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The ongoing decline of large marine vertebrates must be urgently mitigated, partic-
ularly under increasing levels of climate change and other anthropogenic pressures. 
However, characterizing the connectivity among populations remains one of the great-
est challenges for the effective conservation of an increasing number of endangered 
species. Achieving conservation targets requires an understanding of which seascape 
features influence dispersal and subsequent genetic structure. This is particularly chal-
lenging for adult-disperser species, and when distribution-wide sampling is difficult. 
Here, we developed a two-step modelling framework to investigate how seascape fea-
tures drive the genetic connectivity of marine species without larval dispersal, to better 
guide the design of marine protected area networks and corridors. We applied this 
framework to the endangered grey reef shark, Carcharhinus amblyrhynchos, a reef-asso-
ciated shark distributed across the tropical Indo-Pacific. In the first step, we developed 
a seascape genomic approach based on isolation-by-resistance models involving circuit 
theory applied to 515 shark samples, genotyped for 4991 nuclear single-nucleotide 
polymorphisms. We show that deep oceanic areas act as strong barriers to dispersal, 
while proximity to habitat facilitates dispersal. In the second step, we predicted the 
resulting genetic differentiation across the entire distribution range of the species, pro-
viding both local and global-scale conservation units for future management guidance. 
We found that grey reef shark populations are more fragmented than expected for such 
a mobile species, raising concerns about the resilience of isolated populations under 
high anthropogenic pressures. We recommend the use of this framework to identify 
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barriers to gene flow and to help in the delineation of conservation units at different scales, together with its integration across 
multiple species when considering marine spatial planning.

Keywords: circuit theory, conservation, gene flow, isolation-by-resistance, reef sharks, seascape genomics

Introduction

Marine ecosystems across the globe are under increasing 
pressure due to habitat fragmentation, overexploitation and 
climate change (McCauley et al. 2015, Young et al. 2016, 
Albouy et al. 2020). Due to their conservative life-history 
traits of low reproductive rates, high longevity and slow 
growth, large marine vertebrates such as marine mammals, 
seabirds and elasmobranchs are particularly vulnerable to 
human-induced mortalities: their rate of extinction is indeed 
higher due to fisheries (including bycatch), habitat distur-
bance and pollution (Estes et al. 2016, McClenachan et al. 
2016, MacNeil et al. 2020, Yan et al. 2021). Their effec-
tive protection is an unprecedented challenge that must 
be addressed in the coming decades (Duarte et al. 2020, 
Sala et al. 2021).

The implementation of effective conservation measures 
for large marine vertebrates requires that space use by these 
potentially highly mobile species is taken into account 
(Harrison et al. 2018, Jacoby et al. 2020), and to better under-
stand the factors driving connectivity among populations in 
increasingly fragmented seascapes (McRae and Beier 2007, 
Balbar and Metaxas 2019). Indeed, through the exchange 
of genes, connectivity plays a vital role in maintaining 
thriving natural populations (Cowen and Sponaugle 2009, 
Jangjoo et al. 2016, Dunn et al. 2019), ensuring biodiversity 
conservation and fisheries sustainability (Gaines et al. 2010, 
Edgar et al. 2014, Krueck et al. 2017, Álvarez-Noriega et al. 
2020).

Population connectivity of most marine animals depends 
on a dispersive planktonic larval phase. This life-history stage 
can last from days to months, and larval dispersal can be 
modelled using biophysical or genetic frameworks (Bryan-
Brown et al. 2017, Manel et al. 2019, Harrison et al. 2020). 
Genetic connectivity, a measure of the degree to which gene 
flow affects evolutionary processes among populations, has 
been widely studied among larval dispersers (Benestan et al. 
2021), since gene flow plays a key role in maintaining genetic 
diversity and healthy populations able to adapt to a chang-
ing environment (Slatkin 1987, Lowe and Allendorf 2010, 
Song et al. 2013, Goetze et al. 2021).

In contrast, investigating the population or genetic con-
nectivity of species whose dispersal is realized by adults is 
more challenging as adult connectivity cannot be modeled 
using the same oceanographic models (Pazmiño et al. 2017, 
Boissin et al. 2019, Pirog et al. 2019). Yet, the question of 
which factors drive nektonic adult connectivity has received 
less attention, while its knowledge is just as important for 
those species relying on dispersal of larger individuals to 
maintain connectivity (Momigliano et al. 2015). Indeed, 
little is known about which habitat, environmental and 

biogeographic features drive the connectivity among popu-
lations for adult dispersers across generations. Investigating 
these factors can provide key information to properly design 
corridors and networks of marine protected areas (MPAs) 
(Almany et al. 2009, Magris et al. 2014, 2018, Balbar and 
Metaxas 2019, Jacoby et al. 2020).

