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Abstract :   
 
Many marine and terrestrial species live in groups, whose sizes and dynamics can vary depending on the 
type and strength of their social interactions. Typical examples of such groups in vertebrates are schools 
of fish or flocks of bird. Natural habitats can encompass a wide range of spatial heterogeneities, which 
can also shape the structure of animal groups, depending on the interplay between the attraction/repulsion 
of environmental cues and social interactions. A key issue in modern applied ecology and conservation 
is the need to understand the relationship between these ethological and ecological scales in order to 
account for the social behaviour of animals in their natural environments. Here, we introduce a modeling 
approach which studies animal groups within heterogeneous habitats constituted by a set of aggregative 
sites. The model properties are investigated considering the case study of tropical tuna schools and their 
associative behavior with floating objects, a question of global concern, given the thousands of floating 
objects deployed by industrial tropical tuna fisheries worldwide. The effects of increasing numbers of 
aggregative sites (floating objects) on tuna schools are studied. This study offers a general modeling 
framework to study social species in their habitats, accounting for both ethological and ecological drivers 
of animal group dynamics. 
 
 

Highlights 

► We develop a model to assess the impacts of human-induced habitat modifications on social animals. 
► The model accounts for the interplay of increasing numbers of habitat heterogeneities on animal 
groups. ► The model properties are investigated considering the case study of tropical tuna schools. ► 
This study offers a general modeling framework to study social species in their habitats. ► This approach 
can accounts for both ethological and ecological drivers of animal groups dynamics. 
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10 Abstract

11 Many marine and terrestrial species live in groups, whose sizes and dynamics can vary depending on the type 

12 and strength of their social interactions. Typical examples of such groups in vertebrates are schools of fish or 

13 flocks of bird. Natural habitats can encompass a wide range of spatial heterogeneities, which can also shape 

14 the structure of animal groups, depending on the interplay between the attraction/repulsion of environmental 

15 cues and social interactions. A key issue in modern applied ecology and conservation is the need to understand 

16 the relationship between these ethological and ecological scales in order to account for the social behaviour of 

17 animals in their natural environments. Here, we introduce a modeling approach which studies animal groups 

18 within heterogeneous habitats constituted by a set of aggregative sites. The model properties are investigated 

19 considering the case study of tropical tuna schools and their associative behavior with floating objects, a 

20 question of global concern, given the thousands of floating objects deployed by industrial tropical tuna 

21 fisheries worldwide. The effects of increasing numbers of aggregative sites (floating objects) on tuna schools 

22 are studied. This study offers a general modeling framework to study social species in their habitats, 

23 accounting for both ethological and ecological drivers of animal group dynamics.

24

25 Keywords: Animal groups, heterogeneous habitats, aggregations, associative behavior, 

26 schooling, tropical tuna.

27

28 1. Introduction

29 Animal groups can follow different levels of organization, from aggregations of insects to 

30 schools of fish and flocks of birds (Costa, 2006; Krause, J., & Ruxton, 2002). Generally, living 

31 in groups provides various advantages to animals, like higher reproductive rates (Allee, 

32 1931), a reduction in predation due to both the dilution/confusion effect (Turner and 

33 Pitcher, 1986) and the "many-eyes" effect (Pulliam, 1973; Roberts, 1996), increased foraging 

34 success (Galef & Giraldeau, 2001), stress reduction in unfavorable situations (Allen et al., 
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35 2009) or access to mutualistic endosymbiotic microbes (Lombardo, 2008). Conversely, the 

36 presence of many individuals within the same group can also be deleterious, by facilitating 

37 detection by predators (Ioannou, 2017), promoting disease or parasite transmissions 

38 (Patterson & Ruckstuhl, 2013) and leading to increased competition for food (Rubenstein, 

39 1978). Accordingly, the size of animal groups are often considered a result of trade-offs 

40 between these factors (Ioannou, 2017; Krause, J., & Ruxton, 2002; Rubenstein, 1978).

41 At a larger scale, groups of animals share a given habitat with their congeners and the other 

42 species (Goodale et al., 2017). Any natural habitat presents a certain degree of spatial 

43 heterogeneity, e.g., an uneven spatial distribution of resources, variable environmental 

44 conditions and/or spatial cues, which can affect their local structure and attractiveness 

45 (Levin, 1992; Vinatier et al., 2011). This local habitat structure can have multiple impacts on 

46 animal groups, by increasing their tendencies to disperse or gather together, depending on 

47 the local properties of the habitats and their functional interest (Hart et al., 2020; Maeno & 

48 Ebbe, 2018; Rahmani et al., 2020; Schmidt, 1982). However, while the effects of habitat 

49 heterogeneities on the diversity of animal species have been widely studied (Tews et al., 

50 2004), little is known regarding their effects on the structure and dynamics of animal groups 

51 (Rahmani et al., 2020).

52 An aggregation is defined as a gathering of individuals leading to a local density greater than 

53 that of neighboring regions (Camazine et al., 2001). This phenomenon, referred to as 

54 associative behavior, is present as much in bacteria or other unicellular organisms as in 

55 arthropods or vertebrates (Parrish & Edelstein-Keshet, 1999). Aggregations can either be 

56 explained exclusively through the local attractiveness of an environment or to social 

57 interactions (Camazine et al., 2001). The former results from the sum of individual 

58 responses to an external stimulus, whereas the latter is based on individual responses but 

59 also on interactions between individuals. These two mechanisms leading to animal 

60 aggregations are not mutually exclusive: very often, social interactions are influenced by 

61 surrounding environmental cues. Aggregations of social animals can then be defined as a 

62 gathering of individuals in the same place who interact with each other via the perception of 

63 stimuli of varying nature from other individuals (e.g., sounds, vocalisms or visual cues) 



3

64 and/or by local modifications of the environment (e.g., chemical marking, garbage, or trail 

65 creation).

66

67 Several terrestrial and marine species simultaneously manifest such aggregative behavior 

68 and collective group dynamics (Camazine et al., 2001; Parrish & Edelstein-Keshet, 1999). A 

69 typical example of such behavior is shown by starlings, which can form large congregations 

70 on trees and collective flocking behavior (Cavagna et al., 2009; Lyon & Caccamise, 1981). 

71 The same behavior is also found in several fish species and more particularly in tropical 

72 tunas, which can form large schools of several thousand individuals and also aggregate 

73 around floating objects found at the sea surface (Fréon & Dagorn, 2000).

74

75 Tuna fisheries provide global yields of about 7 millions tonnes and feature among the 

76 world's most important fisheries (FAO, 2020). Tropical tunas (yellowfin tuna - Thunnus 

77 albacares, bigeye tuna - Thunnus obesus and skipjack tuna - Katsuwomus pelamis) 

78 contribute to more than 90% of the major global tuna catches (ISSF, 2020). Skipjack tuna, 

79 with a catch exceeding 3 millions tonnes in 2018, being the third highest marine species in 

80 terms of total yield, following only Peruvian anchoveta (Engraulis ringens) and Alaska 

81 pollock (Gadus chalcogrammus) (FAO, 2020). Tuna captured around floating objects account 

82 for approximately half of the global tuna catch (Dagorn et al., 2013). The recent introduction 

83 of thousands of artificial floating objects in the open ocean (termed Fish Aggregating 

84 Devices or FADs) by industrial fisheries, has resulted in numerous questions on their impacts 

85 on the size of tuna schools (Sempo et al., 2013), as well as their potential risk of forming an 

86 ecological trap (Dagorn et al., 2013; Hallier & Gaertner, 2008; Marsac et al., 2000). These 

87 ecological impacts brought on by the large-scale exploitation of FADs across all oceans 

88 require the development of quantitative tools to study the effects of increasing FAD 

89 numbers on tuna schools and, more globally, on the populations of pelagic fish species that 

90 associate with them.

91

92 A wide variety of movement rules have been proposed to explain the formation and 

93 dynamics of animal groups (Ballerini et al., 2008; Bialek et al., 2012; Herbert-Read, 2016; 

94 Vicsek & Zafeiris, 2012). In particular, several models of fish schools have been developed in 

95 the past (Lopez et al., 2012). Alternatively, ecologically-relevant parameters, such as the 
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96 amount of habitat heterogeneities, and the consequent associative behavior of animals 

97 forming aggregations induced by these heterogeneities, have so far been neglected when 

98 modeling animal group dynamics. Only a small number of recent studies have modeled 

99 flocking behavior in complex environments considering repulsive environmental cues and 

100 their consequences on the group-level coordination (Rahmani et al., 2020). Conversely, 

101 ecological models tend to neglect the behavioral drivers which can affect species abundance 

102 and distribution (Geary et al., 2020). The main reason for this theoretical partitioning 

103 between ethological and ecological models can be related to the different spatial scales that 

104 are considered, ranging between a few centimeters/meters in ethology to several hundreds, 

105 or even thousands of kilometers in ecology.

106

107 Accounting for both ethological and ecological drivers is key to assess the effects of human-

108 induced habitat modifications on social species (Dirzo et al., 2014; Hoffmann et al., 2010). 

