

Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding

Laëtitia Mathon, Virginie Marques, David Mouillot, Camille Albouy, Marco Andrello, Florian Baletaud, Giomar H. Borrero-Pérez, Tony Dejean, Graham J. Edgar, Jonathan Grondin, et al.

▶ To cite this version:

Laëtitia Mathon, Virginie Marques, David Mouillot, Camille Albouy, Marco Andrello, et al.. Crossocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 2022, 289 (1973), pp.20220162. 10.1098/rspb.2022.0162. hal-03669624

HAL Id: hal-03669624 https://hal.umontpellier.fr/hal-03669624v1

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens

2 of eDNA metabarcoding

- 3
- 4 Laetitia Mathon^{1,2}*†, Virginie Marques^{1,3}†, David Mouillot^{3,4}, Camille Albouy⁵, Marco
- 5 Andrello^{3,17}, Florian Baletaud^{2,3,6}, Giomar H. Borrero-Pérez⁷, Tony Dejean⁸, Graham J. Edgar⁹,
- 6 Jonathan Grondin⁸, Pierre-Edouard Guerin¹, Régis Hocdé³, Jean-Baptiste Juhel³, Kadarusman¹⁰,
- 7 Eva Maire^{3,11}, Gael Mariani³, Matthew McLean¹², Andrea Polanco F.⁷, Laurent Pouyaud¹³, Rick
- 8 D. Stuart-Smith⁹, Hagi Yulia Sugeha¹⁴, Alice Valentini⁸, Laurent Vigliola², Indra B Vimono¹⁴,
- 9 Loïc Pellissier^{15,16}[‡], Stéphanie Manel¹[‡]
- 10
- 11
- 12 ¹CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- 13 ² ENTROPIE, Institut de Recherche pour le Développement (IRD), Univ. Réunion, UNC, CNRS, IFREMER, Centre
- 14 IRD de Nouméa, Nouméa, New Caledonia, France
- ³MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- ⁴ Institut Universitaire de France
- ⁵ DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro Agrocampus Ouest,
- 18 Nantes, France.
- 19⁶ SOPRONER, groupe GINGER, 98000 Noumea, New Caledonia, France
- 20 ⁷ Instituto de Investigaciones Marinas y Costeras-INVEMAR, Colombia. Museo de Historia Natural Marina de
- Colombia (MHNMC), Programa de Biodiversidad y Ecosistemas Marinos. Calle 25 No. 2 55 Playa Salguero, Santa
 Marta, Colombia.
- 23 ⁸ SPYGEN, Le Bourget-du-Lac, France
- ⁹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- ¹⁰ Politeknik Kelautan dan Perikanan Sorong, KKD BP Sumberdaya Genetik, Konservasi dan Domestikasi, Papua
 Barat, Indonesia
- 27 ¹¹Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
- 28 ¹² Department of Biology, Dalhousie University, Halifax, NSB3H4R2, Canada
- 29 ¹³ ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- 30 ¹⁴ Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol Timur,
- 31 Jakarta Utara 14430, Indonesia
- ¹⁵ Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH
 Zürich, Zürich, Switzerland
- 34 ¹⁶ Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- 35 ¹⁷ Institute for the study of Anthropic Impacts and Sustainability in the marine environment, National Research Council
- **36** (CNR-IAS), Rome, Italy
- 37
- 38 * Corresponding authors: laetitia.mathon@gmail.com
- 39 [†] These authors contributed equally as first author to this work
- 40 ‡ These authors contributed equally as senior author to this work

41 Abstract

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly 42 coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is 43 44 essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we 45 use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on 46 coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analyzed 226 eDNA seawater samples from 100 stations in 5 tropical regions (Caribbean, Central 47 48 and Southwest Pacific, Coral Triangle and Western Indian ocean) and compared those to 2,047 49 underwater visual censuses from the Reef Life Survey (RLS) in 1,224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2,650 taxa, and 25% more families than 50 51 underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic 52 species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, RLS identified more species than eDNA in 47 shared families, which can be due to incomplete sequence 53 assignment, possibly combined with incomplete detection in the environment, for some species. 54 55 Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial 56 organization of the richest marine ecosystems.

