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Abstract
1.	 Miniature electronic devices have recently enabled ecologists to document 

relatively large amounts of animal trajectories. Modelling such trajectories may 
contribute to explaining the mechanisms underlying observed behaviours and 
to clarifying ecological processes at the scale of the population by simulating 
multiple trajectories. Existing approaches to animal movement modelling have 
mainly addressed the first objective, and are often limited when used for simu-
lation purposes. Individual-based models generally rely on ad hoc formulation 
and their empirical parametrization lacks generability, while random walks based 
on mathematically sound statistical inference typically consist of first-order 
Markovian models calibrated at the local scale which may lead to overly simplis-
tic description and simulation of animal trajectories.

2.	 We investigate a recent deep learning tool—generative adversarial networks 
(GAN)—to simulate animal trajectories. GANs consist of a pair of deep neural 
networks that aim to capture the data distribution of some experimental data-
set. They enable the generation of new instances of data that share statistical 
properties. This study aims at identifying relevant deep network architectures 
to simulate central-place foraging trajectories, as well as at evaluating GANs 
drawbacks and benefits over classical methods, such as state-switching hidden 
Markov models (HMM).

3.	 We demonstrate the outstanding ability of deep convolutional GANs to simulate 
and to capture medium- to large-scale properties of seabird foraging trajecto-
ries. GAN-derived synthetic trajectories reproduced the Fourier spectral den-
sity of observed trajectories better than those simulated using HMMs. However, 
unlike HMMs, GANs do not adequately capture local-scale descriptive statistics, 
such as step speed distributions.

4.	 GANs provide a new likelihood-free approach to calibrate complex stochastic 
processes and thus open new research avenues for animal movement model-
ling. We discuss the potential uses of GANs in movement ecology and future 
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1  |  INTRODUC TION

Recent advances in telemetry enabled ecologists to track free-
ranging animals and to gather large trajectory datasets (Chung 
et al., 2021; Ropert-Coudert et al., 2009). GPS recorders have been 
at the forefront of this breakthrough and can now provide accu-
rate data on the movements of many species, such as mammals 
(McMahon et al., 2017), seabirds (Yoda, 2019) and many other large-
sized vertebrate (Kays et al., 2015). These movement data contain 
crucial information about animal behaviour, including habitat se-
lection, migration patterns and foraging strategies but present key 
challenges for movement ecologists to explain underlying animal 
movement ecology (Nathan et al., 2008).

Since the movement processes of many animals are relatively 
poorly known, simulation of trajectories is fundamental to tracking 
data analysis. Trajectory simulations have notably served as a null 
model for testing various hypotheses concerning movement (Zurell 
et al., 2010). For instance, they have been used to generate pseudo-
absences in a habitat selection model (Hückstädt et al.,  2020), to 
illustrate the effect of prey distribution on foraging movements 
(Boyd et al., 2017) and to demonstrate the effectiveness of social 
interactions (Bastos et al., 2020). Moreover, for practical and ethical 
considerations, the tracking of large numbers of individuals is not 
often possible. Simulated trajectories provide a relevant alternative 
to develop methods based on synthetic data; for example, to correct 
bias in home range estimation (Winner et al., 2018) or for assessing 
the impact of sample size (Sequeira et al.,  2019). Simulation tools 
may also be of interest in data pre-processing, such as filling gaps 
and upscaling the temporal resolution of movement data (Michelot 
& Blackwell, 2018).

Animal trajectories are generally seen as a succession of elemen-
tary movement events called steps (Nathan et al., 2008), and the use 
of random walks (RW) has received increased attention to describe 
step sequences (Codling et al., 2008). This includes correlated RW 
(e.g. Bergman et al., 2000), Lévy RW (e.g. Viswanathan et al., 2008), 
state-space models (e.g. Patterson et al., 2008) and stochastic dif-
ferential equations (e.g. Johnson et al., 2008). RWs have also been 
used as ‘building blocks’ for more complex models to simulate re-
alistic global animal movement patterns. To this end, behavioural 
heterogeneity is often taken into account by developing state-
switching models where animal movements are seen as the outcome 
of distinct behavioural modes (e.g. travelling, resting and foraging) 
(Morales et al., 2004). This is notably enabled by discrete multistate 
RWs such as hidden Markov models (HMM) (McClintock et al., 2012; 
Michelot et al., 2017) and by continuous-time multistate correlated 