109 Here, we introduce a new modeling framework to investigate the interplay between the 

110 tendency of animals to live in groups (i.e., forming schools, flocks or other self-organized 

111 forms of groups) and the presence of aggregative sites in their environment (i.e., 

112 attraction/retention sites). In so doing, we demonstrate the importance of such ecological 

113 parameters on the behavior of social species in natural environments. Using tropical tuna 

114 schools and their associative behavior around floating objects as a case study, we consider 

115 the interplay between the formation of tuna aggregations induced by the local 

116 environmental properties of their habitat and their schooling dynamics.  

117

118 The principal novelty of this modeling approach relies on the fact that it borders between 

119 ethology and ecology, accounting for both behavioral drivers (such as the tendency of tuna 

120 to form schools) and ecological drivers (heterogeneous environments formed by attractive 

121 sites).

122

123 2. Materials and methods

124 2.1 Model definition

125 Due to tropical tunas being social species which live in schools (Fréon & Dagorn, 2000), the 

126 model accounts for a set of  tuna school units within an array of  FADs. These school units 𝑁 𝑃

127 are considered to be constituted by individuals showing the same associative behavior with 
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128 FADs, i.e., of the same species and size category (Rodriguez-Tress et al., 2017). The  FADs 𝑃

129 represent a set of aggregative sites present in the local tuna environment, that can 

130 attract/retain them in their vicinity, thus favoring the formation of aggregations of schools, 

131 corresponding to multiple schools localized near the FAD (Fréon & Dagorn, 2000). Each tuna 

132 school can be in one of two states, either free-swimming (not associated with any of the 

133 FADs, i.e., a free-swimming school, referred to as free school for simplicity in the remainder 

134 of the text) or associated to one of the  FADs. Both free schools and FAD aggregations can 𝑃

135 be constituted by one or more school units, due to the interplay between fission, fusion and 

136 association processes. The resulting association dynamics can be summarized according to 

137 the following rules (Figure 1):

138 A. Fission of schools can occur in the free state. This fission dynamics is set by the 

139 probability  that a school of size  splits into two sub-schools of size  and (𝜂𝑙
𝑠 + 𝜂𝑠 ― 𝑙

𝑠 ) 𝑠 𝑙

140 . 𝑠 ― 𝑙

141 B. Fusion of two free schools can occur with probability , independently of the school 𝜓

142 size.

143 C. Free schools have a probability to join a FAD, which is independent of their size. For 𝜇 

144 each free school, the overall probability of associating with any of the FADs is .𝑃 𝑃𝜇

145 D. Multiple school units forming a FAD-aggregation can leave a FAD at the same time, 

146 leading to a free school of size . Namely, for a FAD aggregation of size  (i.e., 𝑙 > 1 𝑠

147 composed of school units), a school of size  can depart from the FAD with probability 𝑠 𝑙 

148 , leading to a FAD aggregation of size  and a free school of size 𝛾𝑙
𝑠 𝑠 ― 𝑙 𝑙.
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149
150 Figure 1: Schematic view of the model. (A-C) Free-schools dynamics. (A) Fission: a free school of size 

151 can split into smaller schools of size  and  with probability . (B) Fusion: two 𝑠 > 1 𝑙 𝑠 ― 𝑙 (𝜂𝑙
𝑠 + 𝜂𝑠 ― 𝑙

𝑠 )

152 free schools can merge with probability  independent of their size.  (C) Association: any free school 𝜓

153 have probability  to associate with a FAD, regardless of its size. (D) Associated-schools dynamics: for μ

154 a FAD association of size , a school of size can depart (forming a free school) with probability .𝑠 𝑙 𝛾𝑙
𝑠

155

156 Considering  as the number of FADs occupied by  school units at time , and  the 𝐹𝑠(𝑡) 𝑠 𝑡 𝑋𝑠(𝑡)

157 number of free schools of size  (i.e., composed of  school units) at time , the temporal 𝑠 𝑠 𝑡

158 evolution of  and  follows Eq.(1) and Eq.(2) respectively:𝐹𝑠(𝑡) 𝑋𝑠(𝑡)

159
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160
𝑑𝐹𝑠

𝑑𝑡 = ―𝜇𝐹𝑠

𝑵 ― 𝒔

∑
𝑙 = 1

𝑋𝑙 +
𝑁

∑
𝑙 = 𝑠 + 1

𝐹𝑙𝛾𝑙 ― 𝑠
𝑙 + (1 ― 𝛿𝑠,0)(𝜇

𝑠

∑
𝑙 = 1

𝐹𝑠 ― 𝑙𝑋𝑙 ― 𝐹𝑠

𝑠

∑
𝑙 = 1

𝛾𝑙
𝑠) 

161

162 (Eq. 1)

163

164
𝑑𝑋𝑠

𝑑𝑡 =
𝑁

∑
𝑙 = 𝑠

𝐹𝑙𝛾𝑠
𝑙 ― 𝜇𝑋𝑠

𝑵 ― 𝒔

∑
𝑙 = 0

𝐹𝑙 +
𝑁

∑
𝑙 = 𝑠 + 1

(𝜂𝑠
𝑙 + 𝜂𝑙 ― 𝑠

𝑙 ) 𝑋𝑙 ― (1 ― 𝛿𝑠,1) 𝑋𝑠

𝑠 ― 1

∑
𝑙 = 1

𝜂𝑙
𝑠 +

165

166 ― 𝜓𝑋𝑠

𝑁 ― 𝑠

∑
𝑙 = 1

(1 + 𝛿𝑠,𝑙)𝑋𝑙 + 𝜓
𝑠 ― 1

∑
𝑙 = 1

(1 + 𝛿𝑠 ― 𝑙,𝑙)
2 𝑋𝑙𝑋𝑠 ― 𝑙

167 (Eq.2)

168

169 with conservation of total number of FADs  and the total number of schools : (𝑃) (𝑁)

170
𝑁

∑
𝑠 = 0

𝐹𝑠 = 𝑃;    
𝑁

∑
𝑠 = 1

𝑠 (𝐹𝑠 + 𝑋𝑠) = 𝑁.    

171 (Eq.3)

172 In the above equations, the  symbol represents the Kronecker delta, namely  if  𝛿 𝛿𝑖,𝑗 = 1 𝑖 = 𝑗

173 and 0 otherwise. The terms in Eqs.(1-2) that depend on  and are related to the FAD 𝜇 𝛾𝑙
𝑠 

174 association dynamics, representing the association and departure of schools to/from FADs 

175 respectively. The probability per unit time for a free school (of any size) to associate with 

176 one FAD is represented by  . Similarly,  corresponds to the probability per unit time that 𝜇 𝛾𝑙
𝑠

177 a school of size  departs from a FAD aggregation of size . In Eq.(2), the number of free 𝑙 𝑠

178 schools of size  depends on the association and departure of free schools from FADs (terms 𝑠

179 in  and , respectively, similar to Eq.(1)) and on the free school fusion and fission dynamics 𝜇 𝛾𝑙
𝑠

180 (terms in  and , respectively). The two terms in and  are related to the 𝜓 𝜂𝑙
𝑠  (𝜂𝑠

𝑙 + 𝜂𝑙 ― 𝑠
𝑙 ) 𝜂𝑙

𝑠

181 fission of free schools. Similarly to ,the term corresponds to the probability per unit 𝛾𝑙
𝑠 𝜂𝑙

𝑠 

182 time that a school of size  splits from a larger school of size . The term in 𝑙 𝑠 (𝜂𝑠
𝑙 + 𝜂𝑙 ― 𝑠

𝑙 ) 

183 corresponds to the overall fission probability per unit time for a free school of size  to split 𝑙

184 into two sub-schools, respectively of size  and . The sum is explained by 𝑠 𝑙 ― 𝑠 (𝜂𝑠
𝑙 + 𝜂𝑙 ― 𝑠

𝑙 ) 

185 the fact that two possible events can lead to a fission of school (of size  into its 𝑙)
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186 subcomponents  and : either a school of size  splits from the larger school of size  𝑠 𝑙 ― 𝑠 𝑠 𝑙

187 with probability , or a school of size  splits with probability . Finally, the free 𝜂𝑠
𝑙 𝑙 ― 𝑠 𝜂𝑙 ― 𝑠

𝑙

188 school fusion dynamics is set by the constant , which corresponds to the probability per 𝜓

189 unit time that two schools (of any size) merge together forming a larger school.