One approach to investigate the factors shaping genetic 
connectivity among populations and identify subsequent 
barriers to gene flow is the use of isolation-by-resistance 
(IBR) models (McRae 2006). These models, popular in ter-
restrial ecology (Dickson et al. 2019), remain largely over-
looked in the marine realm (Selkoe et al. 2016). Unlike 
isolation-by-distance (IBD) models, IBR models incorpo-
rate the effects of heterogeneous habitats on gene flow, thus 
they can account for the effect of seascape features on the 
genetic differentiation among populations and also make 
predictions for sites that have not been sampled (McRae and 
Beier 2007). A combination of large empirical genetic data-
sets and modelled genetic differentiation could therefore be 
used to delineate conservation units (groupings of a species 
which contain sufficient biodiversity for persistence through 
subsequent generations) throughout the entire range of a 
species.

Separating a species’ range into conservation units can 
indeed identify key areas for dispersal along with populations 
under potential threats (Allendorf et al. 2010, Funk et al. 
2012, Barbosa et al. 2018). Although the definition of con-
servation units has been debated (Waples and Gaggiotti 
2006, Palsbøll et al. 2007, Lowe and Allendorf 2010), the 
hierarchical delineation of population subdivisions, based on 
genetic connectivity, can provide significant clues for both 
local and global management strategies (Dilts et al. 2016, 
Barbosa et al. 2018). Surprisingly, the degree of habitat 
fragmentation and the subsequent delineation of conserva-
tion units are poorly investigated in threatened and mobile 
marine species. Advances in genetic tools and computational 
power (Schadt et al. 2010, Funk et al. 2012, Balkenhol et al. 
2017, DiBattista et al. 2017, Barbosa et al. 2018) now permit 
the development of models predicting how seascape features 
shape connectivity over a large scale at high spatial resolution 
(Leonard et al. 2017).

With no larval stage, the adult dispersion of sharks is of 
high importance (Hirschfeld et al. 2021), and shark conser-
vation remains challenging with many species showing exten-
sive geographic ranges spanning several countries (Dulvy et al. 
2017, 2021, Pacoureau et al. 2021). Additionally, most shark 
species are highly vulnerable to fishing pressure given their 
life history traits, e.g. slow growth, late sexual maturity and 
low fecundity (Dulvy et al. 2014). Over one-third of chon-
drichthyans are threatened with extinction (International 
Union for Conservation of Nature Red List; Dulvy et al. 
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2021), and some have undergone declines greater than 
70% in abundance in the last few decades (Roff et al. 2018, 
Pacoureau et al. 2021). The size of MPAs is known to be 
a major driver of their protection effectiveness (Juhel et al. 
2017, 2019, Dwyer et al. 2020, Bonnin et al. 2021), however 
these areas often only encompass a small proportion of each 
population’s distribution.

Here, we focused on the grey reef shark Carcharhinus 
amblyrhynchos as a model species to explore the potential 
offered by seascape genetics for the characterization and 
prediction of genetic connectivity of adult dispersers, the 
identification of barriers and resistance to dispersal, and pos-
sible implications for the spatial delineation of conservation 
units for management purposes. This species has strongly 
declined in non-protected reefs close to human habitation 
(Robbins et al. 2006, Juhel et al. 2017, 2019, Ruppert et al. 
2017) and is now listed as Endangered on the IUCN Red 
List. It shows a high level of residency and small home range 
but adults can perform long-range movements (> 700 km) 
along reefs and across oceanic waters (Espinoza et al. 2015a, 
White et al. 2017, Bonnin et al. 2019, 2021).

We followed a two-step approach to investigate the genetic 
connectivity of this near-threatened coral reef-associated 
predator and delineate hierarchical conservation units based 
on estimates of genetic connectivity. Firstly, we employed 
IBR modelling and electrical circuit theory (CT) (McRae 
2006, McRae et al. 2008) to determine how seascape fea-
tures shape the genetic differentiation of this species, using 
an extensive genetic dataset of over 500 sharks collected in 17 
locations across the Indian and Pacific oceans. We then used 
this modelling framework to delineate hierarchical conserva-
tion units across the whole species distribution range (Indo-
Pacific), to better inform conservation strategies and identify 
the most vulnerable populations.

Material and methods

Shark sampling and locations

We collected fin clips from 515 individual grey reef sharks 
across 17 locations in the Indian and Pacific Oceans (Fig. 1). 
Samples from the Indian Ocean (n = 99), Indonesia (n = 24) 
and the Great Barrier Reef (n = 48) were already described 
and genotyped in a published study (Momigliano et al. 
2017). The remaining samples (n = 344) were collected in 
the New Caledonian Archipelago, between June 2015 and 
November 2016, using barbless circle hooks for mouth-
hooking and easy release after sampling. Sharks were caught 
on single lines to reduce bycatch and minimize handling and 
processing times.

