and used the highest predicted value for each species (S2 Data), thereby

assuming that humans tend to focus on the most attractive representation of a species (see

Discussion).

Determinants of aesthetic value

For each of the 4,881 images in our collection, we extracted 17 image features potentially

linked to the aesthetic value, regrouped into 4 classes: (a) the color heterogeneity; (b) the

geometry of color patterns; (c) the perceptual lightness and saturation; and (d) the shape of the

fish outline (see Methods and Text A in S1 File). After eliminating nonsignificant features

using a backward selection procedure, we ended up with 9 features that explained a substantial

amount of variation in aesthetic value with a linear model (r2 = 0.64, p-value < 0.001, Fig 2A,

Text F in S1 File). The most significant features were color heterogeneity, color saturation, and

elongatedness (see Fig 2A; Text A, F, and Fig D in S1 File). The projection of fish aesthetic val-

ues on the 2 first axes of the principal component analysis (PCA) performed on the selected

features (Fig 2B) confirms that fishes with the highest aesthetic values are those with high color

heterogeneity and saturation as well as more circular body shapes (low elongatedness). Fishes

with a high standard deviation in perceptual lightness and presence of several repeated pat-

terns also have high aesthetic values. At the opposite of the gradient, drab fishes with elongated

body shape and no clearly delineated color patterns have low aesthetic values (Fig 2B).
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Phylogenetic signal in aesthetic value

We then explored the link between fish aesthetic value and evolutionary history [33–35]. The

mean age (over 100 trees) of species ranged from 0.41 to 165.53 My. We found that the youn-

gest species have the highest aesthetic value (Fig 3A) and a significant negative relationship

between the aesthetic value and the mean Evolutionary Distinctiveness (Fig N in S1 File): spe-

cies with long, isolated branches in the phylogenetic tree tend to have lower aesthetic value

than less phylogenetically isolated species. These results identify members of the most recently

diversified families as aesthetic hotspots in the tree (Fig 4, Text G and Fig O in S1 File). For

example, the families Pomacanthidae and Acanthuridae, respectively, have a mean aesthetic

value of 1,719 ± SD 176 (n = 42 species) and 1,590 ± SD 150 (n = 67), whereas the oldest fami-

lies Scombridae and Carangidae have respective mean aesthetic values of 1,228 ± SD 54,

(n = 18) and 1,278 ± SD 86 (n = 49). Pagel’s λ estimated on the entire tree confirms this strong

phylogenetic signal (λ = 0.74 ± SD 0.01, p-value < 0.001). At a finer phylogenetic resolution,

we also found significant phylogenetic signals within 9 families: Acanthuridae, Balistidae, Car-
angidae, Chaetodontidae, Haemulidae, Holocentridae, Pomacanthidae, Sciaenidae, and Scor-
paenidae (λ� 0.50, p-values < 0.05, Text G and Table B in S1 File), indicating that the

clustering of aesthetic value also operates at the genus level within some families.

Fig 2. Image features analysis. (a) Regression coefficients (with standard errors) from the final model between the aesthetic value and the 9

significant image features (see Text A in S1 File for a complete description of the image features). The variables have been scaled to visualize

how the magnitude of the effects differs between them. Most important variables were: color heterogeneity, color saturation, standard

deviation in lightness (SD lightness), pattern repetition, and body elongatedness. (b) Principal Component Analysis (PC1 and PC2)

performed with the 9 significant images features (see Fig 2A, Text A, F in S1 File for a description of the image features). Points (fishes) are

colored by their aesthetic values, and image feature vectors are projected on the 2 axes. Examples of fishes (chosen on the perimeter of the

distribution) are provided for illustration. Clockwise order: Calloplesiops altivelis, Epinephelus ongus, Kyphosus vaigiensis, Epinephelus
costae, Jenkinsia lamprotaenia, Phyllogobius platycephalops, Belone belone, Ctenogobiops crocineus, Suezichthys devisi, Opistognathus
aurifrons, Pseudanthias ignitus, Pomacentrus auriventris, Mecaenichthys immaculatus, Pomacanthus navarchus, Aracana aurita,

Pomacanthus sexstriatus. See S1 Data for image copyright. Data and code required to generate this Figure can be found in https://github.

com/nmouquet/RLS_AESTHE.

https://doi.org/10.1371/journal.pbio.3001640.g002
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Aesthetics value across ecological trait space

To characterize ecological originality of fish species (hereafter called functional distinc-

tiveness), we used 8 ecological traits that describe body size, diet, behavior, and habitat use

[37]. We computed Gower’s pairwise distances between species to estimate their functional

distinctiveness [38], and found that the most unique species, with respect to their trait combi-

nation, have lower aesthetic values than more ecologically redundant species (Fig 3B). A closer

look at the distribution of aesthetic values within each trait category (Text H and Fig P in S1

File) shows that most attractive fishes are associated with hard substrates (as opposed to sandy

patches within or along the edges of the reef), are demersal (hover above but near the bottom),

active during the day, feed on corals or by excavating the reef surface, of intermediate body

size, and prefer warmer waters. The least attractive fishes tend to be pelagic, nocturnal, eat

other fishes or plankton, have either small or large body size, and prefer cooler waters.