190 In this study, the following definition of FAD-departure probabilities  was considered:𝛾𝑙
𝑠

191

192  𝛾𝑙
𝑠 =  𝑠 𝜃 𝐵(𝑙 ― 1;𝑠 ― 1,𝛽𝑎𝑔𝑔)

193 (Eq.4)

194

195 where  represents the probability of departure, per unit time, for an individual school unit 𝜃

196 and  is the binomial probability mass function:𝐵(𝑙 ― 1;𝑠 ― 1,𝛽𝑎𝑔𝑔)

197 𝐵(𝑙 ― 1;𝑠 ― 1,𝛽𝑎𝑔𝑔) = (𝑠 ― 1
𝑙 ― 1) 𝛽𝑎𝑔𝑔

𝑙 ― 1(1 ― 𝛽𝑎𝑔𝑔)𝑠 ― 𝑙

198 (Eq.5)

199 where the term  is the binomial coefficient. (Eq.5) represents the probability for (𝑠 ― 1
𝑙 ― 1)

200  school units (with the  forming the remaining of the FAD aggregation) to join the 𝑙 ― 1 𝑠 ―1

201 departing school (leading to a free school of size ). The constant  corresponds to the 𝑙 𝛽𝑎𝑔𝑔

202 binomial probability of success, namely the probability for a FAD-associated school unit to 

203 follow the departing school. For a FAD aggregation of size , Eq.(4) implies that each 𝑠

204 associated school unit has a probability of departure equal to , namely, 𝜃 (1 + (𝑠 ― 1) 𝛽𝑎𝑔𝑔)

205 a school being part of large FAD aggregations has higher probabilities to leave the FAD. The 

206 average size of the school leaving the FAD is . In the limit , for each 1 + (𝑠 ― 1)𝛽𝑎𝑔𝑔 𝛽𝑎𝑔𝑔→0

207 time step, only individual school units ( ) can leave the FAD. Oppositely, for , 𝑠 = 1 𝛽𝑎𝑔𝑔→1

208 the whole aggregation departs from the FAD, resulting in associated schools behaving as a 

209 single unit. 

210 In the same way, the following probability  was considered for a school of size  to split 𝜂𝑙
𝑠 𝑙

211 from a larger school of size :𝑠

212

213 𝜂𝑙
𝑠 =  𝑠 𝜙 𝐵(𝑙 ― 1;𝑠 ― 1,𝛽𝑠𝑐ℎ𝑜𝑜𝑙)

214 (Eq.6)

215
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216 where  represents the fission probability, per unit time, for an individual school unit (i.e., 𝜙

217 the probability that a single school unit splits from the school) and  is 𝐵(𝑙 ― 1;𝑠 ― 1,𝛽𝑠𝑐ℎ𝑜𝑜𝑙)

218 the binomial probability mass function that follows the same definition as in Eq.(5) above. In 

219 this case, the constant  corresponds to the binomial probability for another school 𝛽𝑠𝑐ℎ𝑜𝑜𝑙

220 unit to follow the school that split. In the limit , only individual school units can 𝛽𝑠𝑐ℎ𝑜𝑜𝑙→0

221 split. Conversely, for , free schools split, in average, into two sub-schools of the 𝛽𝑠𝑐ℎ𝑜𝑜𝑙→0.5

222 same size. 

223

224 2.2 Model configuration

225 The sets of model parameters that were studied are summarized in Table 1. The 

226 probabilities of departure/arrival from/to a FAD (  and ) were fixed to 0.1 days-1 and 0.01 𝜃 𝜇

227 days-1 respectively. The choice of the probabilities  and  respectively affect the residence 𝜃 𝜇

228 times (the time schools spend associated with a FAD) and the absence times (the time spent 

229 between two FAD association, in the free state) which can be measured through electronic 

230 tagging (Capello et al., 2015). For a non-social model defined in an array of 10 FADs, these 

231 parameters imply average residence times and absence times of 10 days. Here, the choice 

232 of the model parameters  and  aimed at ensuring average residence and absence times of 𝜃 𝜇

233 the same order of magnitude of those observed in past electronic tagging studies (Govinden 

234 et al., 2013, 2021; Robert et al., 2013; Rodriguez-Tress et al., 2017; Tolotti et al., 2020). 

235 These parameters were kept fixed, in order to study the model sensitivity to other 

236 parameters, whose ranges of values are unknown. For this purpose, a range of parameter 

237 values were tested for both the social interaction parameter at the FAD (  and the 𝛽𝑎𝑔𝑔)

238 school fission and fusion probabilities  and ), resulting in five main model configurations (𝜙 𝜓

239 (Table 2). The effects of social interactions at the FADs were studied considering three 

240 different values of : 𝛽𝑎𝑔𝑔

241 - resulting in individual school units departing from FADs independently of 𝛽𝑎𝑔𝑔 = 0 , 

242 each other (Non-social (NS)).

243 - resulting, in average, in half of the aggregation leaving the FADs 𝛽𝑎𝑔𝑔 = 0.5, 

244 simultaneously (Social (S)).

245 - resulting in the collective departure of the full aggregation from the FADs 𝛽𝑎𝑔𝑔 = 1, 

246 (Highly Social (HS)).
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247 Because the NS model considers independent school units, the effects of the schooling 

248 dynamics were considered for the social models only. First, only the effect of school fission 

249 was studied, leading to models S+f and HS+f (Table 2). Secondly, both the fission and fusion 

250 parameters were considered, leading to models S+ff and HS+ff, see Table 2. In the school-

251 fission process, the  parameter was kept fixed at 0.5, considering that the most likely 𝛽𝑠𝑐ℎ𝑜𝑜𝑙

252 fission process corresponded to a breakup of a school into two sub-schools of the same size. 

253 Finally, the model properties were studied for increasing numbers of tuna school units and 

254 FADs (Table 1). 

255

256 2.3 Numerical resolution of the model 

257 The mean-field equilibrium solutions of the model defined through Eqs.(1-2) and Table 2 

258 were numerically derived using the Euler method. Initial conditions were set considering all 

259 tuna schools in the free state (  for any ) and all free schools corresponding to a 𝐹𝑠(0) = 0, 𝑠

260 school unit ( ). The Euler method was applied considering a time step  𝑋1(0) = 𝑁 ∆𝑡 = 0.01

261 days over a total of 50,000 time steps to ensure equilibrium (Supplementary Figures S1 and 

262 S2). 

263

PARAMETER DESCRIPTION TESTED VALUES

N Total number of tuna school units 5, 10, 20, 40, 60, 80, 100

P Total number of FADs 1, 2, 5, 10, 20, 30, 40, 50

𝜇 Probability per unit time (days-1) to associate with one 

FAD 

0.01

𝜃 Probability per unit time (days-1) of departure from FADs 0.1

𝛽𝑎𝑔𝑔𝑟 Binomial probability of joint departure from FADs 0  (Non-social)

0.5 (Social)

1.0 (Highly social)

𝜙 Fission probability per unit time (days-1) 0 (no fission), 0.01 

(fission)

𝛽𝑠𝑐ℎ𝑜𝑜𝑙 Binomial probability of joint fission 0.5

𝜓 Fusion probability per unit time (days-1) 0 (no fusion), 0.01 (fusion)

264 Table 1: Model parameters. 

265

Binomial probability of joint departure from FADs ) (𝛽𝑎𝑔𝑔
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𝛽𝑎𝑔𝑔 = 0 𝛽𝑎𝑔𝑔 = 0.5 𝛽𝑎𝑔𝑔 = 1.0

 = 0𝜙

= 0𝜓 

Non-social

(NS)

 =  𝜙 𝜇

= 0𝜓 

Social 

+ fission 

(S+f)

Highly Social

+ fission 

(HS+f)

Sc
ho

ol
 fi

ss
io

n-
fu

sio
n 

dy
na

m
ic

s  
(

𝜙
, 𝜓

 )

 =  𝜙 𝜇

=  𝜓 𝜇

Social 

+ fission + fusion

(S+ff)

Highly Social

+ fission + fusion

 (HS+ff)

266 Table 2. Summary of the five model configurations.  Non-social (NS, , 0; = 0); Social 𝛽𝑎𝑔𝑔 = 0 𝜙 = 𝜓 

267 with fission (S+f, , 0.01; = 0); Highly Social with fission (HS+f, , 0.01; 𝛽𝑎𝑔𝑔 = 0.5 𝜙 = 𝜓 𝛽𝑎𝑔𝑔 = 1.0 𝜙 =

268 = 0). Social with fission and fusion (S+ff, , 0.01; = 0.01); Highly Social with fission 𝜓 𝛽𝑎𝑔𝑔 = 0.5 𝜙 = 𝜓 

269 and fusion (HS+ff, , 0.01; = 0.01). The other parameters are the same for all models, 𝛽𝑎𝑔𝑔 = 1.0 𝜙 = 𝜓 

270 see Table 1. 