Population genomics

We extracted DNA from fin clips using DNEasy Blood 
and Tissue kit (QIAGEN) for the 344 samples from New 
Caledonia. Each DNA solution was adjusted, after quality 

control, to 12–15 µl at 50 ng µl−1 prior to DNA sequenc-
ing at Diversity Arrays Technology Pty. Ltd (Canberra, 
Australia), using DArTseq protocol (Sansaloni et al. 2011). 
Post-extraction laboratory protocols and SNP calling and 
filtering procedures used were the same as described in 
Momigliano et al. (2017), except for filtration to remove loci 
with minor allele frequencies, where we filtered SNPs for 
MAF > 0.02 instead of 0.05, as sampling was extended to 
numerous additional locations.

After combining these SNPs with those of a previous 
study (Momigliano et al. 2017), outlier tests were used to 
filter loci for which genetic differentiation (FST) is higher than 
expected under neutral processes only. We applied a combi-
nation of two methods to identify and exclude from further 
analyses these loci potentially under selection; OutFLANK 
(Whitlock and Lotterhos 2015) and FLK, i.e. extensions of 
the Lewontin–Krakauer test that accounts for population co-
ancestry (Bonhomme et al. 2010). To improve the detection 
of outlier loci, we removed the Cocos and Chagos samples to 
perform the OutFLANK and FLK tests. Those two sampling 
populations are very remote and show great genetic differen-
tiation compared to the other populations.

Population structure

We applied a Bayesian unsupervised clustering method (fast-
STRUCTURE) to investigate genetic structure at neutral 
loci (Raj et al. 2014). fastSTRUCTURE implements an effi-
cient algorithm for approximate inference of the admixture 
model from STRUCTURE (Pritchard et al. 2000). We ran 
fastSTRUCTURE with simple and logistic priors, at mul-
tiple numbers of clusters, K ranging from 1 to 10.

We also carried out discriminant analysis of principal 
components (DAPC) using the R package adegenet, with 
sampling location of each individual used as prior informa-
tion (Jombart et al. 2010) to investigate patterns of genetic 
structure at neutral loci. The number of principal compo-
nents (PCs) to retain for DAPC analyses was determined 
by cross-validation using a training set of 80% of the data 
and we therefore retained the number of PCs for which the 
obtained mean square error was the lowest.

Isolation-by-distance and isolation-by-resistance 
models

The relationship between genetic distance at neutral SNP 
loci (FST) and geographic distance, i.e. isolation-by-distance 
(IBD), as well as isolation-by-resistance (IBR) patterns, were 
investigated using multiple regression on distance matri-
ces (MRM; Lichstein 2007; Fig. 2 – step 1). First, pairwise 
genetic distances between all locations (Weir and Cockerham 
FST, Weir and Cockerham 1984) were calculated using the 
R package diveRsity (Keenan et al. 2013). Pairwise shortest 
geographic distances by sea between all locations were mea-
sured with the R package marmap (Pante and Simon-Bouhet 
2013). IBR was then investigated, to check for further effects 
of some seascape features (bathymetry, distance-to-habitat) 



4

on the dispersal of grey reef shark populations. IBR mod-
els assume a linear relationship between pairwise genetic 
distance and pairwise resistance distance, a metric both tak-
ing into account geographic distance and landscape features 
between locations (McRae and Beier 2007).

Furthermore, we used IBR models implementing electri-
cal circuit theory (CT) (McRae and Beier 2007, McRae et al. 
2008), and tested their performance in explaining genetic 
differentiation across our sampling locations of grey reef 
sharks across the Indo-Pacific. This allowed us to explore 
different biological hypotheses about gene dispersal for this 
adult-disperser species. Methods based on CT allow the cal-
culation of a resistance distance between each pair of sampled 
locations by simultaneously considering all possible pathways 
connecting these locations, and ascribing resistance values to 
each pathway.

Resistance maps

Resistance maps were generated in Python (gdal) with 10 
km cells, based on different hypotheses. The spatial resolu-
tion of 10 km was arbitrarily chosen to allow a reasonable 
computation time, and because grey reef sharks have shown 
a high residency and relatively small home range of the same 
order of magnitude (Espinoza et al. 2015a, White et al. 2017, 
Bonnin et al. 2021). First, we produced a map with homo-
geneous resistance values across every cell to be used in a 
‘CT null model’, corresponding to CT in a homogeneous 
seascape. Then, bathymetry (GEBCO, gebco.net) and dis-
tance-to-habitat resistance maps were drawn separately and 
in combination as seascape features potentially driving gene 
flow. We included coral reefs (<www.data.unep-wcmc.org>; 
Spalding et al. 2001) and island nearshores as suitable habitats 