57 **1. Introduction**

58

Coral reefs host the highest fish diversity on earth despite covering less than 0.1% of the ocean's 59 60 surface (1,2). They are also severely threatened (3), with near future outlooks predominantly 61 pessimistic (4). Data syntheses over decades of surveys estimate the total number of coral reef fishes from 2,400 to 8,000 species (5,6), distributed among approximately 100 families (7). 62 Typically, coral reef biodiversity displays clear spatial patterns, including longitudinal and 63 64 latitudinal gradients outwards the Indo-Australian Archipelago (8,9), also known as the 'Coral Triangle', hosting the world's highest level of marine biodiversity (10). The exceptional 65 66 biodiversity in the Coral Triangle has recently been suggested to strongly relate to higher diversity 67 among fish families that feed on plankton (11). Other trophic groups are also very important on 68 coral reefs but are often undetected because they are transient or hidden (12,13). Intriguingly, the proportions of fish species among families are shown to be strongly conserved across the Indo-69 70 Pacific (8). The spatial patterns of coral reef fishes are also marked by strong variations in 71 taxonomic composition (species turnover or β diversity), often due to isolation (14). Many species 72 on coral reefs are geographically localized, but can sometimes be locally abundant, while others 73 are widespread (15).

Coral reef fishes have evolved in a physically complex environment and present a wide range of forms and functions (16). Small cryptic species, hereafter called crypto-benthic, that live inside the reef structure, can be very difficult to sample or survey using non-destructive methods (17), yet represent half of the fish diversity on coral reefs (13). Even though fishes are among the beststudied taxa inhabiting coral reefs (18), our knowledge of their biodiversity is only partial (19), the taxonomy is complex, uncertain for many species (5), and countless species remain undescribed.

Environmental DNA (eDNA) metabarcoding, a method retrieving and analyzing DNA naturally 81 82 released by organisms in their environment (20), provides an opportunity to not only better understand classical biodiversity patterns, but also uncover novel ones hidden by our incomplete 83 84 taxonomic and biogeographic coverage (21). Environmental DNA is particularly powerful in 85 aquatic ecosystems (22) and is now well established for marine microorganisms (23,24). By contrast, its potential to provide an integrated biodiversity assessment of macroorganisms, 86 including vertebrates of all trophic levels (from crypto-benthic to large pelagic fish species), is 87 only shown at local (25) and regional (26-30) scales but not yet at spatial scales including more 88 89 than one biogeographic region or multiple ocean basins.

90 Here, we investigate how a cross-ocean basin snapshot of eDNA sampling could describe the 91 distribution of fish biodiversity on coral reefs, reveal unknown patterns, and challenge well-92 established assembly rules. From 226 eDNA seawater samples (2,712 PCR replicates) collected 93 in 100 stations at 26 sites covering five tropical regions (Southeast Polynesia, Tropical 94 Northwestern Atlantic, Tropical Southwestern Pacific, Western Indian Ocean and Western Coral 95 Triangle) across the Indian, Pacific and Atlantic Oceans (figure S1-S2), we produced a final dataset 96 of 189,350,273 mitochondrial 12S rRNA gene sequence reads (see Methods), clustered into 2,023 97 molecular operational taxonomic units (MOTUs), and assigned to Actinopterygii (bony fishes) and Chondrichthyes (cartilaginous fishes) taxa (tables S1-S2). We then compared fish biodiversity 98 99 patterns obtained from eDNA to those observed from 2,047 standardized visual surveys of reef 100 fishes in 1224 stations at 219 sites within 24 tropical regions (31).