271

272 2.4 Model properties 

273 A set of metrics was defined to characterize tuna free schools and FAD aggregations. Two 

274 metrics were estimated to characterize free schools:

275 i. The total number of free schools ( ), defined as .𝑁𝐹𝑆 𝑁𝐹𝑆(𝑡) = ∑
𝑠 𝑋𝑠(𝑡)

276 ii. The mean size of free schools ( )𝐹𝑆𝑠𝑖𝑧𝑒(𝑡) =
∑

𝑠𝑠 𝑋𝑠(𝑡)

∑
𝑠 𝑋𝑠(𝑡)

277 Similarly, two metrics were estimated to characterize FAD aggregations:

278 i. The mean size of a FAD aggregation ( ), defined for the FADs occupied by at least one 𝑚

279 school, .𝑚(𝑡) =
∑𝑁

𝑠 = 1 𝑠 𝐹𝑠(𝑡)

∑𝑁
𝑠 = 1 𝐹𝑠(𝑡)

280 ii. The fraction of FADs occupied by at least one school unit ( ), defined as 𝑓1 𝑓1(𝑡) =

281 .
∑𝑁

𝑠 = 1 𝐹𝑠(𝑡)

𝑃

282 Finally, the relative number of associated schools over the full FAD array (𝐹𝑎(𝑡)/𝑁 =
1
𝑁 

283  was estimated. For each combination of model parameters, each metric was ∑𝑁
𝑠 = 1 𝑠 𝐹𝑠(𝑡))

284 calculated at equilibrium (stationary states: ). ∀𝑠 ≤ 𝑁: 
𝑑𝐹𝑠

𝑑𝑡 = 0; 
𝑑𝑋𝑠

𝑑𝑡 = 0

285
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286 3. Results

287 Globally, the free-swimming school metrics (Figure 2) show larger school sizes and larger 

288 numbers of free schools for increasing population sizes, but very different trends relative to 

289 the number of FADs, depending on the model configuration. The average number of free 

290 schools follows a decreasing trend with the number of FADs for the non-social model (

291 ). Similar trends are found for the social models with fission (S+f and 𝑁𝐹𝑆 = 𝜃𝑁/(𝑃𝜇 + 𝜃)

292 HS+f). Conversely, in the case of model S+ff, the number of free schools shows a non-

293 monotonic trend, first increasing with the number of FADs, then reaching a maximum and 

294 then decreasing. Finally, for model HS+ff; the number of free schools is higher for smaller 

295 FAD numbers, then decreases monotonically with the number of FADs and is globally 

296 smaller than the other models. 

297

NS S+f HS+f S+ff HS+ff

N
FS

FS_size

0 25 50 75 10
0 0 25 50 75 10

0 0 25 50 75 10
0 0 25 50 75 10
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298 Figure 2. Free-swimming school metrics. Number of free-swimming schools (NFS) and average size 

299 of the free schools ( ) as a function of the number of FADs for different population sizes 𝐹𝑆𝑠𝑖𝑧𝑒

300 (colors). Each column represents a model configuration: Non-social (NS); Social with fission (S+f); 

301 Highly Social with fission (HS+f); Social with fission and fusion (S+ff); Highly Social with fission and 

302 fusion (HS+ff).

303
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304 The average size of free schools is, by construction, equal to 1 for model NS. Larger (𝐹𝑆𝑠𝑖𝑧𝑒) 

305 average school sizes are found for all social models, with different trends relative to the 

306 number of FADs, depending on the model configuration. Remarkably, increasing free school 

307 sizes are found for increasing FAD numbers for both highly-social models HS+f and HS+ff, 

308 with the HS model with fusion and fission producing the larger school sizes. Alternatively, 

309 the social model with fission (S+f) shows a non-monotonic trend, with average school sizes 

310 first increasing with the number of FADs, then attaining a maximum and finally decreasing. 

311 Finally, when a fusion term is added to this model (S+ff) decreasing school sizes are found 

312 for increasing numbers of FADs. 

313

314

NS S+f HS+f S+ff HS+ff
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315 Figure 3. FAD aggregation metrics. Average number of school units associated with the FADs that 

316 are occupied by at least one school  and fraction of FADs occupied by at least one school  (𝑚) (𝑓1)
317 as a function of the number of FADs (abscissa) for different population sizes (colors). Each column 

318 represents a model configuration : Non-social (NS); Social with fission (S+f); Highly Social with fission 

319 (HS+f); Social with fission and fusion (S+ff); Highly Social with fission and fusion (HS+ff).

320

321 The average size of FAD aggregations ( , Figure 3) show global increasing trends for larger 𝑚

322 population sizes. The social models, both with fission and fission+fusion (S+f and S+ff) show 
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323 decreasing trends of FAD aggregation sizes for larger number of FADs, as found for the non-

324 social model, but relatively smaller aggregation sizes for small number of FADs. Conversely, 

325 both highly-social models (HS+f and HS+ff) demonstrate an opposite trend, with average 

326 aggregation sizes increasing for increasing numbers of FADs. 

327

328 The fraction of FADs occupied by at least one school unit ( , Figure 3) shows a general 𝑓1

329 decrease with the number of FADs and is larger for larger populations. However, model S+ff 

330 show a non-monotonic trend, with f1 having a clear maximum for larger population sizes. 

331 Moreover, the highly-social models with fission and fission+fusion (HS+f and HS+ff) 

332 demonstrate the highest and lowest sensitivity of f1 relative to the number of FADs 

333 respectively, while the size of the population appears less important.

334

335
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336 Figure 4. Relative number of associated schools. Ratio between the number of FAD-associated 

337 school units and the total number of school units, as a function of the number of FADs (abscissa) for 

338 different population sizes (colors). Each column represents a model configuration : Non-social (NS); 

339 Social with fission (S+f); Highly Social with fission (HS+f); Social with fission and fusion (S+ff); Highly 

340 Social with fission and fusion (HS+ff).

341

342 Finally, the fraction of associated schools ( , Figure 4) increases with the number of 𝐹𝑎/𝑁

343 FADs for all models. However, differences between social models and the non-social model 

344 exist. Increasing trends of , independent of the population size, are found for the non-𝐹𝑎/𝑁

345 social model (NS), whereas, for all social models, larger populations imply smaller fractions 

346 . This effect is amplified in the highly social models (HS+f and HS+ff). 𝐹𝑎/𝑁

347
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348 Figures S3 and S5 show the equilibrium distribution of  and , respectively. The 𝐹𝑠 𝑋𝑠

349 distribution of  appears to be zero-inflated for the social models, particularly for the 𝐹𝑠

350 highly social configurations (Figure S3-4). The trends of in semi-logarithmic and 𝑋𝑠 

351 logarithmic scale (Figures S6 and S7, respectively) demonstrate that the distribution of 

352 school sizes follows an exponential decay. The mean-to-variance relations of (Figure S8) 𝐹𝑠 

353 are equidispersed for the NS model and for social models with small population sizes or 

354 large numbers of FADs. Reversely, for social models with large population sizes/small 

355 numbers of FADs the distributions of show an overdispersion, with different trends 𝐹𝑠 

356 relative to the number of FADs, depending on the model (Figure S8). Similarly, 

357 overdispersed free-school size distributions (  characterize social models with large 𝑋𝑠)

358 population sizes (Figure S9). Finally, Figures S10 and S11 provide, for all model parameters, 

359 the free-school and FAD aggregation metrics divided by the total population size .(𝑁)

360

361 4.Discussion

362 This paper introduces a modeling approach to study the effects of habitat heterogeneities 

363 (here consisting of aggregative sites termed FADs) on groups of animals that display a 

364 schooling/shoaling behavior (tropical tunas in this case).

365

366 From the ethological to the ecological scale

367 The field of collective animal behavior has flourished in recent decades, deciphering the 

368 effects of local interactions between animals on their movements and behavior through 

369 self-organization (Camazine et al., 2001; Krause, J., & Ruxton, 2002; Parrish & Edelstein-

370 Keshet, 1999; Sumpter, 2006). From a theoretical point of view, a variety of models were 

371 developed to explain the structure of the fish schools (Lopez et al., 2012) and more 

372 generally, groups of animals (Cavagna et al., 2009; Sumpter, 2006; Vicsek & Zafeiris, 2012). 

373 Very often, ecological applications of these models remain absent (Gordon, 2014). One of 

374 the reasons that can explain the disciplinary compartmentalization of such models could be 

375 attributed to the relatively small spatial scales that are considered. If interactions of few 

376 body-lengths can account for the formation of animal groups, accounting for the group 

377 responses to their habitats requires a shift to larger scales. 

378
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379 The present model accounts for the group dynamics of social animals (fission and fusion of 

380 tropical tunas in this case) at scales comparable to the spatial extent of their local habitat, 

381 which include numbers of spatial heterogeneities and other schools. For tropical tuna that 

382 display an associative behavior with floating objects in the open ocean, these scales can 

383 extend up to several tens (or even hundreds) of kilometers. In this respect, while this study 

384 still accounts for ethological processes related to social interactions such as collective 

385 departure from FADs, school fission and fusion, it also allows for the consideration of a 

386 series of ecological drivers, i.e., variable numbers of aggregative sites, that can also affect 

387 the groups’ dynamics.

388

389 Previous studies conducted in the field of social ecology also considered the behavior of 

390 gregarious animals located into heterogeneous environments (Ame et al., 2004; Camazine 

391 et al., 2001; Halloy et al., 2007). Because these studies focused essentially on social insects 

392 or arthropods, that do not form groups beyond of the aggregative locations, they cannot be 

393 directly transposed to social animals such as tunas, that display grouping behaviour both at 

394 and away from of the aggregation sites (forming aggregations and schools respectively). This 

395 study builds upon these modeling approaches and those developed for tropical tuna 

396 (Capello et al., 2016; Robert et al., 2014; Sempo et al., 2013), explicitly adding a schooling 

397 component.