RWs (Johnson et al., 2008; Michelot & Blackwell, 2018). The main 
advantages of continuous-time approaches are that they do not de-
pend on sampling resolution and that they can deal with irregularly 
sampled data. Discrete-time models are still an important tool since 
they are more intuitive and can better handle more than two be-
havioural modes (McClintock et al., 2014). The modelling and simu-
lation of central-place foraging trajectories (CPFT), such as those of 
seals (Michelot et al., 2017), seabirds (Pirotta et al., 2018) and wolves 
(Ylitalo et al., 2021), are typical applications of discrete-time HMM 
methods. The fundamental characteristic of central-place foragers 
is that individuals must return regularly to their central location, 
and thus perform looping foraging trips. By defining an ‘inbound’ 
behavioural mode dedicated to returning home, previously cited 
studies managed to describe loop-shaped foraging trips.

The above-mentioned statistical movement models are mainly 
fitted through likelihood maximization or Bayesian statistics (Hartig 
et al.,  2011). They can, however, suffer from challenging parame-
ter estimation, especially as models increase in complexity (e.g. high 
number of behavioural modes and covariates) (Adam et al.,  2019; 
Michelot et al.,  2017). For these reasons, the simulation of CPFTs 
is also performed using RWs embedded within empirically parame-
trized individual-based models (IBM). IBMs aim to explicitly repre-
sent the interactions between individuals and their environment 
based on ad hoc formulations, and they provide a pragmatic way to 
simulate nonlinear movement processes (DeAngelis & Grimm, 2014). 
For example, some studies embed HMM (e.g. Boyd et al.,  2017), 
correlated RW (e.g. Massardier-Galatà et al.,  2017) or mixtures of 
random and deterministic movement (Barraquand et al.,  2009) in 
IBMs for the simulation of CPFTs. They, however, often lack gen-
erability, have intractable likelihood and are not always directly cal-
ibrated from observed data. There has been much work to address 
these issues, and to parameterize IBMs using likelihood-free meth-
ods (Grimm et al., 2005; Hartig et al., 2011). In particular, there is a 
growing interest for data-driven approaches, such as deep learning 
techniques, in order to calibrate complex ecological systems (Malde 
et al., 2020).

Deep learning refers to neural networks with multiple layers of 
processing units (LeCun et al., 2015). By decomposing the data into 
these multiple layers, deep neural networks allow learning complex 
features to represent the data with high level of abstraction at mul-
tiple scales. Recently, deep learning tools have demonstrated their 
great ability to simulate complex systems using generative adver-
sarial networks (GAN) (Goodfellow et al., 2014). GANs consist in a 
pair of deep neural networks that aim to capture the data distribu-
tion of some experimental dataset, and that enable to generate new 

developments to better capture local-scale features. In this context, embedding 
HMM-based priors in GAN schemes appears as a promising research direction.

K E Y W O R D S
animal telemetry, deep learning, hidden Markov model, movement model, seabird
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instances of data that share statistical properties. It has become a 
state-of-the-art approach to generate various types of data, such as 
image, audio and spatio-temporal data including human trajectories 
(Cao et al., 2019; Gao et al., 2020).

This paper investigates GANs for the simulation of animal tra-
jectories, and more particularly CPFTs. Our key contributions are 
the design of different GAN architectures and the evaluation of 
GANs benefits over ‘state-of-the-art’ tools, that is state-switching 
HMM. We further discuss the pros and cons of GANs with respect to 
HMMs, along with the research avenues opened by GANs to address 
contemporary ecological challenges.