101

102 **2. Results**

103 (a) Global estimates of fish biodiversity on coral reefs

104 We estimated total fish diversity on coral reefs using the asymptote of a multi-model accumulation 105 curve for both eDNA MOTUs (32) and visual census species (Methods). The asymptote estimated 106 from 100 eDNA stations distributed in five regions sampled over a 28-month period reaches 2,650 107 MOTUs (figure 1a). This detectable fish MOTUs diversity, including also MOTUs unassigned at 108 the species-level, is 16% higher than the estimate from visual census data, which reaches an 109 asymptote at 2,268 fish species from 2,047 tropical transects surveyed during 13 years (figure 1b). 110 The asymptotic estimation of family richness obtained with eDNA reaches 147 families, 25% more 111 than the asymptotic number of families estimated with visual census data (118 families, figure 1c-112 d). Among the 71 families shared between both datasets, 24 have a higher number of MOTUs from 113 eDNA survey than species from visual survey while 47 have more species from visual survey than 114 MOTUs from eDNA survey (figure 1e). Families with more taxa identified using eDNA include 115 those often associated with reef-adjacent habitats such as mangroves or soft sediments like 116 Mugilidae (e.g. Mugil rubrioculus), Elopidae and Gerreidae (33, e.g. Gerres oyena), and crypto-117 benthic species that live hidden in crevices (e.g. Gobiidae) or nocturnal fish species (34, e.g. 118 Congridae). Families with more taxa with visual census include Acanthuridae, Chaetodontidae, 119 Blenniidae, Labridae, Pomacentridae and Scaridae. Fifty-five families are detected only with 120 eDNA, including Myctophidae, Engraulidae, Atherinidae and Exocoetidae, while 24 families are 121 detected only by visual census, including Caesionidae, Chaenopsidae, Labrisomidae and 122 Microdesmidae. Environmental DNA estimates a diversity of crypto-benthic species 13% higher 123 than with visual census, and, among many others, includes species such as the elegant firefish 124 (Nemateleotris decora), which lives on the outer reef slope between 25 to 70 m (figure 2a). Yet, 125 the difference in fish diversity assessment between the two methods is the strongest for pelagic 126 and wide-ranging species, for which eDNA reveals more than 7 times higher richness than with

127 visual census. These species mainly belong to Scombridae (e.g. *Katsuwonus pelamis*), Clupeidae,

128 Carcharhinidae (e.g. *Carcharhinus leucas*, *Sphyrna lewini*) and Belonidae (figure 2*b*).

129

130 MOTU richness per fish family retrieved with eDNA is strongly correlated with fish species 131 richness within families recorded in visual census data (Pearson correlation = 0.84, p < 0.001, n = 132 71, figure 1e). Highly diverse families seen on coral reefs are also well represented in eDNA 133 samples, with Gobiidae, Labridae and Pomacentridae containing more than 100 MOTUs each, 134 together representing about 20% of MOTUs (figure 1f, figures S3-S4). The slope of the log-log 135 relationship between MOTUs richness per family and species richness per family is equal to 0.8 136 showing that the relationship is not proportional but saturating. The richest fish families contain 137 more MOTUs detected with eDNA than species detected with visual surveys.

138

139 (b) **Biogeography of eDNA sequences**

140 The spatial distribution of MOTUs follows clear biogeographic patterns, with a peak in the coral 141 triangle and lower values of MOTU richness toward Southeast Polynesia (figure S5). The richest 142 region (West Papua, Indonesia, Western Coral Triangle) contains ~50% of the global pool of fish 143 MOTUs while the poorest region (Fakarava, French Polynesia, Southeast Polynesia) contains only 144 9% of the global pool (figures S6-S7 and table S2). Distance-based Redundancy Analysis 145 (dbRDA) was performed on fish family proportions at each site (i.e. number of MOTUs or species 146 assigned to each family in each site, see Methods) for eDNA and visual surveys with the region 147 and the site MOTU/species richness as explanatory variables, including their interaction (figure 3, 148 table S3). For eDNA, the dbRDA explains up to 42% of variation in family proportions between 149 pairs of sites with region and MOTU/species richness both having significant effects (F = 4.1 and 150 5.7, respectively, p < 0.001), but no significant interaction (F = 1.99, p>0.05). The partial dbRDA