Conservation status and aesthetic value

We categorized fish IUCN status into 3 groups: 190 species in our dataset are Threatened (TH:

Critically Endangered, Endangered, or Vulnerable), 1,602 species are Least Concern (LC: Least

Concern or Near Threatened), and 556 are Not Evaluated (NE). We found significant differ-

ences between the mean aesthetic value of species in these 3 groups (1-way ANOVA, p-

value < 0.001). Tukey’s post hoc tests show that Threatened fishes have the lowest aesthetic

values on average, and Least Concern fishes the highest (Fig 5A), although variability within

these groups was high. Further, we grouped the Least Concern and Threatened fishes into an

Evaluated category and found that they had a higher mean aesthetic value than the Not Evalu-

ated category (1-way ANOVA, p-value < 0.001).

We also compared species aesthetic value with their importance to fisheries. According to

FishBase, 594 of our species are classified as “Non commercial,” 83 as “Subsistence fisheries,”

368 as “Commercial,” and 43 as “Highly commercial.” The remaining 1,329 species are “Data

Fig 3. Phylogenetic history and ecological originality. (a) Relationship between the aesthetic value and the age of the species

(log transformed) in millions of years (averaged over 100 trees) without (plain line) and after (dashed line) accounting for

phylogenetic relatedness. Both models show significant negative slopes (considering phylogenetic relatedness: slope = −78.4,

p-value< 0.001; not considering phylogenetic relatedness: slope = −14.1 ± SD 1.7, p-value< 0.005, over the 100 random

trees). (b) Relationship between the aesthetic value and the functional distinctiveness of species without (plain line) and after

(dashed line) accounting for phylogenetic relatedness. Both models show significant negative slopes (considering

phylogenetic relatedness: slope = −1,154.2, p-value< 0.001; not considering phylogenetic relatedness: slope = −383.3 ± SD

26.5, p-value< 0.001, over the 100 random trees). On both panels, species’ Evolutionary Distinctiveness (averaged over 100

trees and log transformed) have been used to color the points from low (dark red) to high (dark blue) values. Data and code

required to generate this Figure can be found in https://github.com/nmouquet/RLS_AESTHE.

https://doi.org/10.1371/journal.pbio.3001640.g003
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deficient.” One-way ANOVA (p-values < 0.001) and Tukey’s post hoc tests (all p-

values< 0.002) showed that species for which no data is available, species of no fishery interest,

and species important for subsistence fisheries have similar aesthetic value. The differences

between the mean aesthetic value of the other categories are statistically significant, with the

Highly commercial species having the lower aesthetic values (Fig 5B).

Discussion

Our study provides a global picture of variation in aesthetic value, an important but under-

studied facet of biodiversity, of reef fishes. It reveals some predictable differences among spe-

cies and potential mismatches with conservation priorities. The aesthetic values of reef fishes

are highly heterogeneous, with the most beautiful fishes being tightly packed into small regions

of both the phylogenetic tree and the ecological trait space of the world’s reef fish fauna. In

contrast, the most ecologically and evolutionary distinct species and those recognized as

threatened tend to be considered less attractive.

The set of 481 images evaluated through our online survey allowed us to train a deep learn-

ing algorithm to predict the aesthetic value of 4,400 fish images without having to arbitrarily

predefine any visual features. The predictive power of our algorithm (r2 = 0.79) was high

Fig 4. Aesthetic values across the tree of life. Phylogenetic tree of the 2,417 fishes. Aesthetic values are mapped over the entire phylogeny

with a color gradient obtained by estimating states at internal nodes with maximum likelihood [36]. For illustration, we have highlighted 20

families with contrasted aesthetic values using gray arcs and show examples of fishes for each family. Clockwise order: Cantherhines
macrocerus, Pseudobalistes naufragium, Anampses femininus, Scarus spinus, Bodianus unimaculatus, Myripristis jacobus, Gymnothorax
annasona, Meiacanthus atrodorsalis, Embiotoca jacksoni, Amphiprion bicinctus, Abudefduf bengalensis, Chromis alpha, Carangoides
chrysophrys, Istigobius decoratus, Apogon pacificus, Sarda australis, Pterois miles, Acanthistius ocellatus, Amblycirrhitus pinos, Parequula
melbournensis, Pomacanthus navarchus, Chaetodon flavirostris, Diplodus puntazzo, Acanthurus tristis. See S1 Data for image copyright. Data

and code required to generate the phylogenetic tree can be found in https://github.com/nmouquet/RLS_AESTHE.