2  |  MATERIAL S AND METHODS

2.1  |  Generative adversarial networks

2.1.1  |  Background

The location of an animal is generally represented by a time-
continuous or discrete-time stochastic process 

(
Xt
)
t≥0

, where  
t denotes time. A Markovian hypothesis is classically stated for this 
movement process, assuming that one can fully predict the distribu-
tion of the future state of an animal given its current state (Patterson 
et al.,  2008). This hypothesis can only be regarded as an approxi-
mation of real movement patterns, which generally also involve 
long-term dependencies due to factors such as perceptual ranges, 
memory, social interactions, etc. The calibration of these models 
generally relies on the maximization of the likelihood of observed 
trajectories at local scales. It typically comes to estimating the joint 
distribution of step length and turning angle from GPS tracks.

A wide range of probabilistic models can be restated as the com-
position of a deterministic function G and of the sampler of a random 
latent variable. We may illustrate this point for correlated RW as pre-
sented in Patterson et al. (2008). Let us denote by st and �t the step 
length and the turning angle, respectively, at time t. The correlated 
RW can be written as follows:

where F and H are cumulative density functions with parameters �F and 
�H, often chosen as log-normal and von Mises distributions, and where 
zi
G
 and zi

H
 are independent samples from the uniform distribution over 

[0, 1].
The generative model in a GAN also relies on the application of 

a deterministic function G to random samples of a latent variable z , 
according to a predefined distribution. Function G is chosen within 
a parametric family of differentiable functions and implemented as 
a neural network for flexibility. The other major difference with 
statistical inference approaches classically exploited in move-
ment ecology lies in the calibration approach from data. Rather 
than using an explicit likelihood criterion, the calibration of the 
generator of a GAN involves the simultaneous training of another 
deep network D (referred to as the discriminator) that learns how 
to distinguish simulated data (i.e. G(z)) from real data. The typical 
architecture of a GAN is given in Figure 1a. If no discriminator can 
distinguish the simulated and real data, it means that the genera-
tor truly samples the unknown distribution of the training dataset 
(Goodfellow et al., 2014).

2.1.2  |  Network architecture

Numerous deep network architectures can be used for both the gen-
erator and discriminator networks. Long short-term memory (LSTM) 
networks and convolutional neural networks (CNNs) are probably 
the most popular, efficient and widely used deep learning techniques 
(Alom et al., 2019). In this study, we used two architectures for the 
generator and the discriminator, namely CNN-based and LSTM-based 
architectures (see Figure 2). Here, we briefly present the motivation of 
these networks and how they function. We refer the reader to Christin 
et al. (2019) for a detailed introduction to deep networks.
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F I G U R E  1  GAN architecture: Global 
architecture of a generative adversarial 
network. G refers to the generator 
network that takes as input a random 
noise vector z and outputs a trajectory  
x. D is the discriminator network that aims 
at distinguishing real trajectories from 
simulated ones
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LSTM
Long short-term memory networks are among the state-of-the-art ar-
chitectures of recurrent neural networks dedicated to the modelling of 
time series, including trajectories. A key feature of LSTM is its ability to 
identify and exploit long-term dependencies through gating processes 
(Alom et al., 2019). LSTM-based architecture has also been used in 
numerous recurrent GANs for pedestrian trajectory and medical time-
series generation (e.g. Esteban et al., 2017; Gao et al., 2020).

In our study, we used a generator network composed of a LSTM 
layer that takes a different random seed at each temporal input, and 
produces a sequence of hidden vectors with 16 features. These hid-
den vectors encode the state of the trajectory. An additional dense 
layer maps the 16-dimensional hidden vector at a given time step 
to the corresponding longitudinal and latitudinal displacements. We 
derive a time series of positions from the cumulative sum of these 
elementary displacements (see Figure 2).

We can also exploit a LSTM for the discriminator. Given a se-
quence of positions (longitude, latitude), the LSTM acts as an en-
coder of this sequence in some higher dimensional latent space. A 
dense layer was then applied to assign a probability to being realistic 
at each position of the sequence. Overall, the output of the discrim-
inator is the associated mean probability to assess the quality of the 
whole trajectory (see Figure 2).