151 on eDNA showed a significant effect of region while controlling for MOTU richness (F = 2.79, p 152 < 0.001). The first axis explains 17.2% of variation in family proportions and separates the Western 153 Coral Triangle from other regions (figure 3a-b). The first axis shows a higher proportion of 154 Lutjanidae but lower proportions of Labridae and Gobiidae in sites of the Western Coral Triangle. 155 It also confirms the longitudinal diversity gradient from the Coral Triangle. The second axis 156 explains 11.2% of variation and discriminates the Tropical Northwestern Atlantic from the 157 Western Indian Ocean, due to a higher proportion of Clupeidae and Carangidae in the Atlantic 158 Ocean and a higher proportion of Acanthuridae in the Indian Ocean. The dbRDA performed on 159 visual census data explained greater variation ($R^2 = 0.5$, p < 0.001) and the region also had a 160 significant, albeit weaker than for MOTUs, effect on fish family proportions (F = 17.7, p < 0.01), 161 while species richness and interaction between the two variables also had significant effects (F =162 6.28 and 2, p < 0.01 respectively). The first axis explains 41.6% of variance in family proportions 163 and separates the Tropical Northwestern Atlantic from the other regions with a higher proportion 164 of Gobiidae and Serranidae. The second axis explains 5.7% of variance in family proportions and 165 separates the Southeast Polynesia from Indo-Pacific regions, and is mostly driven by the higher 166 proportion of Pomacentridae in the Indo-Pacific (figure 3c-d).

167

168

(c) Global patterns of fish turnover and rarity

169 Our eDNA survey shows that a majority of MOTUs are geographically restricted, with 85% of the 170 MOTUs detected in only one region (figure 4*a*), and 35% in only one site (figure S8). Geographic 171 restriction is one aspect of species rarity but is shown to play a primary role in determining 172 extinction risk while local abundance and habitat specialization have secondary roles (35). We 173 hierarchically partitioned the global MOTU diversity (γ_{global}) into additive diversity components

(i.e. dissimilarity) due to difference between regions ($\beta_{inter-region}$), mean difference between 174 sites within regions ($\bar{\beta}_{inter-site}$), mean difference between stations within sites ($\bar{\beta}_{inter-station}$) 175 and mean station diversity ($\bar{\alpha}_{station}$) (36). As a consequence of the geographic restriction of most 176 177 MOTUS to one region, the total fish MOTU (y) diversity is mainly due to inter-region β -diversity 178 (~74%) followed by inter-site (14.8%) and inter-station (5.9%) β -diversity (figure 4b). The same 179 partitioning using different site delineations (10 and 20 km) provides similar results (table S4). Diversity partitioning of crypto-benthic fish MOTUs only or pelagic fish MOTUs only reveals 180 181 similar patterns (table S5). The partitioning diversity of species detected by visual census also revealed similar patterns but with a stronger effect of $\beta_{inter-region}$ (84%) and lower (3x) 182 $\overline{\beta}_{inter-site}$ and $\overline{\beta}_{inter-station}$ (table S5, figure S9). 183

184

185 Beyond the hierarchical partitioning of diversity, we compared the distribution of fish MOTUs 186 and species visual occurrences independently of the survey method and sampling effort using 187 global species abundance distributions (gSAD) (37). We fitted the fish MOTU and species visual 188 occurrences to three distributions (log-series, Pareto and Pareto with exponential finite adjustment, 189 *i.e.* Pareto Bended, see Methods) and estimated the parameters by maximum likelihood. For the 190 visual census gSAD, the best fit was obtained with the log-series and Pareto distributions (table 191 S6) with a slope of -0.95 (confidence interval at 95% [-0.98:-0.92]) (figure S10). This suggests a 192 distribution of geographically restricted or rare species close to the neutral theory (β close to -1). 193 By contrast, the best fit for fish MOTUs was obtained with the Pareto Bended distribution with a 194 slope $\beta = -0.76$ (confidence interval at 95% [-0.85;-0.65]) and then with the log-series distribution, 195 suggesting a lower prevalence of rarity than under the neutral theory, in agreement with previous 196 tests based on species distributions on coral reefs (38).

198 **3. Discussion**

Environmental DNA allows the detection and identification of more taxa than traditional 199 200 techniques (26,39), but further offers novel insights on the spatial organization of the richest 201 marine ecosystem at large scale. Over a timespan of 2.3 years, in major tropical ocean basins, 202 eDNA metabarcoding reveals a higher proportion of crypto-benthic, pelagic and soft-sediment-203 associated fishes on coral reefs than detected in the most extensive visual census over 13 years. 204 We found a high local MOTU turnover, but we were not able to conclude if it is due to an 205 insufficient sampling at the station level, or if it suggests that differences in fish species 206 composition may exist between adjacent reefs that are not detected by visual surveys (40), so that 207 fish biodiversity is more patchy than previously thought on coral reefs.