https://doi.org/10.1371/journal.pbio.3001640.g004
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despite the relatively small size of our learning dataset and the cross-validation. This is largely

due to the transfer learning procedure that takes advantage of pretrained CNNs and where

only the weights of the last few layers needed to be specifically tuned to the new task. The high

Fig 5. Fish aesthetic value and conservation status. AU : AbbreviationlisthasbeencompiledforthoseusedinFig5:Pleaseverifythatallentriesarecorrect:(a) Violin plot of the aesthetic value of reef fishes for three

groups of conservation status: TH, NE, and LC. Letters indicate significant differences between the groups (Tukey p-

values are respectively p< 0.01 between TH and NE, p< 0.001 between LC and TH, and p< 0.001 between LC and

NE). (b) Violin plot of the aesthetic value of reef fishes for the 5 groups of fishery importance: “Data deficient” = no

data available; “Non commercial” = no interest for fisheries or potential interest or minor interest; “Subsistence

fisheries” = importance for subsistence fisheries; “Commercial” = commercial importance for fisheries; “Highly

commercial” = high commercial importance for fisheries. Letters indicate significant differences between the groups

(all Tukey p-values are< 0.002). Data and code required to generate this Figure can be found in https://github.com/

nmouquet/RLS_AESTHE. LC, Least Concern; NE, Not Evaluated; TH, Threatened.

https://doi.org/10.1371/journal.pbio.3001640.g005
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predictive power can also without doubt be explained by our image preprocessing, including

background removal, and position and size standardization. This preprocessing required a

considerable amount of work but could be automated in the future by a computerized segmen-

tation and alignment of fishes [39], allowing for a broader use of images and/or videos from

larger collections, including from the internet or social media. Our study highlights multiple

mechanisms by which recent advances in computer science and artificial intelligence can be

used by ecological studies to improve sample sizes. Beyond the scope of our study, our deep

learning algorithm could be easily adapted to fishes from other ecosystems such as those from

rivers and lakes, and even to other taxa such as birds, mammals, reptiles, or amphibians, for

which millions of images are now available online. Our CNN could provide a valuable tool for

studying these other taxa in 2 ways: as a pretrained network to fine-tune through transfer

learning or without retraining to investigate the generalization of human aesthetic judgments

from one animal taxon to others.

As we did not need to predefine any visual features for the automation of image scoring, we

could then use post-analysis of image features to characterize the visual components contribut-

ing most to the aesthetic value of reef fishes. Our linear model combining 9 features potentially

linked to aesthetic value (see Text A and F in S1 File) explained a substantial amount of the

variation in aesthetic value (r2 = 0.64, Fig 2A). The features that explained the highest aesthetic

values were heterogeneity in color and lightness, saturation of colors, the presence of well

delineated and repeated patterns, and the circularity (versus elongatedness) of the body shape.

These results can be interpreted through the lens of neuro-aesthetics, which relates aesthetic

properties to the activation of dopamine neurotransmitter systems within the human brain

[40], and to the processing fluency theory, which hypothesizes that aesthetic value is deter-

mined by the dynamics of information processing in the brain, and that stimuli that are easy to

process are judged beautiful [41]. For example, components that can easily be separated from

the background, or visual features that can obviously be grouped into recognizable objects,

both trigger pleasure and tend to be judged beautiful [42]. Some of the features explaining aes-

thetic value in reef fishes could similarly be explained by fluency. For example, high color het-

erogeneity and well-delineated patches of contrasted lightness, as observed in angelfishes

(Pomacanthidae) and butterflyfishes (Chaetodontidae), increase fluency by facilitating detec-

tion and recognizability [43]. The elevated aesthetic value of fishes with circular body shape

echoes a general preference of humans for objects with curved outlines [44,45], which can also

be explained by fluency given that curved lines are more predictable and thus more easily

encoded by the visual system than angular lines [41]. Overall, our analysis suggests that pre-

dictable visual features explain human preferences for fishes, creating a strong bottleneck in

the diversity of species that are likely to be considered as beautiful by the general public.

This aesthetic bias toward particular color and morphological features leads to strong clus-

tering of aesthetic value across the Tree of Life and ecological trait space. Some families show

overall high aesthetic value, such as butterflyfishes (Chaetodontidae), while some others show

overall low aesthetic value, such as jacks and pompanos (Carangidae). This strong phyloge-

netic signal is probably explained by the relatively high ecological niche conservatism within

fish families. For example, most Chaetodontidae are found among living corals, and most Car-
angidae live in open water or above the reef. The ecological niche plays a prominent role in

determining color patterns, through its effect on social behavior, feeding activities, and most

notably camouflage [46]. We thus suggest that low trophic level species living on rocks and

coral have higher aesthetic values than higher trophic level species, such as piscivores, because

of their need to blend in with more color-rich habitats (to our trichromatic color vision and

under white light) for camouflage purposes [47]. These rock and coral habitats are also visually

complex, being highly fractal [48]. By adapting their visual patterns to these structured
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habitats, coral reef fishes would thus “benefit” from a preference bias that we humans have for

fractal patterns [49]. On the other hand, pelagic fishes that have to hide within a poorly con-

trasted and homogeneous habitat would be considered less attractive [50].