Figure 1. Maps of the 17 sampling locations where 515 grey reef shark samples were collected. (A) Global sampling locations (B) Detailed 
sampling at the scale of the New Caledonian archipelago (EEZ outlined in grey). The number of individuals sampled for SNP analysis from 
each location is in brackets.
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Figure 2. Conceptual framework of the two-step procedure of isolation-by-resistance models to produce conservation units based on simu-
lated locations. In step 1, numerous resistance maps are produced via the parametrization step described in the Supporting information, 
then used as input in GFLOW, resulting in one matrix of resistance distance per resistance map. For each map corresponding to one param-
eter set, resistance values are then linked by dyad to genetic distance values (linearized FST), and model robustness evaluated with the 
regression coefficient (R2) obtained from a multiple regression on distance matrices (MRM). In step 2, GFLOW is run on simulated loca-
tions for grey reef sharks (Supporting information) with the resistance map corresponding to the best IBR model selected in step 1. The 
output, a matrix of resistance distance between all simulated locations, is then converted to genetic distances based on the best IBR linear 
model. The subsequent matrix of simulated genetic distance is then submitted to a density peaks clustering method described in Rodriguez 
and Laio (2014).
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for grey reef sharks (<www.earthworks.stanford.edu/catalog/
harvard-glb-volc>). Distance-to-habitat maps were calculated 
with and without the inclusion of shallow seamounts as suit-
able habitats (Yesson et al. 2011), selected at a threshold of 
280 m corresponding to the reported preferential depth for 
this species (Last and Stevens 2009). Different types of rela-
tionships between seascape features and resistance were then 
explored (Supporting information). Indeed, the grey reef 
shark being a shallow reef-associated species, we hypothesized 
that resistance to gene flow was likely to increase with dis-
tance-to-habitat and depth, and thus tested multiple values of 
parameters for linear, logarithmic and exponential relation-
ships with minimum and maximum thresholds. Different 
maximum resistance values were also used to calculate the set 
of resistance maps to run through CT. Full details on resis-
tance maps parametrization are reported in the Supporting 
information.

Pairwise distances using circuit theory

As shown in Fig. 2 – step 1, the set of obtained resistance 
maps was then used as input for IBR models using GFLOW 
(Leonard et al. 2017), an optimized version of the Circuitscape 
software, estimating pairwise resistance distances between 
sampling locations using circuit theory (McRae 2006, 
McRae and Beier 2007). This batch of obtained pairwise 
resistance distances between all locations and for every resis-
tance map was then correlated to pairwise genetic distances 
(pairwise FST estimates linearized using the formula FST/(1 − 
FST); Fig. 2). As a result, in addition to the IBD and CT null 
models, one IBR model was obtained for each resistance map  
previously obtained.

Models were compared and the best model was chosen by 
looking at a combination of R2 values from multiple regres-
sion matrices (MRMs), Mantel tests (Mantel 1967) and 
AICc (R package AICcmodavg). Because of the high correla-
tion between bathymetry and distance-to-habitat, tests like 
partial Mantel (Smouse et al. 1986) and MRMs ran indepen-
dently on the two variables are not optimal (Legendre and 
Fortin 2010, Peterman and Pope 2021). Univariate models 
were optimized on one hand, representing the best correla-
tions between seascape features independently and genetic 
distances. On the other hand, multivariate models account-
ing for both bathymetry and distance-to-habitat cumulated 
in single resistance maps were also tested with multiple com-
binations of maximum resistance, relationship shapes and 
associated parameters. More details on the general frame-
work, parametrization and model optimization are available 
in Fig. 2 and the Supporting information.

Simulations

Locations with possible presence of grey reef sharks were 
identified following the same criteria described before as 
suitable habitat (excluding seamounts) and subsampled at 
different scales (Froese et al. 2010). The first scale was at the 

extent of our sampling locations, from the Cocos Keeling 
Islands to the Eastern New Caledonian volcanic islands. 
Locations with at least 50 km separation were randomly 
chosen based on a Matérn process maximizing the number 
of chosen points (Kiderlen and Hörig 2013). This process 
randomly selects points of suitable habitat, while incremen-
tally preventing adjacent habitat from being selected by 
the algorithm at a given distance threshold. As a result, the 
number of selected points varies each time such process is 
applied. We applied it 1000 times and selected the result 
with the highest number of points selected. Next, at the 
scale of the entire distribution range of the species (tropi-
cal Indo-Pacific), including hypothetical presences only 
based on habitat suitability (ranging between 32°E–130°W 
longitude and 30°S–30°N latitude), further locations sepa-
rated by a distance of at least 100 km were randomly chosen 
using the same method. Such distances between locations 
were chosen to keep computation time reasonable. The 
extent to which locations were randomly chosen was nar-
rower than the extent of the resistance maps used as input 
from GFLOW. Indeed, the artificial boundaries created by 
the edges of a map can have a non-negligible impact on 
the calculations of landscape resistance to gene flow (Koen  
et al. 2010).