CNN
CNN architectures exploit convolutional layers and are the state-of-
art architectures for a wide range of applications, especially for signal 
and image processing tasks. They are particularly effective in extract-
ing low-level and high-level features from n-dimensional tensors 
(Alom et al., 2019).

CNN are also widely exploited in GANs (Radford et al.,  2016). 
Here, we follow the general architecture proposed in Radford 
et al.  (2016) for image generation. The generator takes as input a 
random noise vector that can be seen as a latent representation of 
a global time series. It then applies a series of successive fractional-
strided convolutions to map the latent representation into time se-
ries with increasing numbers of points and decreasing numbers of 
features, until it outputs a two-dimensional vector of the required 

length (see Figure 2). In our work, we used a batchnorm and a ReLU 
activation after each fractional-strided convolution, except for the 
output that used only a hyperbolic tangent, as suggested by Radford 
et al. (2016)). We may point out that, in this CNN architecture, there 
is no explicit sequential modelling of the trajectory and that the la-
tent representation may not be time related.

Regarding the CNN-based discriminator, we also applied succes-
sive strided convolutions in order to transform the initial trajectory 
into time series with decreasing lengths and increasing numbers of 
features, until we obtained a latent vector describing the whole tra-
jectory. We used batchnorm and a LeakyReLU activation after every 
strided convolution. The last layer is a dense layer with a sigmoid ac-
tivation that transforms the latent representation into a probability 
for the trajectory of being realistic (see Figure 2).

2.1.3  |  Adversarial training and spectral 
regularization

For a given architecture, networks' parameters are estimated 
using adversarial training, that is the two networks compete in a 
minimax two-player game given by Equation  2. Discriminator D is 
trained to maximize the probability of assigning the correct label 
to both training examples and samples from G, that is to maximize 
logD(x) + log(1 − D(G(z))). Generator G is simultaneously trained to 
fool the discriminator, that is to minimize log(1 − D(G(z))).

Numerically, we apply stochastic gradient descents over the discrimi-
nator and generator successively where at each iteration, we compute 
the training losses for a randomly sampled subset of m trajectories 
within the training dataset1:

(2)min
G
max
D

�x∼pdata(x)

[
logD(x)

]
+ �z∼pz(z)

[
log(1 − D(G(z)))

]
.

(3)
ℒdiscriminator=

1

m

∑
m

[
log(D(x))+ log(1−D(G(z)))

]
,

ℒgenerator=
1

m

∑
m

log(D(G(z))).

F I G U R E  2  LSTM versus CNN: 
Architecture of LSTM and CNN networks 
used in this study
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We may complement the training loss of the generator with additional 
terms, including both application-specific (Ledig et al., 2017) and reg-
ularization (Durall et al., 2020) terms. In particular, recent studies have 
demonstrated that a spectral regularization may have positive effects, 
both on the training stability and the output quality of generative net-
works for image simulation (Durall et al., 2020). We tested here a sim-
ilar approach with the following spectral loss Lspectral to the generator's 
gradient descent:

where F is the module of the Fourier transform of a two-dimensional 
time series, x and x̂ are real and simulated trajectories respectively.

2.2  |  Case studies and experiments

2.2.1  |  Datasets

GPS recorders were fitted to tropical boobies during their breed-
ing period at the Pescadores Island, Peru in from 2008 to 2013, 
and at the Fernando de Noronha archipelago, Brazil, from 2017 to 
2019 (Table 1). This work was conducted with the approval of the 
Peruvian federal agency, Programa de Desarrollo Productivo Agrario 
Rural, commonly known as ‘Agrorural’. Headquarters of Agrorural 
are located at Av. Salaverry 1388, Lima, Peru, and of the Brazilian 
Ministry of Environment—Instituto Chico Mendes de Conservação 
da Biodiversidade (Authorization No 52583-5). Trajectories consist 
in foraging trips where seabirds look for preys at sea and come back 
to their colony. Data points have been linearly re-interpolated at reg-
ular time steps, and coordinates have been centred on the colony's 
location and normalized. In particular, red-footed booby tracks were 
substantially downsampled in order to provide a simplistic dataset 
on which to evaluate distinct GAN architectures (see Table 1). Finally, 
trajectories have been padded with zeros so that all longitude/lati-
tude time series from a dataset would have the same length.