The ecological niche could also influence our perception of fish beauty through its effect on

locomotion. Most pelagic fishes are good swimmers with a fusiform body shape that reduces

frictional forces, but also increases the angularity of body outline, which appears to be associ-

ated with reduced aesthetic value. Conversely, some demersal species that rely on pectoral fins

to swim [51] have a circular body shape, associated with higher aesthetic value. We also found

that younger species (in evolutionary history) and more diversified clades show higher aes-

thetic value (Fig 3A), which could be explained by the relatively “recent” diversification of par-

ticular families associated with the exploitation of coral reef niches. For example, among the

families with high aesthetic values, the angelfishes (Pomacanthidae) appeared during the

Eocene, with all genera in place by the mid-Miocene [52]. Likewise, the butterflyfishes (Chae-
todontidae) moved to coral reefs in the Miocene, with subsequent cladogenesis [53], the origin

of the triggerfishes (Balistidae) is dated to late Miocene [54], and the boxfishes (Aracanidae)
appeared during the Pliocene [55].

Together, these results highlight how our aesthetic judgment, which is linked to the ability

of the human brain to process visual information, could generate strong bias in our emotional

engagement with reef fishes. This bias of perception was suggested by a previous study per-

formed on 116 coral reef fishes, which found that the least attractive fishes have a higher func-

tional richness than the most attractive ones [16]. Our study extends these results to 2,417 reef

fish species and shows that the distribution of aesthetic values is strongly skewed along both

ecological and evolutionary dimensions. The fact that human visual aesthetic preferences are

predictable and narrower than the diversity of reef fish life forms is not surprising in itself, but

has important implications as our emotional perception of nature is one of the major drivers

of our interest in it. The aesthetic bias could influence decisions in reef fish research and con-

servation. For example, Bellwood and colleagues [18] have previously shown that scientific

published literature is biased towards yellow fishes which, given our results, are likely to be

among the most attractive ones. Likewise, in mammals, the most beautiful species are subject

to more research effort than less attractive species [13]. Our study extends these results to reef

fish conservation as we found a mismatch between the aesthetic value of reef fish species and

their conservation status. Less attractive fishes are also less well represented in assessments for

the IUCN Red List, and are thus paying what could be considered as a form of “aesthetic-

related debt” in a time where the amount of effort devoted to conservation is limited. This debt

is a major concern given that, as shown here, the most threatened species (as evaluated for the

IUCN Red List) are those with the lowest aesthetic value (Fig 5A). We also found that the less

attractive fishes are also more at risk of overexploitation by fisheries (Fig 5B). Beyond species,

this debt could have consequences at the whole reef ecosystem level, as we found that the less

attractive species have the highest ecological distinctiveness, and thus provide the highest

diversity of ecological functions. We thus suggest that the elevated extinction risk of the less

attractive fish species might also have disproportionate and overlooked effects on reef ecosys-

tem functioning.

Our approach has some limitations and considerations that may affect the accuracy of indi-

vidual values, including the use of maximum predicted aesthetic values for each species and

the pretreatment of images shown to the human respondents. Some reef fishes show extreme

polymorphism in color or body shape (for example, male versus female and adults versus juve-

niles), but the high number of species included in our study prevented the gathering of an

exhaustive collection of all the existing morphs. Because we aimed at providing the most gen-

eralizable results to the world’s reef fishes, we deliberately chose to maximize the number of
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species rather than finely characterizing intraspecific variation. When several images were esti-

mated for a species, we kept only the maximum aesthetic value to characterize this species.

This was motivated by our desire to account for a possible “halo effect,” a cognitive tendency

of people to generalize the evaluation of the most valued item to other, less valued item of the

same category [56]. Nevertheless, reproducing the analysis using averaged, rather than maxi-

mum, aesthetic values by species yielded similar results (Text I in S1 File). We further acknowl-

edge that background composition in images could also be important, as it has been shown to

influence the perception of beauty in psychological tests [57]. Yet, inclusion of the background

would have made it uncertain how much the values related to the fish versus the background.