208

209 We were also able to retrieve well-known patterns of fish diversity on coral reefs such as the 210 biogeographic boundaries between the Atlantic and Pacific oceans, the longitudinal diversity 211 gradient from the center of the Coral Triangle, with Southeast Polynesia being the least diverse 212 region and Western Coral Triangle the richest, and that Gobiidae, Labridae, Pomacentridae and 213 Apogonidae are the most diverse fish families on coral reefs (8). We found a lower proportion of 214 rare MOTUs than expected under the neutral theory with eDNA, which is in agreement with the 215 findings of a previous study from coral reefs in the Indo-Pacific (38), while visual census data 216 suggests higher rarity close to that predicted from the neutral theory. More surprising, our study 217 calls into question the pattern of fish family stability composition across the Indo-Pacific that was 218 revealed more than 20 years ago (8), and the recent finding that planktivore families drive fish 219 biodiversity patterns on coral reefs (11). We found significant effects of species richness and 220 region on family composition, which appears less stable than previously thought.

221

222 Environmental DNA identified many pelagic, deepwater and crypto-benthic species not seen by 223 divers. Among the pelagic species identified with eDNA, many belong to the Scombridae and 224 Carcharhinidae families, which likely avoid divers or are not permanent residents on coral reefs 225 so can be missed in visual surveys (41). Some crypto-benthic or reef-associated species, hidden in 226 the reef, can also be missed by divers so were also more represented in eDNA than in visual 227 surveys. Crypto-benthic species also have a crucial role for coral reef functioning, by promoting 228 biomass production and fueling the reef trophodynamics (42), but their diversity has been 229 underestimated so far (13). Transient, pelagic and deep-water species may be very important for 230 reef functioning, through pelagic larval stages or nocturnal migration up the reef slope (12,43,44), 231 but their presence and role need further investigation. In contrast, visual census also detected many 232 families not detected, or not identified, by eDNA, such as Acanthuridae, Blenniidae, Caesionidae, 233 Chaenopsidae, Chaetodontidae, Labrisomidae, Labridae or Microdesmidae. This limited 234 identification by eDNA can be due to the very low representation of these families in 12S reference 235 databases (between 0 and 12%), or to the low resolution of the teleo marker for species of these 236 families, so several species can share the same sequence and be grouped under the same MOTU. 237 Environmental DNA may also be inappropriate to detect these species in the environment.

238

The finding of a strong regional effect on both species composition (figure 3) and species differentiation (figure 4) at a large scale is in agreement with visual surveys and previous knowledge (45), while the suggestion of a strong turnover at the local scale may be an unexpected result for coral reef fishes. This predominant role of large-scale bioregional differentiation explains the exceptional fish diversity on coral reefs, probably associated with long-term geological isolation (2). Overall, the Tropical Northwestern Atlantic region has a very distinct MOTU composition compared to the four other regions (figure 3) with only 1.2% of MOTUs being shared
between the Tropical Northwestern Atlantic and any other region, while 20% of MOTUs are
shared between at least two Indo-Pacific regions (figure 4*a*). The isolation of the Tropical
Northwestern Atlantic region can be explained by the hard vicariant barrier of the Isthmus of
Panama (14,46), and a limited suitable area for coral reefs during the past quaternary glaciation.
By contrast, the Indo-Pacific maintained extensive coral reef refuges that have served as centers
of survival during ice-age periods (9).

The greater local compositional dissimilarity of reef fishes among adjacent stations with eDNA than with visual census may correspond to local environmental or habitat differences, to stochastic or random processes (47), or may be due to an insufficient sampling at the station level (Supplementary Analyses Fig. 6). A higher number of replicates per station would be necessary to characterize exhaustively the diversity at the station level and more confidently conclude on the local turnover hypothesis.