398

399 Model structure

400 Three main model parameters set the associative dynamics of tuna schools around spatial 

401 heterogeneities (FADs in this case): (i) the probability for a school to associate with a FAD (𝜇

402 ), (ii) the probability that a school initiates a departure from a FAD ( ) and (iii) the 𝜃

403 proportion of the aggregation leaving ( ). Moreover, three parameters determine the 𝛽𝑎𝑔𝑔

404 free school fission/fusion dynamics: (i) the probability that a school unit splits from a larger 

405 school ( ) (ii) the proportion of school units that split ( ) and (iii) the probability that 𝜙 𝛽𝑠𝑐ℎ𝑜𝑜𝑙

406 two schools merge together ( ).𝜓

407

408 The collective departure of multiple schools from a FAD (or from a school, for the fission 

409 events), follow a “starter” and “follower” rule. As such, the probability of initiating a 

410 departure is considered constant for every school unit (parameters  and , respectively). 𝜃 𝜙
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411 The proportion of followers is simply expressed through a binomial law (that depends on 

412 the parameters  and , respectively). This dynamics implies that, every time the 𝛽𝑎𝑔𝑔 𝛽𝑠𝑐ℎ𝑜𝑜𝑙

413 collective departure parameters (  and ) are non-zero, the individual probability of 𝛽𝑎𝑔𝑔 𝛽𝑠𝑐ℎ𝑜𝑜𝑙

414 leaving the FAD (or the school) increases with the aggregation (school) size. Conversely, the 

415 probabilities of associating with a FAD and to merge with another school (  and , 𝜇 𝜓

416 respectively) are considered constant and are thus independent of the school size. 

417 Alternative rules of association and school fusion could be studied, depending on the 

418 biological models of interest, with probabilities  and  that depend on the school or the 𝜇 𝜓

419 aggregation sizes. Similarly, more complex collective departure rules than the binomial laws, 

420 like sigmoidal functions presenting a characteristic threshold, could be studied, but would 

421 imply a larger number of parameters. The model studied herein aimed at considering a 

422 relatively simple dynamics, yet accounting for possible social interactions.

423

424 In the model, all FADs are considered equivalent to each other. The equivalence between a 

425 spatialized model and the current approach holds when the tuna diffusion coefficient is 

426 large relative to the scale of the FAD array and the spatial distribution of the free schools is 

427 homogeneous. For large and dense FAD arrays, where these conditions do not hold 

428 anymore, the model still accounts for the behavior of tuna schools at a local scale (i.e., the 

429 FAD of association and its neighboring FADs), where tuna have an equal probability of 

430 reaching all FADs of a given array through a random walk. This local scale can range from 

431 some few tens to a few hundred kilometers, depending on the FAD density and type of FAD 

432 array (Capello et al., 2016; Govinden et al., 2013; Robert et al., 2013; Rodriguez-Tress et al., 

433 2017). Recent studies demonstrated that the time between two associations can be 

434 explained in terms of random walk movements between FADs (Pérez et al., 2020), indicating 

435 that this hypothesis is the most parsimonious and plausible for tuna. Further modeling 

436 studies fitting the movement dynamics of tuna in a FAD array from field data using more 

437 realistic types of random walks (e.g. correlated random walks), should quantify the spatial 

438 scale of validity of the model for variable FAD densities.

439

440 This study investigates the dynamics of tuna in an array of FADs considering a set of school 

441 units as the basic model components. These school units account for the innate schooling 

442 behavior of tuna: it is very unlikely to find an individual tuna alone in the open ocean and 
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443 generally tuna reach and depart from FADs in schools. This behavior is particularly evident 

444 for small size categories (40-60 cm fork length), that show a strong associative behavior with 

445 FADs and constitute the major proportion of the tuna found in FAD aggregations (Fonteneau 

446 et al., 2013; Ménard et al., 2000). In the present model, all school units are equivalent and 

447 no intrinsic variability of their size is considered: the school units should be considered as 

448 the minimum size of a tuna school (e.g., 1 tonne, resulting in roughly 400 individuals with an 

449 average weight of 2.5 Kg), all other school sizes being composite schools built of these 

450 elementary units (Gerlotto & Paramo, 2003). It is plausible that a continuum spectrum of 

451 sizes of tuna schools exist. School size distributions of tuna school units could be added to 

452 the model, fitting the available data, i.e., from purse-seine catches of free tuna schools for a 

453 given species and size.

454

455 Model parametrization for tropical tuna 

456 The model introduced in this study presents a continuum set of solutions, from the least 

457 social to the most aggregative, with very different properties depending on the choice of 

458 parameters. Five main sets of model parameters were studied for tropical tuna, that aimed 

459 at investigating the sensitivity of the model’s properties to variable degrees of collective 

460 tuna departures from the FADs ( ), as well as variable tuna school fission/fusion 𝛽𝑎𝑔𝑔

461 dynamics (  and ).𝜙 𝜓

462

463 The values of the parameters  and were fixed. Electronic tagging data, providing the time 𝜇 𝜃 

464 that tuna aggregations spent both at and away from FADs (termed residence and absence 

465 times), can be used to infer the model’s probabilities of association and departure (Capello 

466 et al., 2015, 2016). Field studies also demonstrated that the associative behavior of tuna can 

467 be species and size-specific (Robert et al., 2012; Rodriguez-Tress et al., 2017). The choice of 

468 considering constant  stems from previous electronic tagging studies, which demonstrated 𝜇

469 that the time that tagged individuals spent between two FAD associations follows 

470 exponential survival curves (Govinden et al., 2021; Robert et al., 2013; Rodriguez-Tress et 

471 al., 2017; Tolotti et al., 2020) and random walk types of movements (Girard, 2004; Pérez et 

472 al., 2020). Because the equilibrium solutions of the model depend on the ratio /  and to 𝜇 𝜃

473 reduce the number of free parameters, the values of  and  were considered constant and 𝜇 𝜃

474 fixed to plausible values (average association/absence time of 10 days in an array of 10 FADs 
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475 for the non-social model). For social models, the residence times also depend on the 

476 parameter  (Eq.(4)). In addition, the number of FADs ( ) indirectly affects the residence 𝛽𝑎𝑔𝑔 𝑃

477 times for social models, since the aggregation’s sizes depend on  and larger aggregation 𝑃

478 sizes imply higher probabilities of departure for . Therefore, fitting the trends of 𝛽𝑎𝑔𝑔 ≠ 0

479 residence times as a function of the number of FADs will be necessary to select the best 

480 model parameters. Further applications of the model would also require that the 

481 parameters were fitted to the field data for each tuna species and size category. 

482

483 For the parameter choices of the social models, two main scenarios were studied, where on 

484 average, half ( ) and the entire ( ) tuna aggregation collectively leave the 𝛽𝑎𝑔𝑔 = 0.5 𝛽𝑎𝑔𝑔 = 1

485 FAD during a departure event, resulting in the social (S) and highly-social (HS) model 

486 respectively. Obviously, intermediate cases could occur in nature. Unfortunately, the 

487 current state of knowledge and the current field data available from echosounder buoys 

488 (Baidai et al., 2020) do not allow for the assessment of this parameter for tropical tuna and 

489 more generally, for all marine species that display the same associative behavior. New field 

490 data, using sonars for instance (Brehmer et al., 2019), which provide accurate information 

491 on the temporal evolution of the associated biomass beneath the FAD, could allow for the 

492 assessment of this parameter. Furthermore, as knowledge on the fission and fusion 

493 dynamics of tuna schools is limited, the  and  parameters were set equal to the 𝜓 𝜙

494 probability of association . Faster fission dynamics ( ) would result in the non-social 𝜇 𝜙 ≫ 𝜇

495 model. Similarly, the limit , would make the fusion of schools negligible with respect 𝜓 ≪ 𝜇

496 to the FAD association dynamics.

497

498 Model properties and implications for tropical tuna

499 The free school metrics show a variety of trends that depend on the model configuration. 

500 Interestingly, three social model configurations (S+f, HS+f and HS+ff) indicate that the 

501 presence of FADs leads to the formation of larger free schools. These trends are in 

502 agreement with the meeting point hypothesis (Fréon & Dagorn, 2000), which explains the 

503 natural associative behavior of tuna as means of meeting their congeners and forming larger 

504 schools. For model S+f, there is an optimal number of FADs that maximizes the school size. 

505 For the highly-social models HS+f and HS+ff, the school size is an increasing monotonic 
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506 function of the number of FADs, with no maximum. Conversely, the social model S+ff shows 

507 an inverse trend, with decreasing school sizes for increasing numbers of FADs. One of the 

508 potential negative impacts of increasing numbers of FADs is school fragmentation (Dagorn 

509 et al., 2013; Sempo et al., 2013). This study suggests that this scenario strongly depends on 

510 the type of schooling and association dynamics in play. Interestingly, all these scenarios 

511 come from the same model structure. This continuous set of model solutions could mimic 

512 the behavioral plasticity of animals, that can adapt their dynamics to respond to a variable 

513 environment. These model’s variants could also be considered as multi-species variants of 

514 the same associative behavior.