To maximize comparability, we also scaled all fishes to the same size (500 × 500 pixel squares),

but if represented proportionally to real size, bigger species may have had an “aesthetic

bonus.” People tend to prefer bigger individuals, independently of their intrinsic aesthetic

value [58], as it has been shown for birds [59]. This size issue has also motivated our decision

to focus only on ray-finned fishes and exclude bigger fishes such as sharks, for which the size

aesthetic bonus and charismatic nature make them attractive to people, even though their

body shape and coloration would suggest lower aesthetic value. Finally, we removed the Pleur-

onectiformes (14 species) and Syngnathiformes (31 species) to help standardize the morpholo-

gies of fishes within our dataset. Within the Syngnathiformes, seahorses might be considered

as highly attractive, yet possess distinct functional traits; a combination which would contra-

dict one of our main findings. They represent, however, only 14 species in the RLS dataset of

most common reef fishes encountered by survey divers used for this analysis, which would not

likely change the overall trends or tendencies we report. On the other hand, the Pleuronecti-

formes would be more likely to be scored as less attractive, and hold original ecological traits; a

combination which would have reinforced our results. All these limitations must be kept in

mind when interpreting our results, but we consider them unlikely to affect the generality of

our study’s conclusions for conservation and ecology. We rather see them as future research

opportunities and believe that the extent of our study (2,417 species), the large taxonomic cov-

erage (139 families of reef fishes), and the range of predicted aesthetic value (Fig 1B) provide

solid generality and robustness to our main findings.

We also anticipated that the results of our predictive model could be biased by respondents

individual factors, given that aesthetic preferences can vary with age, gender [60], social group

[61], or culture [62]. Nevertheless, we found no such effect when analyzing the robustness of

the match outcomes (probability for an image to win a match) to geographic or sociocultural

backgrounds. However, the absence of sociocultural effects should be interpreted with caution

because of the relatively limited diversity of sociocultural backgrounds among our respondents

and geographical biases. For example, 62.4% of the respondents were French, 84.9% had a

Bachelor’s degree or a higher diploma, and 52% had some experience scuba diving (Text C in

S1 File). Despite these biases, our results highlight some degree of universality in the aesthetic

values of fishes that probably outweigh sociocultural differences. This generality may be

explained by our protocol for evaluating the aesthetic value. By presenting images by pairs and

asking people to simply choose the image they found the most beautiful, we ought to force peo-

ple to make rapid choices based on a bottom-up, stimulus-driven processing of visual informa-

tion rather than a cognitive-driven evaluation based on previous knowledge [63]. Although we

believe our general conclusions should hold, we would presumably have found differences in

individual scores had we compared respondents spanning a much larger breadth of cultural,

social, or demographic backgrounds, or asked questions that would have triggered more cog-

nitive processing. Addressing this would require a more balanced pool of respondents and

opens interesting perspectives for future research in the framework proposed by “personalized

ecology” [64].
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Overall, our results show that a nonmaterial facet of NCP, aesthetic value, mismatches with

the material and regulating NCP facets provided by fishes. This mismatch strengthens the case

for recognizing multiple aspects of NCP, but paradoxically, it also implies the potential for an

aesthetic driven debt if the less attractive fishes are more exploited and receive less conserva-

tion/research efforts. This should motivate strengthened research efforts in evaluating the aes-

thetic value of biodiversity more generally, and the extent to which perceptual and emotional

biases translate into biases in research, awareness, and conservation. Capitalizing on the capac-

ity of artificial intelligence to work on extensive datasets, future research should also be able to

expand our aesthetic valuation at higher levels of biological organization, such as assemblages

[65] and whole ecosystems. Investigating the common patterns in aesthetic values across taxa

such as birds, mammals, reptiles, or amphibians would also be an exciting research avenue,

and could serve to fuel research and conservation programs. Our study further revealed a high

consensus across participants in the aesthetic evaluation, although we acknowledge this could

change through time, education, and with connectedness to nature [5,66] (even if not captured

in our study through an influence of the sociocultural background of participants). We do not

believe that identified aesthetic biases will always turn into debts. The first step in minimizing

the impacts of these biases for conservation success will be better communication to the public,

policy-makers, conservation NGOs, and researchers on the links between the nonmaterial

components of nature’s contribution to people [1] (here aesthetic value), the ecology of species

and the roles they perform in ecosystems [5].

Methods

Most analyses were carried out using R v.3.6.0 (specific functions within specific packages are

indicated in italic). All relevant code and data are available from the associated GitHub reposi-

tory (see sections Data and Code availability).