2.2.2  |  Architecture selection experiment

We first designed an experiment to compare different GAN archi-
tectures. For this experiment, we considered the simplest dataset 
with a 1-hr time resolution (see Table 1). All trajectories involved 20 

time steps. We evaluated four different GAN corresponding to every 
generator-discriminator pair for the considered CNN and LSTM ar-
chitectures; for example, we call ‘LSTM-CNN’ the GAN with a LSTM 
network as generator and a CNN as discriminator.

For all generators, the input random noise vector consisted of 20 
samples from a uniform distribution on 

[
0, 1

]
. We trained all networks 

over 5,000 epochs with a learning rate of 2e-4 using the loss func-
tions given in Equation 3. The score of each approach was assessed 
by computing the mean squared error of the logarithmic Fourier 
decomposition spectrum of simulated and real trajectories, ℒspectral 
(see Equation 4).

2.2.3  |  GAN versus HMM experiment

In this section we compared the best GAN architecture from the 
previous experiment, namely ‘CNN-CNN’ GAN architecture, to a 
state-switching HMM. We tested both methods on the two data-
sets with 200-step time series consisting in trajectories of tropical 
boobies from two completely distinct ecosystems and with different 
foraging strategies (see Table 1).

GAN
The input random noise vector consisted in 256 samples from a 
uniform distribution on 

[
0, 1

]
. We trained the ‘CNN-CNN’ GAN ar-

chitecture separately on each dataset over 5000 epochs and with a 
learning rate of 2e-4. We used a spectral regularization to better re-
produce the spectral features of real trajectories, especially for fine 
time-scales, and to increase learning stability.

HMM
For comparison, we fitted a ‘state-of-the-art’ state-switching HMM 
to seabirds CPFTs. We followed the methodology presented by 
Michelot et al. (2017), which relies on a rigorous statistical inference.

Movements were described as a sequence of step lengths and 
turning angles that we fitted with gamma distribution and von Mises 
distribution respectively. Three behavioural modes were used for 
the Peruvian datasets, that is ‘searching’, ‘foraging’ and ‘inbound’, 
while a fourth mode, ‘resting’, was added with the Brazilian dataset 
(Figure 5). For the modes of ‘searching’, ‘foraging’ and ‘resting’, we 
described movement as correlated RW, while for the mode ‘inbound’ 
we used a biased RW with attraction towards the colony. In order to 
force the return to the colony, we fixed some terms of the transition 
matrix, thus ensuring that the sequence of modes alternates first 
with ‘searching’, ‘foraging’ and ‘resting’, and is then forced to stay in 
mode ‘inbound’. Additionally, we model the effect of the time since 
departure on the transition probability from ‘searching’ to ‘inbound’.

These state-switching HMMs were fitted to real data accord-
ing to a maximum likelihood criterion. Fitted models were used to 
simulate trajectories. The number of modes were defined so that 
the simulated trajectories would minimize the spectral loss ℒspectral 
(Equation  4). The initial step was sampled from real data, and we 
iteratively sampled the next steps, until the trajectory went back to 

(4)ℒspectral =
∑[

log
(
F
(
x0,… ,xn

))
− log

(
F
(
x̂0,… ,x̂n

))]2
,

TA B L E  1  Datasets' overview with trajectories from red-footed 
booby Sula sula, masked booby Sula dactylatra and Peruvian booby 
Sula variegata

Species Country
No. 
trips Resolution Padding

Sula sula Brazil 30 1 hr 20 steps

Sula dactylatra Brazil 50 5 min 200 steps

Sula variegata Peru 78 1 min 200 steps
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the colony. In practice, we stopped the simulation once a location 
was simulated within a 1-km radius around the colony.