515

516 More globally, the analysis of the model’s properties leads to a series of metrics with non-

517 monotonic trends that are not completely intuitive. In the case of the size of free schools 

518 mentioned above, for the S+f model, the non-monotonic trend of FS_size (Figure 2) can be 

519 explained by the propensity of FADs to aggregate multiple schools for small FAD numbers 

520 (and thus promote the departure of larger schools for  ) and their tendency to 𝛽𝑎𝑔𝑔 ≠ 0

521 disperse schools over different FADs (with one or few schools each), in the limit of large FAD 

522 numbers. This dispersive effect, which explains a reduction of the size of free schools 

523 (school fragmentation) for increasing number of FADs, is not apparent for the HS+f model. 

524 In this model, the higher aggregative capacity of FADs for  counterbalances the 𝛽𝑎𝑔𝑔 = 1

525 fragmentation of schools due to increasing numbers of FADs for the range of model 

526 parameters tested. On the other hand, in the presence of a fusion term, increasing FAD 

527 numbers also contribute to the reduction the number of free schools and thus their fusion 

528 rates. This effect can explain the monotonic decreasing trend of the size of free schools for 

529 increasing numbers of FADs for model S+ff. Reversely, for model HS+ff, the higher 

530 aggregative capacity of FADs for  counterbalances this effect, similar to model HS+f.𝛽𝑎𝑔𝑔 = 1

531

532 Another example of non-monotonic trend is found for the number of free schools recorded 

533 for the S+ff model, which first increases with the number of FADs, then reaches a maximum 

534 and finally decreases. Generally, the number of free schools depends on the total associated 

535 population (which decrease with the number of FADs for all models, Figure 5) and the 

536 competition between the fission and fusion terms. For , if a single school of size 𝛽𝑎𝑔𝑔 = 0.5
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537  associates to a FAD, it has a non-null probability to depart into multiple schools, thus 𝑠 > 1

538 increasing the number of free schools. Therefore, the presence of FADs can first increase 

539 the number of free schools for this model configuration. On the other hand, in the limit of 

540 large FAD numbers, the decreasing free population and the presence of smaller FAD 

541 aggregations/school sizes prevail and thus cause a decreasing number of free schools. 

542

543 The fraction of FADs occupied by tuna in a FAD array can be derived using both fisheries-

544 dependent (Sempo et al., 2013) and independent data (Baidai et al., 2020). This is facilitated 

545 through the large-scale collection of data derived from echosounder buoys attached to FADs 

546 (Moreno et al., 2016)  as well as of catch data. Similarly, purse-seine catch data can provide 

547 insight into the size of FAD aggregations and free schools. Assessing their trends for 

548 increasing numbers of FADs will be essential to parametrize the model. However, to date, 

549 the information on the total number of floating objects at fine spatial and temporal scales is 

550 still considered sensitive data and is only partially available to scientists though specific 

551 agreements with their national fleets. Moving towards the complete availability of data on 

552 all FADs present in the ocean at a local scale is key to parametrize the model and thus 

553 provide science-based advices on the impacts of increasing numbers of FADs. This study 

554 outlines an increasing trend in the fraction of associated schools with increasing FAD 

555 numbers, across all model configurations. Assessing which model best fits tuna behavior will 

556 be key to quantitatively evaluating the increase in vulnerability of tuna populations to the 

557 purse seine fishery induced by increasing numbers of FADs. Finally, the model 

558 parametrization could benefit future technological improvements in the acoustic 

559 discrimination of tuna species (Moreno et al., 2019) and in the biomass estimates obtained 

560 from echosounder buoys (Baidai et al., 2020), which could allow for the evaluation of the 

561 dynamics of a FAD aggregation independently of catch data.  

562

563 Conclusion and Perspectives

564 The availability of new technologies to study wild animals in their natural environment at 

565 multiple spatial scales continues to increase (Hughey et al., 2018). In the case of tropical 

566 tuna and FADs, a variety of technologies can be used to characterize the associative 

567 behavior of tuna and the aggregation dynamics (Brehmer et al., 2019; Moreno et al., 2016). 
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568 These multiple data sources could be used to parametrize the models developed here. For 

569 tropical tuna, combining different data sources from electronic tagging, acoustic data and 

570 fisheries-dependent data could allow for estimations of the model parameters. This field-

571 based model could be used as a FAD-operating model to predict trends in several fisheries-

572 related metrics for variable tuna populations/FAD numbers, as well as to predict the impacts 

573 of increasing numbers of FADs on the ecology of these species. It could also be used to test 

574 the reliability and robustness of novel indicators of abundance developed for tuna (Capello 

575 et al., 2016; Santiago et al., 2016). More generally, this modeling approach could be applied 

576 to the study of social species living in groups in their natural environment, and allow for the 

577 evaluation of the impacts of habitat modifications due to anthropogenic activities and global 

578 change. In environments which are highly modified by humans, models such as the one 

579 summarized in this article, based on understanding the processes involved in the dynamics 

580 of animal groups in their habitats, will be increasingly necessary as management and 

581 prediction tools (Evans, 2012).

582

583 Acknowledgements

584 This study was supported by the MANFAD project and the CIGOEF ANR project.

585

586 Author contributions

587 MC: Conceptualization; MC and JR: Formal analysis; MC, JR and JLD: Methodology; JLD and 

588 LD: Supervision; MC: original draft writing; All authors discussed the results, contributed to 

589 the writing and gave final approval to the manuscript. 

590

591

592

593

594

595 References

596 Allee, W. C. (1931). Animal Aggregations, A Study in General Sociology. The University of 

597 Chicago Press,.

598 Allen, P. J., Barth, C. C., Peake, S. J., Abrahams, M. V., & Anderson, W. G. (2009). Cohesive 



23

599 social behaviour shortens the stress response: The effects of conspecifics on the stress 

600 response in lake sturgeon Acipenser fulvescens. Journal of Fish Biology, 74(1), 90–104. 

601 https://doi.org/10.1111/j.1095-8649.2008.02112.x

602 Ame, J. M., Rivault, C., & Deneubourg, J. L. (2004). Cockroach aggregation based on strain 

603 odour recognition. Animal Behaviour, 68(4), 793–801. 

604 https://doi.org/10.1016/j.anbehav.2004.01.009

605 Baidai, Y., Dagorn, L., Amande, M. J., Gaertner, D., & Capello, M. (2020). Machine learning 

606 for characterizing tropical tuna aggregations under Drifting Fish Aggregating Devices 

607 (DFADs) from commercial echosounder buoys data. Fisheries Research, 229. 

608 https://doi.org/10.1016/j.fishres.2020.105613

609 Baidai, Y., Dagorn, L., Amande, M. J., Gaertner, D., & Capello, M. (2020). Tuna aggregation 

610 dynamics at Drifting Fish Aggregating Devices : a view through the eyes of commercial 

611 echosounder buoys. https://doi.org/10.1093/icesjms/fsaa178

612 Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., 

613 Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Interaction 

614 ruling animal collective behavior depends on topological rather than metric distance: 

615 evidence from a field study. Proceedings of the National Academy of Sciences of the 

616 United States of America, 105(4), 1232–1237. 

617 https://doi.org/10.1073/pnas.0711437105

618 Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., & Walczak, A. M. (2012). 

619 Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of 

620 Sciences of the United States of America, 109(13), 4786–4791. 

621 https://doi.org/10.1073/pnas.1118633109

622 Brehmer, P., Sancho, G., Trygonis, V., Itano, D., Dalen, J., Fuchs, A., Faraj, A., & Taquet, M. 

623 (2019). Towards an Autonomous Pelagic Observatory: Experiences from Monitoring 

624 Fish Communities around Drifting FADs. Thalassas, 35(1), 177–189. 

625 https://doi.org/10.1007/s41208-018-0107-9

626 Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J.-L., & Theraula, G. (2001). 

627 Self-Organization in Biological Systems. Princeton University Press.

628 Capello, M., Deneubourg, J. L., Robert, M., Holland, K. N., Schaefer, K. M., & Dagorn, L. 

629 (2016). Population assessment of tropical tuna based on their associative behavior 

630 around floating objects. Scientific Reports, 6. https://doi.org/10.1038/srep36415



24

631 Capello, M., Robert, M., Soria, M., Potin, G., Itano, D., Holland, K., Deneubourg, J.-L., & 

632 Dagorn, L. (2015). A methodological framework to estimate the site fidelity of tagged 

633 animals using passive acoustic telemetry. PLoS ONE, 10(8). 

634 https://doi.org/10.1371/journal.pone.0134002

635 Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., & Viale, M. 

636 (2009). Scale-free correlations in bird flocks. ArXiv, q-bio.PE. 