The best CT model obtained with our optimization 
framework, and thus the resistance map best explaining 
genetic differentiation between the sampling locations, was 
further used to run GFLOW on the randomly chosen loca-
tions (Fig. 2 – step 2). It allowed computation of pairwise 
resistance distances between all possible locations for grey reef 
shark presence previously selected with the Matérn process. 
Such pairwise resistance distances were then converted to 
pairwise genetic distances (predicted Weir and Cockerham 
FST), using the best relationship between distance matrices 
obtained in the optimization step (i.e. from empirical data).

Clustering of subpopulations

The obtained dissimilarity matrices of genetic distances 
were then subjected to the clustering procedure developed 
by Rodriguez and Laio (2014) to delineate conservation 
units (CUs) at both scales. Based on the automatic identi-
fication of local density peaks, this method allows the detec-
tion of clusters and outliers based on the distance between 
data points. It is similar to density-based algorithms such as 
DBSCAN (Ester et al. 1996), however it delineates clusters 
without introducing a noise-signal cutoff, thus decreasing the 
probability of low-density clusters being classified as noise 
(Rodriguez and Laio 2014). The only variable parameter dc 
(cutoff distance) was fixed so that the average number of 
neighbors represents 5% of the total number of points in the 
dataset (Rodriguez and Laio 2014, Du et al. 2016). Results 
produced by this clustering method are very robust across 
variation of this parameter, particularly on large-scale datasets 
(Xu et al. 2020).
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Results

OutFLANK and FLK tests identified 8 shared outlier loci, 
that we excluded before further analyses, leaving a total of 
4983 SNPs considered as neutral.

The discriminant analysis (DAPC) indicated that grey 
reef shark populations could be split into four distinct 
clusters (Fig. 3A–C), also identified by fastSTRUCTURE 
(K = 4 genetic clusters, Fig. 3D). This clustering revealed 
greater differentiation between areas separated by large dis-
tances or deep waters (Fig. 3A–C). Sharks sampled at the 
far remote Chagos showed greater genetic differentiation 
compared to other sampling locations (Fig. 3A). This effect 
was also observed in populations from the oceanic island 
of Matthew on the New Hebrides Plate, and the Cocos 
Keeling Islands, which are both isolated coral reef islands 
separated by deep oceanic waters (Fig. 3B). The DAPC also 
suggested that sharks from the remote reefs of Chesterfield 
were more related to sharks from the Great Barrier Reef 
(GBR) than to sharks from the rest of the New Caledonian 
archipelago (Fig. 3C). Pairwise genetic distances (Weir 
and Cockerham FST values) confirmed the patterns of 

differentiation observed by DAPC and fastSTRUCTURE 
(Supporting information).

During model optimization, 618 resistance maps were 
obtained when testing single parameter hypotheses (bathym-
etry or distance-to-habitat; with or without including sea-
mounts as suitable habitat). Likewise, a total of 93 632 
resistance maps combining both seascape features in every 
possible combination were obtained and used as input for 
GFLOW.

Isolation-by-distance (IBD) calculated with linear geo-
graphic shortest distances between sampling locations 
explained an important part of genetic differentiation 
(R2 = 0.493), as well as IBD calculated with Circuit Theory 
(GFLOW null model, pixels of value 1, R2 = 0.284), but 
uncertainty and many outliers remained (Fig. 4). The dis-
tance-to-habitat- and bathymetry-based univariate models, 
respectively a model with high resistance value when at more 
than 200 km from any suitable habitat and a model with low 
resistance at depths shallower than 2000 m, attaining very 
high resistance values at depths below 4000 m, were highly 
predictive (R2 = 0.952; Mantel = 0.976; AICc = −904 and 
R2 = 0.985; Mantel = 0.992; AICc = −1041, respectively). 

Figure 3. Results from discriminant analysis of principal components (DAPC) performed on the set of 4983 filtered neutral SNP data 
(excluding outliers) from all locations (A), all locations except Chagos (B) and locations in the Pacific Ocean including Eastern Australia 
and New Caledonia except Matthew (C). Colors and inertia ellipses correspond to sampling locations. (D) Results from fastSTRUCTURE 
using simple prior and 4 clusters. Samples from Chagos were included in this analysis.
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The best model combining both bathymetry and distance-to-
habitat was even more predictive (R2 = 0.988; Mantel = 0.994; 
AICc = −1070). This best model did not include seamounts 
as suitable habitat and suggests that deep oceanic waters rep-
resent a strong barrier to dispersal. It also suggests that habitat 
proximity of less than 50 km promotes gene flow (Supporting 
information). This best model was selected despite the mod-
erate increase in R2 compared to univariate models, as ∆AICc 
>> 10 in both cases (∆AICc = 160 and 29 for distance-to 
habitat and bathymetry respectively; Burnham et al. 2011), 
suggesting support for the more complex model.