List of species

Fishes are the most diverse class of vertebrates, with more than 30,000 species and a huge

diversity of shapes, sizes, and colors [67]. We sought to sample this diversity in an ecologically

and socially meaningful subset, focusing on reef fishes. We used the RLS database [29] to iden-

tify a subset that could be representative of those species likely to be directly encountered and

seen by people, but still spanning all major ocean basins and reef areas. The RLS database only

includes records from standardized, quantitative visual surveys by scuba divers on rocky and

coral reef habitats in shallow waters (mostly 0 to 20 m depth). It is the largest single-method

dataset available for reef fishes (134,759 abundance records from 1,879 sites, representing

2,397 species) and has an associated trait database [37]. We decided to focus only on ray-

finned fishes (Actinopterygii), and excluded from this clade the orders Pleuronectiformes (14

species) and Syngnathiformes (31 species) to remove the very unusual morphologies that

would have been harder to present in the standardized questionnaire and to characterize fur-

ther in our image features analysis (see below). As one of our foci was on IUCN status, we sup-

plemented the remaining 2,280 RLS fish species list with 137 reef-associated species identified

from FishBase that are classified as threatened (critically endangered, endangered, vulnerable),

but not observed in the RLS database, so that our final list covered most of the threatened

fishes listed on the IUCN red list that are also considered “reef-associated” (according to Fish-

Base). We ended up with a list of 2,417 reef fish species belonging to 139 families (S2 Data).

Taxonomic names were checked using the World Register of Marine Species database

WoRMS [68,69].
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Photographic material

Images were collected on the internet, focusing first on particular sources considered as reli-

able for species identity. Most of the material (3,198 images) was collected from RLS “Reef Spe-

cies of the World” web pages (https://reeflifesurvey.com/species/search.php), FishBase

(https://www.fishbase.se/), EOL (https://eol.org), and Fishes of Australia (https://

fishesofaustralia.net.au/). We also collected material from Google Images (1,683 images; see

Text B in S1 File and S4 Data), but only when the species could be unambiguously identified.

When available, several images were collected for species with color polymorphism, or with

morphological differences between males and females, or between adults and juveniles. The

final dataset included 4,881 images. Note that for 8 species we could not find images and we

removed them from our analysis (see S2 Data). For each image, we removed the natural back-

ground using Clipping Magic (https://fr.clippingmagic.com/) and standardized the position of

the fish with photoshop. Correction of color saturation (in the blue and the green essentially)

and luminosity was also performed when needed using Photoshop. Final images represent a

single individual, horizontally aligned (mouth on the left, tail on the right), and displayed

against a white background. All images were resized to 500 × 500 pixels at 96 dpi (Fig 1A).

Direct evaluation of fish aesthetic values

Our first objective was to build the learning dataset for our deep learning algorithm. That is, a

dataset of images that are representative of the range in different visual features found among

the 4,881 images of our whole collection, and for which individual aesthetic values would be

evaluated by the public. To ensure the robustness of the method, the surveyed photographic

material must be representative of the taxa considered and evaluated by a sufficiently large

panel of humans with contrasted sociocultural background, which can be achieved by using

online surveys [14,16].

Our learning dataset was obtained from combining results from a previous study where we

empirically evaluated the aesthetic values of 157 images of reef fish species [16] and a new

online evaluation of 324 images. The 324 images were subsampled from our 4,881 images col-

lection to maximize variation within visual features. For doing so, we performed a PCA of the

visual features measured on all of the 4,881 images (see below and Text A and B in S1 File).

The 5 first dimensions of the PCA (representing 77% of the total explained variance) were

used to construct a convex 5 dimensional volume. The 162 images were then randomly drawn

near the vertices of this volume, and the other 162 images were randomly drawn within the

remaining volume. We added 21 further images from the 157 images previously evaluated [16]

so that we could quantify any differences between the 2 surveys (see below) and merge the 2

datasets. The robustness of our procedure can be visualized on Fig E in S1 File (see also Text B

in S1 File), which shows the high overlap between the 2 ellipses (on the first 2 axes of the PCA)

representing the 99% confidence intervals of both the 345 selected images and the whole

image set (see Fig E in S1 File).

The public online survey included 2 sections: (a) the aesthetic questionnaire itself during

which each participant (hereafter called “respondent”) had to choose the image they found the

most beautiful for 30 pairs (hereafter called “matches”) randomly sampled without replace-

ment among the 345 images; and (b) a questionnaire (Text C in S1 File) to gather information

on the sociocultural background of respondents (gender, age, education, experience with div-

ing and spearfishing, fishkeeping, place of living, distance from the sea, exposure to natural

space, and knowledge about coral reef fishes). The survey was anonymous and available in

French and English to the public on a dedicated website (https://www.biodiful.org/) between

February and June 2019. The website contained an introduction that stated the objective of the
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research and an ethical statement to guarantee anonymity to the respondents (see Text C in S1

File). The survey was distributed through massive emailing to authors’ contacts, various mail-

ing lists in France and abroad (scientific societies, universities, aquariums, NGOs, etc.) and

social media (Facebook and Twitter) asking the respondents to share the survey to their fami-

lies and friends. The answers of 13,000 respondents without color perception issues were

pooled and we computed the aesthetic values of the 345 images with the Elo algorithm [30]

using the EloChoice v0.29.4 R package [70] with 1,000 bootstrapings (Text D in S1 File).