Implementation details
GANs were implemented and trained using Pytorch. HMMs 
were fitted using the momentuHMM r package (McClintock & 
Michelot, 2018). The code of all the reported experiments is avail-
able on our GitHub repository: https://github.com/Amede​eRoy/
BirdGAN

3  |  RESULTS

3.1  |  Architecture selection experiment

Among the four GAN architectures, the fully convolutional GAN led 
to the best results with better convergence and lowest computa-
tion time (Figure  3; Table  2). GANs with LSTM-based discrimina-
tors seemed particularly unstable, with highly variable performance 
through epochs (4). Importantly, only GANs with CNN-based gen-
erators managed to simulate looping trajectories. For instance, the 
‘LSTM-CNN’ GAN generated relatively good trajectories with a 
spectral error ℒspectral lower than 3, yet without being able to loop 
(Figure 4).

3.2  |  GAN versus HMM experiment

On both datasets, GAN and HMM schemes managed to simulate 
relatively realistic CPFT (see Figure 5). However, the spectral dis-
tribution of GAN-derived synthetic trajectories matched the spec-
tral distribution of real trajectories better (Figure 6). In particular, 
the mean spectral error ℒspectral was about four times smaller, using 
GANs than using HMMs (Table 3). This was particularly highlighted 
for the medium frequencies (Figure  6). On the Peruvian dataset, 
the HMM failed to reproduce spectral features both at lower and 
higher frequencies (Figure  6a), and on the Brazilian dataset, it 
failed in the higher frequency range only (Figure 6b). By contrast, 

HMMs outperformed GANs to sample relevant step distributions 
(Figure 7).

GAN models capture the real data distribution better, as they 
can simulate a set of trajectories that share global statistics with 
the reference dataset. For instance, our synthetic trajectories have 
consistent trip distance, trip duration and the straightness index dis-
tributions (see Figure  7). The straightness index of a trajectory is 
defined as two times the quotient between the max range to the col-
ony and the trip total distance. The trained GANs also capture spa-
tial information as they reproduce position distributions of observed 
trajectories (Figure 8; Table 3). GAN-derived synthetic trajectories 
were indeed mainly heading towards some area of interest (i.e. west-
ward of the colony on the Peruvian dataset, and to the north-east 
and south-east of the colony on the Brazilian dataset), while HMM-
derived trajectories are uniformly spread in all directions around the 
colony.

4  |  DISCUSSION

Deep learning has become the state-of-the-art framework for dealing 
with a wide range of problems in ecology, such as classification and 
segmentation tasks, mainly for image analysis (Christin et al., 2019). 
Despite recent advances in deep learning for the simulation of com-
plex systems, few studies have explored generative models, and par-
ticularly GANs to simulate ecological data. To our knowledge, deep 
convolutional GANs have only been used for data augmentation 

F I G U R E  3  Convergence of GAN architecture over 5,000 epochs: The four different GANs correspond to every generator-discriminator 
pairs. Distance to true spectral density is computed with Equation 4

TA B L E  2  Comparison of GAN architectures. The model with 
the best performance is shown in bold. Computations have been 
run using Google Colaboratory resources and relying on Intel(R) 
Xeon(R) CPU 2.20 GHz

Model Computation time (min) �spectral

CNN-CNN 1.95 0.47

LSTM-CNN 2.69 1.93

CNN-LSTM 3.03 3.06

LSTM-LSTM 3.59 4.0

https://github.com/AmedeeRoy/BirdGAN
https://github.com/AmedeeRoy/BirdGAN
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in simulating plant or insect images so far (Lu et al., 2019; Madsen 
et al., 2019). This study demonstrates that GANs are also promising 
tools to generate other ecological data, such as animal trajectories.

CPFTs provide an interesting case study in animal movement 
ecology. Animals performing CPFTs are often supposed to maxi-
mize their energy intake rate while travelling away from and back 
to their central location. Numerous studies have thus investigated 

how central-place foragers balance their time and energy while for-
aging (Barraquand et al., 2009; Humphries & Sims, 2014). Capturing 
the variability of foraging strategies with respect to species, sex or 
breeding stage is a key element in understanding what drives the 
decisions of the animals (Phillips et al., 2021). Peruvian boobies Sula 
variegata tracked in this study breed in a highly productive upwell-
ing system, the Humboldt Current System, and feed on relatively 

F I G U R E  4  Comparison of GAN architectures: Examples of trajectories generated by the architectures tested on the 20-step dataset (see 
Table 1). The four different GANs correspond to every generator-discriminator pairs
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abundant Peruvian anchovies (Jahncke & Goya,  1998). For these 
reasons, they performed mainly short foraging trips of about 25 km, 
eventually travelling up to 75 km at a mean speed of 11 m/s (Figure 7). 
By contrast, masked boobies breeding at Fernando de Noronha for-
age mainly in oligotrophic waters (de Santana Campelo et al., 2019). 