At the scale of the entire distribution range, the GFLOW 
run using the best resistance map produced a matrix of 480 

690 pairwise resistance distances between the 981 simulated 
locations that were randomly selected across the Indo-Pacific, 
separated by 100 km (Supporting information). Density 
peaks clustering revealed a total of 38 conservation units 
comprising ≥ 2 locations, along with 202 isolated locations 
(Fig. 5A). The widest unit was comprised of reefs and oce-
anic islands in the eastern part of the Indo-Australian plate, 
along with the southeastern part of the Eurasian plate (Sunda 
plate), while the western frontier of the unit delineated by 
the Java Trench. Another wide unit connected reefs from 
the Solomon and Bismarck plates, while remote islands in 
the southern part of the Solomon Islands were connected 
to Vanuatu. Interestingly, Tonga, Fiji, Wallis and Futuna, as 

Figure 4. Results of the optimization framework showing (A) the best resistance maps associated with different hypotheses: ‘GFLOW Null 
Model’, distance-to-habitat alone, bathymetry alone and the best combined model (distance-to-habitat and bathymetry, without including 
seamounts in the distance-to habitat layer); (B) the associated GFLOW maps representing current flowing between every pair of locations 
for the given resistance map. Brighter colors indicate higher current flow; (C) the subsequent linear relationships between pairwise resistance 
distances obtained with GFLOW and linearized FST for every pair of locations. R2, Mantel statistic and AICc are indicated for each model.
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well as the southern islands of Tuvalu formed a major unit in 
the Western Pacific Ocean. Five distinct units encompassed 
reefs from the Red Sea and the Oman Sea/Persian Gulf, 
while the western coast of Madagascar and the Comoros, 
including Mayotte, in the Mozambique Channel were part 
of a single unit together with a wide section of the eastern 
coast of Africa. The Seychelles formed a single unit, which 
was also the case of Chagos. Another unit in the Indian plate 
was composed of surrounding reefs in India and Sri Lanka, 
the Laccadive Islands and the Maldives. Lastly, except from 
some wide units comprised of archipelagos like for instance 
the western part of Micronesia, or the Tuamotu archipelago 
in French Polynesia which formed single units, reefs and oce-
anic islands from the Pacific plate were much fragmented, 

with the largest proportion of small units and completely iso-
lated patches of habitat (e.g. Cocos Keeling Islands).

At the smaller scale of our sampling extent, GFLOW simi-
larly produced a matrix of 402 753 pairwise resistance dis-
tances between the 898 simulated locations separated by 50 
km, randomly selected during the Matérn process (Supporting 
information). Density peaks clustering revealed a total of 21 
units (≥ 2 locations) at the scale of our sampling extent, along 
with 81 isolated locations (Fig. 5B). At this scale, the single 
unit comprising mostly reefs from the Indo-Australian plate 
was fragmented into several conservation units. Noticeable 
ones in terms of conservation comprised a western Australian 
unit, a separate unit constituting the Rowley Shoals, while 
western Indonesia and northwestern Australia were grouped 

Figure 5. Resistance maps showing the delineation of conservation units (same color), and buffers of radius equal to (A) 100 km at the scale 
of the whole distribution range of the grey reef shark and (B) 50 km at the scale of our sampling extent. Isolated units comprised of a single 
location are shown in black with a smaller radius. The grey rectangle on (B) corresponds to the extent on which locations were simulated. 
Color scale in the background corresponds to resistance values from the Supporting information, red corresponding to high values, blue to 
low values.
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into a single unit, joined together by Scott Reef and Ashmore 
and Cartier Islands. Eastern Indonesia and northern Australia 
off the Northern Territory constituted another very close unit 
with the east Timor Sea and Arafura Sea acting as corridors. 
The GBR, along with reefs from the Coral Sea, was connected 
to Papua New Guinea via the Torres Strait. Reefs from the 
Bismarck Sea (northern Papua New Guinea) formed a single 
unit, as well as most Solomon Islands reefs. Interestingly, the 
Chesterfield Reefs, belonging to New Caledonia, formed a 
unit by themselves. The rest of the New Caledonian archi-
pelago also formed a single unit, except Matthew and Hunter 
Islands that were isolated on the far east side of the archi-
pelago, and the Petrie atoll, isolated in the north–east of the 
main island. Further east, Vanuatu was separated from New 
Caledonia by the New Hebrides Trench. Among the 81 iso-
lated locations identified by the clustering algorithm, Cocos 
Keeling and Christmas Islands in the Indian ocean, reefs in 
the Banda Sea (southeast Asia), Nauru, Tuvalu, Kiribati and 
other remote islands of the Pacific, as well as remote reefs in 
the Coral Sea were identified.