258

259 While our results confirm the potential of eDNA to monitor biodiversity in marine ecosystems, 260 some limitations should be addressed in the future to fully exploit this potential. Completing public 261 reference databases would improve the accuracy of taxonomic assignment, which is essential for 262 a better estimation of biodiversity patterns. At such a large spatial scale, reference databases are 263 far from exhaustive with only up to 13% of fish species sequenced on our marker (52), preventing 264 assignment to the species level for 81% of our eDNA sequences. Using multiple markers is an 265 alternative to the database limitation (53,54), but it is much more expensive. For these reasons, we 266 used MOTUs curated by a combination of a clustering algorithm and conservative abundance-267 based post-clustering filters. While un-curated MOTUs are prone to overestimate real diversity 268 (55) and a given MOTU can represent several species within one cluster or several MOTUs

belonging to one species, MOTUs with conservative curation have been shown to reflect the true
level of fish diversity across scales in streams (56,57). Additionally, some species share the same
barcode sequence due to insufficient genetic differentiation on such a small mitochondrial marker
(54). This lack of taxonomic resolution combined with a conservative curated MOTUs pipeline
can underestimate MOTUs richness. Moreover, some crypto-benthic or rare fish families are still
underrepresented in public databases, and their diversity is potentially underestimated with eDNA
(i.e.Blenniidae, Gobiescocidae, Chaenopsidae, Aploactinidae).

276 Differences in sampling method and in sample size might influence the detected biodiversity with 277 eDNA. The lower volume of water sampled in the Western Coral Triangle region (2L per sample, 278 so 4L per station using point-sampling instead of 2-km transect with 30L elsewhere), could 279 underestimate fish biodiversity. However, previous studies show that MOTU accumulation curves 280 based on this dataset were close to the total fish diversity reported in this region (32). Furthermore, 281 β -diversity between samples within stations in each region indicates that dissimilarity between 282 samples is not greater in the Western Coral Triangle than in other regions (figure S11). To account 283 for differences in sample size and obtain a balanced design, we performed sensitivity analyses by 284 rarefying our complete dataset to i) 4 stations for all sites and ii) 4 sites per region after removing 285 the lowest sampled region (Southeast Polynesia) (Supplementary Analyses Fig. 1-4). We obtained 286 similar patterns even after subsampling stations or sites. However, our site-based and station-based 287 accumulation curves do not reach plateaus suggesting that our sampling effort was not sufficient 288 to exhaustively estimate fish biodiversity for each site (Supplementary Analyses Fig. 5) and station 289 (Supplementary Analyses Fig. 6). Twenty-five replicates (so, 12 stations in case of field 290 duplicates) could accurately estimate biodiversity regionally due to high local turnover (58). A 291 higher number of eDNA samples would be necessary here to reach MOTU accumulation per site 292 and station.

The transport and degradation of eDNA can also impact species detection. As some evidence suggests that eDNA from pelagic fishes degrades slower than from inshore species (59), we cannot exclude that eDNA from pelagic and deep-water families (*e.g.* Myctophidae) might disperse sufficiently with sea currents such that species living close to reef habitats are detected. Environmental DNA transport could also explain the detection of some freshwater fish families (*i.e.* Centrarchidae, Osphronemidae or Channidae) in a few samples located near an estuary or in an enclosed bay with freshwater inputs.

300

Better understanding and anticipating the effects of multiple threats to the marine environment depends on the temporal and spatial extent of our monitoring capacity in the vast ocean. Environmental DNA is a powerful tool to investigate biodiversity patterns at large scale and monitor biodiversity, but still benefits from the combination with complementary approaches as visual methods for an exhaustive biodiversity survey across space and time to keep pace with ongoing changes.

307

308 4. Methods

309

(a) Environmental DNA collection and sample processing

Environmental DNA seawater samples were collected between 2017 and 2019, following a hierarchical pattern. A total of 226 eDNA samples (filters) were collected in 100 stations (gathering of replicates at the same location) located in 26 sites (groups of stations separated by at least 35 km) distributed across five tropical regions (figure S1-S2). Three different sampling methods were used comprising a 2km-long sampling transect of 30L (surface or bottom depth) or point samples of 2L (table S7 and Methods S1), and between 12 and 64 samples were collected by region. Filtration was performed with Polyethersulfone (PES) filters, $0.2 \mu m$ pore size. For each sampling campaign, a strict contamination control protocol was followed in both field and laboratory stages (39). Negative field controls were performed in multiple sites, and revealed no contamination from the boat or samplers.