They have to travel way further from their colony during trips of 
6–7 hr in average. They also spend substantial time sitting on water 
in the vicinity of foraging areas.

We demonstrated the great ability of GANs to capture the 
global statistical properties of these distinct trajectory datasets 

F I G U R E  5  GAN versus HMM. Real trajectories used for training are in blue, synthetic trajectories generated by a ‘CNN-CNN’ GAN are 
in orange and trajectories generated by HMM are in green. (a) Stands for the 200-step Peruvian dataset and (b) stands for the 200-step 
Brazilian dataset (see Table 1). All positions at less than 1 km from the colony were removed

F I G U R E  6  GAN versus HMM. Mean 
Fourier spectrum of real trajectories used 
for training (blue), and 100 synthetic 
trajectories generated by a ‘CNN-CNN’ 
GAN (orange) and by HMM (green). (a) 
Stands for the 200-step Peruvian dataset 
and (b) stands for the 200-step Brazilian 
dataset (see Table 1)
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derived from seabird species with distinct foraging strategies. By 
contrast, the current state-of-the-art approaches, such as multistate 
HMMs, are calibrated at a local scale and are unable to bring out 
global patterns from these local features. In particular, the use of 
the behavioural mode ‘inbound’ relies on the assumption that there 
is a given time when animals decide to return directly to the colony, 
which is not always the case. Our numerical experiments pointed 
out that the relationship between local and global features may 
be complex for real trajectory data. GANs are explicitly trained so 
that they best reproduce the characteristic multiscale features of 
real trajectories. Through strided convolutions, it appears that the 
considered CNN discriminator overlooks the highest frequencies 
to focus on large-scale information. Besides, the CNN generator 
does not explicitly represent a trajectory as a sequential process, 
which may also impede its ability to reproduce step distribution ad-
equately. This may be a general property of convolution GAN archi-
tectures, as they are known not to simulate realistically fine-scale 
textures in computer vision (Cao et al., 2019).

The simulation of realistic global trajectory patterns can however 
be of interest for clarifying numerous ecological challenges, and may 
benefit from GANs through both generator and discriminator net-
works. Similar to usual RW mixture models, the generator network 
is a sampler of trajectory data. It could be used to provide null distri-
butions within hypothesis testing frameworks, or within a bootstrap 

procedure to estimate the uncertainties of features of interest 
(Michelot et al., 2017). The ability of GANs to reproduce large scale 
also makes it particularly relevant when estimating the distributions 
of usual global statistical estimators, such as home range distribu-
tion (e.g. Hazen et al., 2021), prey encounter probabilities (e.g. Sims 
et al., 2006) or foraging area distribution (e.g. Ito et al., 2021). For 
this reason, it could also provide new means to test energy-related 
hypotheses of foraging trips and foraging optimality (e.g. Humphries 
& Sims, 2014). In addition, through the computation of a probability 
of being a ‘realistic’ trajectory, the discriminator network provides a 
metric of data similarity and could be used within comparative study 
of foraging strategies to assess sex-specific (Lewis et al., 2005) or 
breeding stage differences (Lerma et al., 2020).