637 http://arxiv.org/abs/0911.4393v1%5Cnpapers://a95032f2-422b-4b2a-927a-

638 da2e44727e65/Paper/p14768

639 Costa, J. T. (2006). The other insect societies. Belknap Press of Harvard University Press.

640 Dagorn, L., Holland, K. N., Restrepo, V., & Moreno, G. (2013). Is it good or bad to fish with 

641 FADs? What are the real impacts of the use of drifting FADs on pelagic marine 

642 ecosystems? Fish and Fisheries, 14(3), 391–415. https://doi.org/10.1111/j.1467-

643 2979.2012.00478.x

644 Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). 

645 Defaunation in the Anthropocene. Science, 345(6195), 401–406. 

646 https://doi.org/10.1126/science.1251817

647 Evans, M. R. (2012). Modelling ecological systems in a changing world. 181–190. 

648 https://doi.org/10.1098/rstb.2011.0172

649 FAO. (2020). The State of World Fisheries and Aquaculture 2020.

650 Fonteneau, A., Chassot, E., & Bodin, N. (2013). Global spatio-temporal patterns in tropical 

651 tuna purse seine fisheries on drifting fish aggregating devices ( DFADs ): Taking a 

652 historical perspective to inform current challenges. Aquatic Living Resources, 48, 37–

653 48.

654 Fréon, P., & Dagorn, L. (2000). Review of fish associative behaviour: Toward a generalisation 

655 of the meeting point hypothesis. Reviews in Fish Biology and Fisheries, 10(2), 183–207. 

656 https://doi.org/10.1023/A:1016666108540

657 Galef, B. G., & Giraldeau, L. A. (2001). Social influences on foraging in vertebrates: Causal 

658 mechanisms and adaptive functions. Animal Behaviour, 61(1), 3–15. 

659 https://doi.org/10.1006/anbe.2000.1557

660 Geary, W. L., Bode, M., Doherty, T. S., Fulton, E. A., Nimmo, D. G., Tulloch, A. I. T., Tulloch, V. 

661 J. D., & Ritchie, E. G. (2020). A guide to ecosystem models and their environmental 

662 applications. Nature Ecology & Evolution, 4(11), 1459–1471. 



25

663 https://doi.org/10.1038/s41559-020-01298-8

664 Gerlotto, F., & Paramo, J. (2003). The three-dimensional morphology and internal structure 

665 of clupeid schools as observed using vertical scanning multibeam sonar. Aquatic Living 

666 Resources, 16(3), 113–122. https://doi.org/10.1016/S0990-7440(03)00027-5

667 Girard, C. (2004). FAD: Fish Aggregating Device or Fish Attracting Device? A new analysis of 

668 yellowfin tuna movements around floating objects. Animal Behaviour, 67(2), 319–326. 

669 https://doi.org/10.1016/j.anbehav.2003.07.007

670 Goodale, E., Beauchamp, G., & Ruxton, G. D. (2017). Chapter 3 - Moving Mixed-Species 

671 Groups in Different Taxa. In E. Goodale, G. Beauchamp, & G. D. Ruxton (Eds.), Mixed-

672 Species Groups of Animals (pp. 27–57). Academic Press. 

673 https://doi.org/https://doi.org/10.1016/B978-0-12-805355-3.00003-8

674 Gordon, D. M. (2014). The Ecology of Collective Behavior. PLoS Biology, 12(3), 1–4. 

675 https://doi.org/10.1371/journal.pbio.1001805

676 Govinden, R., Capello, M., Forget, F., Filmalter, J. D., & Dagorn, L. (2021). Behavior of 

677 skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (T. obsesus) 

678 tunas associated with drifting fish aggregating devices (dFADs) in the Indian Ocean, 

679 assessed through acoustic telemetry. Fisheries Oceanography, November 2020, 1–14. 

680 https://doi.org/10.1111/fog.12536

681 Govinden, R., Jauhary, R., Filmalter, J., Forget, F., Soria, M., Adam, S., & Dagorn, L. (2013). 

682 Movement behaviour of skipjack (Katsuwonus pelamis) and yellowfin (Thunnus 

683 albacares) tuna at anchored fish aggregating devices (FADs) in the Maldives, 

684 investigated by acoustic telemetry. Aquatic Living Resources, 26(1), 69–77. 

685 https://doi.org/10.1051/alr/2012022

686 Hallier, J., & Gaertner, D. (2008). Drifting fish aggregation devices could act as an ecological 

687 trap for tropical tuna species. Marine Ecology Progress Series, 353, 255–264. 

688 https://doi.org/10.3354/meps07180

689 Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Saïd, I., Durier, V., 

690 Canonge, S., Amé, J. M., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R., 

691 & Deneubourg, J. L. (2007). Social integration of robots into groups of cockroaches to 

692 control self-organized choices. Science, 318(5853), 1155–1158. 

693 https://doi.org/10.1126/science.1144259

694 Hart, E. E., Fennessy, J., Chari, S., Ciuti, S., & Cherry, M. (2020). Habitat heterogeneity and 



26

695 social factors drive behavioral plasticity in giraffe herd-size dynamics. Journal of 

696 Mammalogy, 101(1), 248–258. https://doi.org/10.1093/jmammal/gyz191

697 Herbert-Read, J. E. (2016). Understanding how animal groups achieve coordinated 

698 movement. Journal of Experimental Biology, 219(19), 2971–2983. 

699 https://doi.org/10.1242/jeb.129411

700 Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T. M., Butchart, S. H. M., 

701 Carpenter, K. E., Chanson, J., Collen, B., Cox, N. A., Darwall, W. R. T., Dulvy, N. K., 

702 Harrison, L. R., Katariya, V., Pollock, C. M., Quader, S., Richman, N. I., Rodrigues, A. S. L., 

703 Tognelli, M. F., … Stuart, S. N. (2010). The impact of conservation on the status of the 

704 world’s vertebrates. Science, 330(6010), 1503–1509. 

705 https://doi.org/10.1126/science.1194442

706 Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., & Jensen, F. H. (2018). Challenges and 

707 solutions for studying collective animal behaviour in the wild. Philosophical 

708 Transactions of the Royal Society B: Biological Sciences, 373(1746), 1–13. 

709 https://doi.org/10.1098/rstb.2017.0005

710 Ioannou, C. (2017). Grouping and Predation. In T. K. Shackelford & V. A. Weekes-Shackelford 

711 (Eds.), Encyclopedia of Evolutionary Psychological Science (pp. 1–6). Springer 

712 International Publishing. https://doi.org/10.1007/978-3-319-16999-6_2699-1

713 ISSF. (2020). Status of the world fisheries for tuna. Nov. 2020. ISSF Technical Report 2020-16. 

714 International Seafood Sustainability Foundation, Suggested citation: Washington, D.C., 

715 USA. November.

716 Krause, J., & Ruxton, G. D. (2002). Living in groups. In Oxford: Oxford University Press.

717 Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73(6), 1943–1967. 

718 https://doi.org/10.2307/1941447

719 Lombardo, M. P. (2008). Access to mutualistic endosymbiotic microbes: An 

720 underappreciated benefit of group living. Behavioral Ecology and Sociobiology, 62(4), 

721 479–497. https://doi.org/10.1007/s00265-007-0428-9

722 Lopez, U., Gautrais, J., Couzin, I. D., & Theraulaz, G. (2012). From behavioural analyses to 

723 models of collective motion in fish schools. Interface Focus, 2(6), 693–707. 

724 https://doi.org/10.1098/rsfs.2012.0033

725 Lyon, L., & Caccamise, D. (1981). Habitat Selection by Roosting Blackbirds and Starlings: 

726 Management Implications. The Journal of Wildlife Management, 45(2), 435-443. 



27

727 https://www.jstor.org/stable/3807925.

728 Maeno, K. O., & Ebbe, M. A. O. B. (2018). Aggregation site choice by gregarious nymphs of 

729 the desert locust, schistocerca gregaria, in the Sahara desert of mauritania. Insects, 

730 9(3), 1–13. https://doi.org/10.3390/insects9030099

731 Marsac, F., Fonteneau, A., & Ménard, F. (2000). Drifting FADs used in tuna fisheries: an 

732 ecological trap? Proceedings of the 1st Symposium on Tuna Fisheries and FADs, 

733 Martinique, October 1999, 537–552.

734 Ménard, F., Fonteneau, A., Gaertner, D., Nordstrom, V., Stéquert, B., & Marchal, E. (2000). 

735 Exploitation of small tunas by a purse-seine fishery with fish aggregating devices and 

736 their feeding ecology in an eastern tropical Atlantic ecosystem. ICES Journal of Marine 

737 Science, 57(3), 525–530. https://doi.org/10.1006/jmsc.2000.0717

738 Moreno, G., Dagorn, L., Capello, M., Lopez, J., Filmalter, J., Forget, F., Sancristobal, I., & 

739 Holland, K. (2016). Fish aggregating devices (FADs) as scientific platforms. Fisheries 

740 Research. https://doi.org/10.1016/j.fishres.2015.09.021

741 Moreno, G., Boyra, G., Sancristobal, I., Itano, D., & Restrepo, V. (2019). Towards acoustic 

742 discrimination of tropical tuna associated with Fish Aggregating Devices. PLoS ONE, 

743 14(6), 1–24. https://doi.org/10.1371/journal.pone.0216353

744 Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs 

745 in animal aggregation. Science, 284(5411), 99–101. 