Discussion

Common approaches in landscape or seascape genetics usu-
ally focus on genetic connectivity per se and propose ad hoc 
explanations based on coincident landscape features (McRae 
and Beier 2007, Hirschfeld et al. 2021), therefore hinder-
ing the potential of genetic studies to inform conservation 
planning. Conversely, this study is the first to date linking 
fine-scale seascape and genetic connectivity of a species with 
a priori testing of hypotheses, followed by predictions at the 
entire range of a species. Here, with the development of an 
analytical framework using a custom pipeline that could be 
applied to a variety of different species and ecosystems, we 
show its potential for the delineation of hierarchical conserva-
tion units at various scales for more targeted protection mea-
sures. Applying this methodology for multiple species could 
provide key information for high resolution management 
scenarios, particularly for the implementation of MPAs and 
MPA networks of improved effectiveness (Momigliano et al. 
2015). It provides a complementary approach to other mod-
elling frameworks based on movement data from individu-
als (Martín et al. 2020), and represents an efficient means to 
predict large-scale conservation units.

Our results reveal that geographic distance is a poor pre-
dictor of the genetic structure of grey reef sharks. While 
genetic and geographic distance are correlated (R2 = 0.493), 
the explanatory power of this null model is low compared 
to IBR models accounting for seascape features (best model 
R2 = 0.988). This is not surprising as two underlying assump-
tions of IBD are clearly unrealistic. The first and most impor-
tant assumption of IBD is that dispersal occurs through a 
homogeneous seascape. Grey reef sharks are habitat special-
ists, being associated almost exclusively with coral reefs (par-
ticularly exposed outer slopes) and rocky shoals (Chin et al. 
2010, Espinoza et al. 2014, White et al. 2017). Therefore, 

their dispersal is likely constrained by the availability of suit-
able habitats (Espinoza et al. 2015a, b). This is further sup-
ported by the distribution of clusters along the first two axes of 
the DAPC (Fig. 3), displaying a hierarchical islands structure, 
typical of a stepping stone model of dispersal (Jombart et al. 
2010). Another assumption of IBD and more specifically 
of least cost path (LCP) is that sharks use direct pathways 
between locations. This assumption has been shown to bias 
inference in many organisms (McRae and Beier 2007), and 
in the case of grey reef sharks, there is scarce evidence of 
direct long-distance migration pathways (Bonnin et al. 2019, 
2021).

We show that the best model explaining the genetic dif-
ferentiation of grey reef sharks is one supported by CT and 
with a very low resistance associated to waters at less than 
50 km from optimal habitats, but with very high resistance 
associated with deep oceanic waters acting as barriers to dis-
persal. As shown in the Supporting information, this model 
combining both bathymetry and distance-to-habitat provides 
improvements, particularly for deep areas close to suitable 
habitat (e.g. volcanic island with a steep slope) and shallow 
areas away from suitable habitat (e.g. shallow continental 
slope). Although the majority of grey reef sharks have been 
found to be highly resident, some individuals are known to 
travel large distances across the open ocean (Espinoza et al. 
2015a, White et al. 2017). Altogether, our results are congru-
ent with previous studies highlighting that large MPAs (> 50 
km) could be effective for a substantive proportion of indi-
viduals (Edgar et al. 2014, Dwyer et al. 2020, MacNeil et al. 
2020, Bonnin et al. 2021), even though a small number of 
individuals may disperse further using contiguous habitat 
patches as travel routes to avoid high resistance barriers such 
as deep oceanic waters (Bonnin et al. 2019, 2021). We recog-
nize that expanding our modelling wider than the sampling 
extent (i.e. the central Pacific) can be problematic, and we 
call for extensive genetic sampling at a wider scale to confirm 
these findings. Nevertheless, studies have yet to demonstrate 
that sharks from unsampled regions have different dispersal 
behaviors than the Indo-West-Pacific sharks sampled here.