Finally, we computed linear regression between the aesthetic values of the 21 images com-

mon to the previous [16] and the new online surveys, and used the intercept and slope of this

regression to merge the 2 datasets (Text D in S1 File). The final set used to train the deep learn-

ing algorithm thus included 481 images with continuous aesthetic values.

Predictive model of fish aesthetic values

To predict the aesthetic value of the whole set of images of our collection, we used a deep learn-

ing algorithm trained with the 481 evaluated images. Deep learning algorithms are most popu-

lar for their application to identification or classification tasks, but they are also suited for

predicting continuous variables [71]. For computer vision tasks like the regression between

the information of an image and a continuous variable, CNNs are considered to perform best

[71]. We applied a transfer learning procedure by fine-tuning a ResNet model, one of the most

popular architectures in artificial intelligence [72], pretrained on ImageNet [32]. Preliminary

tests showed that the commonly used image size of 224 × 224 pixels provided the best results

(Text E in S1 File).

We tested 2 different architectures, ResNet18 and ResNet50, which differ by the number of

layers and thus the number of learnable parameters. After the hyperparameter configuration

was optimized for both architectures, ResNet50 performed best and was thus retained as the

predictive model. We performed 5-folds cross-validation such that the learning dataset of 481

images was divided into 5 parts of similar size with all the images of a given species in the same

part. ResNet50 was thus trained on 4 parts (training set) and evaluated on the fifth one (evalua-

tion set), repeating the procedure 5 times (each time changing the evaluation set). To limit the

risk of overfitting, the training set was artificially augmented at each iteration by applying ran-

dom rotation (−5; 5 degrees). We used the r2 of the linear regression between the values pre-

dicted by the model and the evaluated values of the learning set to estimate the accuracy of the

model. Further details on the parameters of the model and the learning procedure can be

found in Text E in S1 File. Once the accuracy of the model on the 5 folds of the cross-validation

was satisfying, we trained the model one last time on the 481 images and used the weights of

this model to predict the aesthetic values of the remaining 4,400 unevaluated images. Data aug-

mentation, fine-tuning of the models, and prediction of the aesthetic values were carried out

using Python 3.7, Pytorch 1.4.0, and torchvision 0.5.0.

As some species with intraspecific morphological differences were represented by several

images in our collection (see section “Photographic material”), we decided to characterize spe-

cies level aesthetic with the highest aesthetic values obtained among images of the same

species.

Visual features analysis

The choice of the visual features analyzed in the postprediction analysis was based on literature

review of previous works which studied the aesthetic value of biodiversity (Text A in S1 File).

We chose 4 different classes of features: (a) the color heterogeneity; (b) the geometry of color

patterns; (c) the perceptual lightness and saturation; and (d) the shape of the fish body outline.
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The heterogeneity of colors and the geometry of color patterns were measured after using a K-

means clustering algorithm to separate colors in the CIELAB color space. The lightness, that

is, how close to white (high values) or black (low values) a color is, and color saturation were

measured using the HSV color space. Features describing the fish shape were computed using

morphometric analysis relying on elliptical Fourier transformation. Altogether, we obtained

17 different visual features (see Text A in S1 File for a complete description). We estimated the

individual contribution of each visual feature to the aesthetic value obtained for the 4,881

images using a multiple regression approach (see section Statistical analysis). A PCA was per-

formed with the scaled selected features (dudi.pca function in the ape v.1.7–16 R package), and

the image coordinates (colored by their aesthetic values) were projected on the first 2 axes of

the PCA.

Evolutionary history

We extracted the taxonomy of the 2,417 species from the WoRMS database via the taxize
v0.9.91.91 R package [73]. We then used the fishtree v0.3.2 R package [33, 74] to compute the

phylogenetic tree. This tree includes grafted species for which the genetic information is not

directly available, but which are known from other published phylogenies or inferred from tax-

onomic positions. Hence, more than one branch descends from a single node in some parts of

the tree, whereas a phylogenetic tree should have dichotomous divisions from common ances-

tors. To bypass these polytomies, 100 realizations of a stochastic polytomy resolver placing

missing speciation events were used [75]. We extracted the age of the species as the length of

the branches from the first node of the tree to the species’ leaf. We tested for a phylogenetic sig-

nal of the aesthetic values with Pagel’s λ coefficient [35] (see section Statistical analysis).

Finally, we computed the Evolutionary Distinctiveness (ED; which reflects the phylogenetic

isolation of a given species [34] of each species using the function evol.distinct from the picante
v1.8.1 R package [76]. ED is high when the species is phylogenetically isolated, that is, it has a

long unshared branch in the phylogenetic tree. The 3 indices, species age, Pagel’s λ, and ED

were computed on the 100 randomly resolved trees and averaged.