- 320
- 321

(b) eDNA extraction, amplification and sequencing

322 DNA extraction was performed in a dedicated DNA laboratory (SPYGEN, www.spygen.com) 323 equipped with positive air pressure, UV treatment and frequent air renewal. Decontamination 324 procedures were conducted before and after all manipulations. Detailed protocols of DNA 325 extraction, amplification and sequencing can be found in Method S2 and in (32,39). A teleost-326 specific 12S mitochondrial rRNA primer pair (teleo, forward primer 327 ACACCGCCCGTCACTCT, reverse primer - CTTCCGGTACACTTACCATG (39)) was used 328 for the amplification of metabarcode sequences. As we analysed our data using MOTUs as a proxy 329 for species to overcome genetic database limitations, we chose to amplify only one marker. Teleo 330 marker has been shown to be the most appropriate for fish, owing to its high interspecific 331 variability, and its short size allowing us to detect rare and degraded DNA reliably (39,54,60,61). 332 Twelve DNA amplifications PCR per sample were performed.

333

334 (c) **Bioinformatic analysis**

Following sequencing, reads were processed using clustering and post-clustering cleaning to remove errors and estimate the number of species using Molecular Operational Taxonomic Units (MOTUs) (56). First, reads were assembled using *VSEARCH* (62), then demultiplexed and trimmed using *CUTADAPT* (63) and clustering was performed using *SWARM* v.2 (64) with a 339 minimum distance of 1 mismatch between clusters. Taxonomic assignment of MOTUs was carried 340 out using the Lower Common Ancestor (LCA) algorithm ecotag implemented in the OBITOOLS 341 toolkit (65) and the European Nucleotide Archive (ENA) as a reference database (release 143, 342 March 2020). Details on the bioinformatics analysis can be found in Methods S3. Taxonomic assignments obtained from the LCA algorithm at the species level were accepted if the percentage 343 344 of similarity with the reference sequence was 100%, at the genus level if the similarity was between 345 90 and 99%, and at the family level if the similarity was > 85% following previous studies (32,66). 346 If these criteria were not met, the MOTU was left unassigned. Only 21% of assigned MOTUs are 347 assigned to the family level with a similarity between 85 and 90% (Table S8).

348

349 (d) Visual census data

The visual census survey data used here is a subset (2047 transects, in 219 sites, figure S1) of the complete visual census data (3027 transects) provided by the RLS (31), and comprises all species observed on standardized 50 m surveys at sites in tropical biogeographic realms between 2006 and 2017 (Methods S4) (67). We selected only the most recent survey for each station and only transects with more than five percent of coral cover. Two different sampling protocols were adapted to detect both reef and crypto-benthic fishes.

356

357 (e) Statistical analysis

358 More details on the statistical analysis are available in Methods S5.

Accumulation curves were calculated for species per 500 m² transect, MOTUs per eDNA sample, and families per transect and sample. We used the functions "specaccum" and "fitspecaccum" from the R package "vegan" which calculates the expected species accumulation curve using a 362 sample-based rarefaction method and fit a nonlinear accumulation model. In order to assess the 363 impact of the irregular sampling on the estimates measured with accumulation curves, we subset 364 randomly half of the transects in the 3 most sampled regions in Australia, and calculated again the 365 accumulation curves for species and families (figure S12). The results were unchanged.

Linear regression models were fitted between the number of MOTUs per family in the eDNA dataset and the number of species per family in the visual census dataset, after log(x+1)transformation (figure 1*e*).

Accumulation curves were also calculated by sub-setting MOTUs belonging to crypto-benthic orders, or to pelagic families, for both datasets (figure 2). The asymptote was calculated as described above.

We performed distance-based Redundancy Analysis (dbRDA) on family proportions, with *region* and *site richness* as explanatory variables, using the function *capscale* from the *vegan* package. We subset the Visual Census to select only the 68 sites that fell into the 5 regions in common with the eDNA dataset. Total dbRDA provided the effects of each of the variables and their interaction. We then calculated partial dbRDA to measure the effect of the Region while correcting for the effect of site richness (figure 3, table S3).