746 https://doi.org/10.1126/science.284.5411.99

747 Patterson, J. E. H., & Ruckstuhl, K. E. (2013). Parasite infection and host group size: A meta-

748 analytical review. Parasitology, 140(7), 803–813. 

749 https://doi.org/10.1017/S0031182012002259

750 Pérez, G., Dagorn, L., Deneubourg, J. L., Forget, F., Filmalter, J. D., Holland, K., Itano, D., 

751 Adam, S., Jauharee, R., Beeharry, S. P., & Capello, M. (2020). Effects of habitat 

752 modifications on the movement behavior of animals: the case study of Fish Aggregating 

753 Devices (FADs) and tropical tunas. Movement Ecology, 8(1), 1–10. 

754 https://doi.org/10.1186/s40462-020-00230-w

755 Pulliam, H. R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38(2), 

756 419–422. https://doi.org/10.1016/0022-5193(73)90184-7

757 Rahmani, P., Peruani, F., & Romanczuk, P. (2020). Flocking in complex environments—

758 Attention trade-offs in collective information processing. PLoS Computational Biology, 



28

759 16(4), 1–18. https://doi.org/10.1371/journal.pcbi.1007697

760 Robert, M., Dagorn, L., Filmalter, J., Deneubourg, J., Itano, D., & Holland, K. (2013). Intra-

761 individual behavioral variability displayed by tuna at fish aggregating devices (FADs). 

762 Marine Ecology Progress Series, 484, 239–247. https://doi.org/10.3354/meps10303

763 Robert, M., Dagorn, L., & Deneubourg, J. L. (2014). The aggregation of tuna around floating 

764 objects: What could be the underlying social mechanisms? Journal of Theoretical 

765 Biology, 359, 161–170. https://doi.org/10.1016/j.jtbi.2014.06.010

766 Robert, M., Dagorn, L., Louis, J., David, D., & Holland, K. (2012). Size-dependent behavior of 

767 tuna in an array of fish aggregating devices (FADs). Mar. Biol., 907–914. 

768 https://doi.org/10.1007/s00227-011-1868-3

769 Roberts, G. (1996). Why individual vigilance declines as group size increases. Animal 

770 Behaviour, 51(5), 1077–1086. https://doi.org/10.1006/anbe.1996.0109

771 Rodriguez-Tress, P., Capello, M., Forget, F., Soria, M., Beeharry, S. P., Dussooa, N., & Dagorn, 

772 L. (2017). Associative behavior of yellowfin Thunnus albacares, skipjack Katsuwonus 

773 pelamis, and bigeye tuna T. obesus at anchored fish aggregating devices (FADs) off the 

774 coast of Mauritius. Marine Ecology Progress Series, 570. 

775 https://doi.org/10.3354/meps12101

776 Rubenstein, D. I. (1978). On Predation, Competition, and the Advantages of Group Living. In 

777 P. P. G. Bateson & P. H. Klopfer (Eds.), Social Behavior (pp. 205–231). Springer US. 

778 https://doi.org/10.1007/978-1-4684-2901-5_9

779 Santiago, J., Lopez, J., Moreno, G., Murua, H., Quincoces, I., & Soto, M. (2016). TOWARDS A 

780 TROPICAL TUNA BUOY-DERIVED ABUNDANCE INDEX ( TT-BAI ). Collect. Vol. Sci. Pap. 

781 ICCAT, 72(3), 714–724.

782 Schmidt, G. (1982). Random and Aggregative Settlement in Some Sessile Marine 

783 Invertebrates. Marine Ecology Progress Series, 9, 97–100. 

784 https://doi.org/10.3354/meps009097

785 Sempo, G., Dagorn, L., Robert, M., & Deneubourg, J. L. (2013). Impact of increasing 

786 deployment of artificial floating objects on the spatial distribution of social fish species. 

787 Journal of Applied Ecology, 50(5), 1081–1092. https://doi.org/10.1111/1365-

788 2664.12140

789 Sumpter, D. J. T. (2006). The principles of collective animal behaviour. Philosophical 

790 Transactions of the Royal Society B: Biological Sciences, 361(1465), 5–22. 



29

791 https://doi.org/10.1098/rstb.2005.1733

792 Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. 

793 (2004). Animal species diversity driven by habitat heterogeneity/diversity: The 

794 importance of keystone structures. Journal of Biogeography, 31(1), 79–92. 

795 https://doi.org/10.1046/j.0305-0270.2003.00994.x

796 Tolotti, M. T., Forget, F., Capello, M., Filmalter, J. D., Hutchinson, M., Itano, D., Holland, K., & 

797 Dagorn, L. (2020). Association dynamics of tuna and purse seine bycatch species with 

798 drifting fish aggregating devices (FADs) in the tropical eastern Atlantic Ocean. Fisheries 

799 Research, 226. https://doi.org/10.1016/j.fishres.2020.105521

800 Turner, G., and Pitcher, T. (1986). Attack Abatement : A Model for Group Protection by 

801 Combined Avoidance and Dilution. The American Naturalist, 128(2), 228–240.

802 Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140. 

803 https://doi.org/10.1016/j.physrep.2012.03.004

804 Vinatier, F., Tixier, P., Duyck, P. F., & Lescourret, F. (2011). Factors and mechanisms 

805 explaining spatial heterogeneity: A review of methods for insect populations. Methods 

806 in Ecology and Evolution, 2(1), 11–22. https://doi.org/10.1111/j.2041-

807 210X.2010.00059.x

808

809

810



30

811 Supplementary Figures

812

N
S

S+f
S+ff

H
S+f

H
S+ff

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

10
20
30
40
50

20

30

40

50

20

30

40

50

20

30

40

50

25
30
35
40
45
50

time

N
1

813 Figure S1: Number of unoccupied FADs ( ) versus time (initial condition: 𝑭𝟎(𝒕) 𝐹𝑠(0)

814  ), for the five model configurations (see Table 2), with = 0 ∀ 𝑠; 𝑋1(0) = 𝑁; 𝑋𝑠 > 1(0) = 0

815  and .𝑁 = 100 𝑃 = 50
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818 Figure S2: Total number of free schools versus time (initial condition:  𝐹𝑠(0) = 0 ∀ 𝑠; 𝑋1(0)

819 ), for the five model configurations (see Table 2), with  and = 𝑁; 𝑋𝑠 > 1(0) = 0 𝑁 = 100

820 .𝑃 = 50
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824 Figure S3 : Equilibrium distribution of the number of FAD aggregations of size 𝑠 (𝐹𝑠). Rows 
825 correspond to different population sizes (from top to bottom: N=10, 40, 100) and columns 
826 correspond to different numbers of FADs (from left to right: P=1, 2, 10, 50, 100). Each color 
827 indicates one of the five model configurations considered (see Table 2).

828

829 Figure S4 : The same as Figure S3 in semi-logarithmic scale.

830
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832 Figure S5 : Equilibrium distribution of the number of free schools of size 𝑠 (X𝑠). Rows 
833 correspond to different population sizes (from top to bottom: N=10, 40, 100) and columns 
834 correspond to different numbers of FADs (from left to right: P=1, 2, 10, 50, 100). Each color 
835 indicates one of the five model configurations considered (see Table 2). 

836
837

838
839 Figure S6 : The same as Figure S5 in semi-logarithmic scale.
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840

841 Figure S7 : The same as Figure S5 in log-log scale.
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844 Figure S8 : Mean (x-axis) to variance (y-axis) relation for the size of FAD aggregations (F𝑠). 
845 Each column corresponds to a model configuration (Table 2). Rows denote the population 
846 sizes and colors the number of FADs. The dashed line corresponds to y=x (equidispersion).
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850 Figure S9 : Mean (x-axis) to variance (y-axis) relation for the size of free schools (X𝑠). Each 
851 column corresponds to a model configuration (Table 2). Rows denote the population sizes 
852 and colors the number of FADs. The dashed line corresponds to y=x (equidispersion).
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858 Figure S10: Free school aggregation metrics (same as Figure 3) divided by N.
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861 Figure S11: FAD aggregation metrics (m) divided by N.

862

863
864 We develop a model to assess the impacts of human-induced habitat modifications on social animals.
865 The model accounts for the interplay of increasing numbers of habitat heterogeneities on animal 
866 groups.
867 The model properties are investigated considering the case study of tropical tuna schools.
868 This study offers a general modeling framework to study social species in their habitats.
869 This approach can accounts for both ethological and ecological drivers of animal groups dynamics.
870
871
872 Author contributions



37

873 MC: Conceptualization; MC and JR: Formal analysis; MC, JR and JLD: Methodology; JLD and 

874 LD: Supervision; MC: original draft writing ; All authors discussed the results, contributed to 

875 the writing and gave final approval to the manuscript. 

876
877