Besides, RWs capture step speed and turning angle distributions 
and seem more relevant to understand what drives animal decisions 
at the step level. They have indeed proven useful to evaluate the ef-
fect of a heterogeneous landscape, and various external features on 
animal movement, notably through step-selection function (Signer 
et al.,  2019), mixed effect models (Jonsen et al.,  2019) or HMMs 
whose transition states depend on external covariates (van Beest 
et al.,  2019). Yet, these approaches often struggle when account-
ing for processes that impact movement patterns at larger spatio-
temporal scales. Various extensions of basic state-space models 
have been proposed to take these into account, for example using 
hidden semi-Markov models (Langrock et al., 2012) and hierarchical 
HMMs (Adam et al., 2019; Leos-Barajas et al., 2017). In practice, due 
to their relative complexity to be implemented and to parametrized, 
they are rarely used.

Future work should investigate how to combine and take the 
benefits of both GAN and HMM approaches in order to simulate 
‘realistic’ multiscale animal movement processes. Two research 
directions naturally come up: modifications to the architectures 
of generator and discriminator networks, and the exploration of 
different training frameworks. Regarding the first direction, we 
may consider the combination of CNN architectures and of HMM-
driven or HMM-inspired neural architectures (Lei et al.,  2016). 

TA B L E  3  Properties of GAN and HMM simulations. ℒspectral 
stands for the mean squared error of the logarithmic Fourier 
decomposition spectrum presented in Figure 6 and Σ stands for 
the mean squared error of the position distributions presented in 
Figure 8. The models with the best performance are shown in bold

Dataset Model �spectral �

(A) Peru CNN-CNN 0.08 1.09

HMM 0.91 2.63

(A) Brazil CNN-CNN 0.07 0.03

HMM 0.88 0.32

F I G U R E  7  GAN versus HMM. Histogram of descriptive statistics derived from real trajectories used for training (blue), 100 synthetic 
trajectories generated by a ‘CNN-CNN’ GAN (orange) and by HMM (green). (a) Stands for the 200-step Peruvian dataset and (b) stands for 
the 200-step Brazilian dataset (see Table 1). The mean squared error of these position distribution estimations are presented in Table 3
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Beyond the explicit parameterization of Markovian processes, 
recurrent architectures such as LSTM seem appealing to embed 
some latent representation of a behavioural mode sequence, 
from which one could, for instance, expect to sample the multi-
modal feature of speed distribution more satisfactorily (Figure 7). 
Inspired from hierarchical HMM schemes, hierarchical GANs with 
scale-specific network modules also arise as a relevant direc-
tion (Huang et al., 2019). Regarding the training framework, one 
may first explore different adversarial losses such as the popular 
Wasserstein GAN (Arjovsky et al., 2017). Though this loss would 
not lead alone to improvements regarding the simulation of local-
scale features, they typically lead to more stable training frame-
works, which may be helpful when considering more complex 
architectures. One could also complement the adversarial loss by 
a likelihood-based loss derived from a multimodal RW model to 
explicitly constrain the fine-scale features.

Numerous existing varieties of GANs could also provide great 
support for movement ecology, especially conditional GAN (Isola 
et al., 2018). A conditional GAN consists of a GAN with some exter-
nal variable that conditions its output. One could therefore test for 
conditions that would explain behavioural variabilities at large scale 
such as individual characteristics (e.g. sex, mass, breeding stage) or 
environmental characteristics (e.g. prey distributions, oceanographic 

features). This typically applies to the assessment of different en-
vironmental scenarios and associated animal trajectories, a broad 
scientific challenge that includes the prediction of the potential im-
pact of climate change on animal behaviour (Hückstädt et al., 2020). 
Conditional GANs would also provide new means for the interpola-
tion and super-resolution of trajectory data, as performed in com-
puter vision (Ledig et al., 2017).

GANs provide a powerful framework to simulate complex 
stochastic processes without requiring any specification of a like-
lihood function; it also frees ecologists from the assumption of 
first-order Markovianity. This study notably illustrates their ability 
to reproduce large- to medium-scale property statistics of seabird 
trajectories when used in their most classical form. It is also an 
ultra-flexible tool that could further benefit from existing tools, 
such as HMMs that are calibrated on step distributions, but that 
usually fail to reproduce large-scale properties. We believe GANs 
to be a truly promising tool for movement ecology, opening thus 
new research avenues to simulate and further our understanding 
of animal trajectories.
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