Based on empirical evidence provided by genetic data, 
our results prove that at a time scale of several generations, 
a small number of sharks dispersing genes via migration 
(Bonnin et al. 2021) may have a significant impact on the 
global genetic structure of the species, and consequently in 
maintaining standing genetic variation and inbreeding con-
nectivity (sufficient gene flow to avoid harmful effects of local 
inbreeding, Lowe and Allendorf 2010) among and between 
conservation units (CUs). There is, however, an important 
consideration to be made: FST is a proxy of migration only 
when populations are at migration-drift equilibrium. Given 
the long generation time of grey reef sharks (16.4 years, 
Robbins 2006), the young age of some of the sampled habi-
tats (like the GBR), and the evidence of recent population 
expansions in other coral reef associated requiem sharks 
(Maisano Delser et al. 2016, 2018), this assumption could be 
considered as invalid. Assuming all populations have a recent 
history, as in the closely related C. melanopterus (Maisano 
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Delser et al. 2016, 2018), FST is still expected to be corre-
lated to Nem (effective migration rate), but defining CUs 
using a cut-off based on FST may be misleading: if popula-
tions are not at migration-drift equilibrium, FST may be much 
lower than expected for a given Nem. A possible solution to 
such limitation would be to estimate migration rates with-
out assuming equilibrium using the coalescent, or approxi-
mations of the coalescent, within an approximate Bayesian 
computation or composite likelihood approach for parameter 
estimation (Beaumont et al. 2002, Gutenkunst et al. 2009, 
Excoffier et al. 2013, 2021, Jouganous et al. 2017). A frame-
work that incorporates IBR models and direct estimates of 
migration rates based on coalescent simulations would be 
a significant step forward in seascape genetics, potentially 
enabling the estimation of much higher migration rates than 
FST-based methods, while taking into account the demo-
graphic history of all populations. There are however poten-
tial issues to consider. As Momigliano et al. (2021) recently 
demonstrated, unaccounted demographic events may cause 
strong biases in parameter estimation, although migration 
rates are among the least affected demographic parameters.

During our model optimization, we used FST as the sole 
metric of genetic differentiation. We could have used other 
measures such as Jost’s D estimator (Jost et al. 2018), but 
we found that FST and Jost’s D were highly correlated in our 
dataset, especially as we did not include samples from Chagos 
in the IBR framework (R2 = 0.999; Supporting information).

Protecting threatened mobile species requires a better 
knowledge of habitat fragmentation and physical barriers 
in the seascape (Hirschfeld et al. 2021). While the concept 
of ‘populations’ is used to guide management policy, it cov-
ers multiple definitions (Waples and Gaggiotti 2006) but is 
often approached by the identification of CUs (Funk et al. 
2012). There are also various definitions of CUs in the scien-
tific literature, with a major distinction between evolution-
ary significant units (ESUs) and management units (MUs), 
but there is a consensus on the fact that identifying CUs is 
a crucial first step for the conservation of wild populations 
(Funk et al. 2012, Barbosa et al. 2018). CUs are also recog-
nized as being hierarchical, with units at wider scale compris-
ing multiple smaller units (Funk et al. 2012, Barbosa et al. 
2018, Weckworth et al. 2018). The investigation of local 
genetic and demographic additional clues (i.e. genetic diver-
sity, Ne, relative abundance) might help to better delineate 
units and take more appropriate management measures 
(Domingues et al. 2017, Barbosa et al. 2018).

One of the important aspects of our results is that the 
defined CUs, even at local scale, generally encompass 
the exclusive economic zones (EEZs) of multiple coun-
tries. As such, conservative spatial planning would require 
coordinated international efforts (Harrison et al. 2018, 
Mackelworth et al. 2019). Moreover, slowing the ongoing 
decline of natural populations of mobile species like sharks 
requires not only scientific collaborations, but also support 
from managers and policy-makers across borders (Dunn et al. 
2019, Sequeira et al. 2019). A further issue impacting mobile 
predators such as the grey reef shark is the fragmentation of 

populations observed through a high proportion of putative 
conservation units represented only by a single location of 
suitable habitat. This highly fragmented pattern holds true for 
the two hierarchical scales (81 of 103 units at the scale of our 
sampling extent, 202 of 240 at the entire distribution range 
of the species), knowing that the clustering algorithm used is 
conservative in the number of detected outliers (Rodriguez 
and Laio 2014). Special attention should thus be given by 
managers to such isolated locations that deserve high conser-
vation priority, hosting populations potentially vulnerable to 
anthropogenic pressures such as harvesting, with a low capac-
ity of rebuilding populations via migration and subject to 
inbreeding depression for depleted populations (Kardos et al. 
2018, Ralls et al. 2018).

Conclusions

We developed and used a predictive modelling framework to 
infer barriers to gene flow and map the connectivity of grey 
reef sharks across the Indo-Pacific. We provide novel insight 
on the conservation of this marine predator by estimating 
connectivity beyond sampled locations and by delineating 
hierarchical conservation units. We conclude that the dis-
tribution and movement of grey reef sharks are reliant on 
more than just geographical availability and demonstrate 
the importance of using this framework for the integration 
of genetic connectivity in the field of marine spatial plan-
ning. Our findings are not limited to grey reef sharks, and 
this framework can be applied to any adult disperser species. 
Hence, we call for the use of this approach to better under-
stand dispersal patterns of other marine species at different 
scales. We recommend including such information along-
side ecological data, habitat use and governance of areas used 
when considering management strategies, and even applying 
this framework on multiple species as part of a systematic and 
integrated conservation planning approach (Sala et al. 2021).
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