Ecological traits

We used the RLS trait database [37] that covers body size (maximum length), feeding ecology

(trophic group, trophic breadth), behavior (water column position, diel activity pattern), and

habitat use (preferred temperature, habitat complexity). See Text H in S1 File for details. A

total of 129 species had more than 50% missing trait values, while 107 species had less than

50% missing traits, and we used the R package missForest v1.4 [77] to impute them (Text H in

S1 File) to complete all ecological traits for 2,288 species (94.7% of the dataset). To characterize

species ecological originality, we computed functional distinctiveness (Di), which measures the

average functional distance of a focal species to the other species [38]. We first computed a

matrix of Gower distances of normalized species ecological traits using the function dist.ktab
of the ade4 v1.7–13 R package [78] and then used the funrar v1.4.1 R package [79] to compute

functional distinctiveness. Aesthetic values were also compared among categories or along val-

ues of ecological continuous traits (Text H in S1 File).

Conservation status and importance for fisheries

We used the rfishbase v3.1.1 R package [80] to obtain the updated IUCN status of the 2,417

fishes [81] and their importance for fisheries. To simplify interpretation, we grouped species

into 3 categories according to their IUCN status: “Threatened” (TH) refers to Critically Endan-

gered, Endangered, and Vulnerable species; “Least Concern” (LC) refers to Least Concern and
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Near Threatened species and “Not Evaluated” (NE) refers to Not Evaluated species. The 69

species had Data Deficient status and were removed from the analysis. We also grouped spe-

cies into 5 categories according to their importance for fisheries: “Highly commercial,” “Com-

mercial,” “Subsistence fisheries,” “Non commercial,” and “Data deficient.” The “Non

commercial” category refers to species indicated as “Minor commercial,” “Of no interest,” or

“Of potential interest.”

Statistical analysis

To test for the robustness of the matches’ outcome (probability for an image to win or not a

match) to sociocultural background, we computed a generalized linear mixed model (GLMM)

with a binomial error structure (using the glmer function from the lme4 v 1.1–26 R package) in

which the image was considered as a random effect variable to order the sociocultural variables

according to their individual effect on the response variable (see also Text C in S1 File).

To estimate the individual contribution of each visual feature to the aesthetic value obtained

for the 4,881 images, we used a multiple regression approach (see Text F in S1 File for a com-

plete description). We first computed a correlation matrix between all features (using Pearson

correlation coefficients): when 2 or more features were correlated (threshold r< 0.7), we kept

only the feature with the highest correlation with the aesthetic value. We then created a linear

model (with Gaussian response) explaining aesthetic values where each feature was ordered in

the model according to its independent contribution to the total variation in the response vari-

able. We eliminated non-significant terms using a backwards selection procedure, to derive a

minimal adequate model and used the coefficients (scaled) of the final model to measure the

contribution of each selected feature to the aesthetic value.

To test for a phylogenetic signal of the aesthetic values, we used Pagel’s λ coefficient [35].

Pagel’s λ characterizes the relation between the similarity of a given trait (here the aesthetic

value) and the phylogenetic distance between species. It represents the possibility to recon-

struct the tree with the studied trait only. A null λ leads to a single polytomy for the basal node

while a value of 1 gives the exact tree. A p-value is computed by randomizing the data in order

to identify the families for which an inner signal is detected [82]. This analysis was undertaken

on the entire tree and only for the families for which we had more than 5 species in our dataset.

We used the phylosig function of the phytools v 1.0–1 R package.

To test the relationship between aesthetic values with both the age of the species (in millions

of years) and the functional distinctiveness, we used both linear models and linear models

accounting for phylogenetic relatedness using the phylolm function of the phylolm v 2.6.2 R

package over the distribution of 100 resolved phylogenetic trees (the 100 p-values were com-

bined using the hmp.stat function of the harmonicmeanp v 3.0 R package).

To compare aesthetic values respectively across the 3 IUCN categories and the fisheries

importance categories, we performed a 1-way ANOVA and Tukey multiple pairwise compari-

sons using the aov and TukeyHSD functions of the base-attached stats R package.

Data and materials availability

Most of the data used in this paper are freely available and downloadable from the web. Data

on IUCN threat status are available in the IUCN Red List database (https://www.iucnredlist.

org/). RLS data for species lists and some trait information are available through an online por-

tal accessible through (http://www.reeflifesurvey.com), with additional trait data available on

request by using the contact form. For each species, we provide aesthetic values predicted in

the present study (S3 Data) and web links to original photographic material (S4 Data). Images

free of copyright can be provided on request. Other datasets used in this study (extraction
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from the online survey and images features analysis) and all code used for the analysis and fig-

ures are available from the GitHub Repository: https://github.com/nmouquet/RLS_AESTHE.
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