We applied an additive partitioning framework (68) to separate the total MOTUs diversity at the global scale (γ global) into contributions at smaller scales from regions to local richness : $\gamma_{global} = \beta_{inter-region} + \text{mean } \beta_{inter-site} + \text{mean } \beta_{inter-station} + \text{mean } \overline{\alpha}_{station}$. In this additive framework, the three levels of biodiversity (69) (i.e. α , β and γ) are expressed with the same unit and consequently the contribution of α and β diversity to total diversity (γ) can be directly compared (70). We analyzed the distribution of fish MOTU and species occurrences using global species abundance distribution (gSAD) which plots, on a log-log scale, the number of species as a function of the number of observations (37).

386

388 Funding

389

390

391

The sampling in the Caribbean, Indian Ocean and Polynesia and the sequencing were funded by Monaco Explorations. Fieldwork in Indonesia and laboratory activities were supported by the

Lengguru 2017 Project (www.lengguru.org), conducted by the French National Research Institute

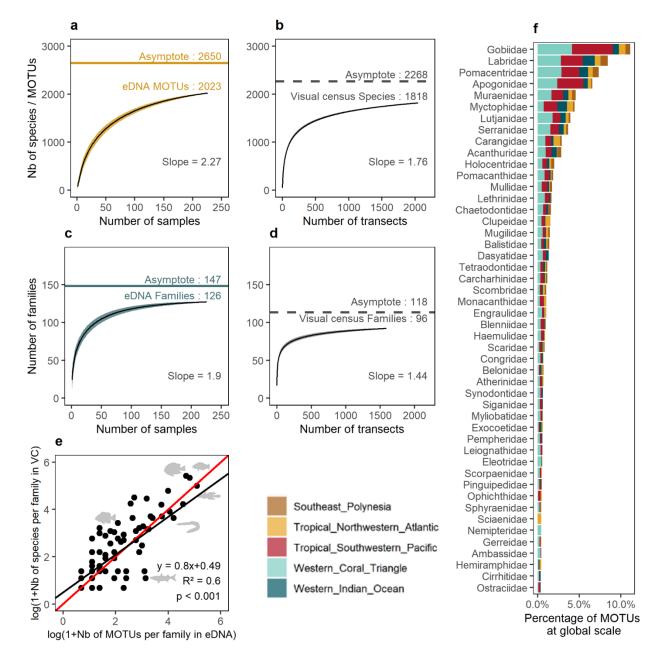
for Sustainable Development (IRD), National Research and Innovation Agency (BRIN)

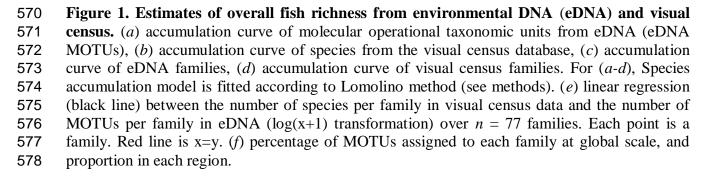
393 with the Research Center for Oceanography (RCO), the Politeknik Kelautan dan Perikanan 394 Sorong), the University of Papua (UNIPA) with the help of the Institut Français in Indonesia (IFI), 395 funding from Monaco Explorations, and corporate sponsorship from the Total Foundation and 396 TIPCO company. Fieldwork and laboratory activities in New-Caledonia were supported by the 397 projects ANR SEAMOUNTS and CIFRE REEF 3.0 conducted by the French National Institute 398 for Sustainable Development (IRD) and GINGER-BURGEAP-SOPRONER company with 399 funding from Monaco Explorations. Fieldwork and laboratory activities in Colombia were 400 supported by Monaco Explorations, ETH Global grant and the project Reefish, conducted in 401 collaboration with the Instituto de Investigaciones Marinas y Costeras - INVEMAR. Monaco 402 Explorations supported also sampling and sequencing in the Caribbean. Fieldwork in the French 403 Scattered islands was supported by the Terres Australes et Antartiques Françaises (TAAF).

404

405 Acknowledgements

406 The authors thank all staff and students involved in fieldwork and acknowledge SPYGEN staff for407 the technical support in the eDNA laboratory.

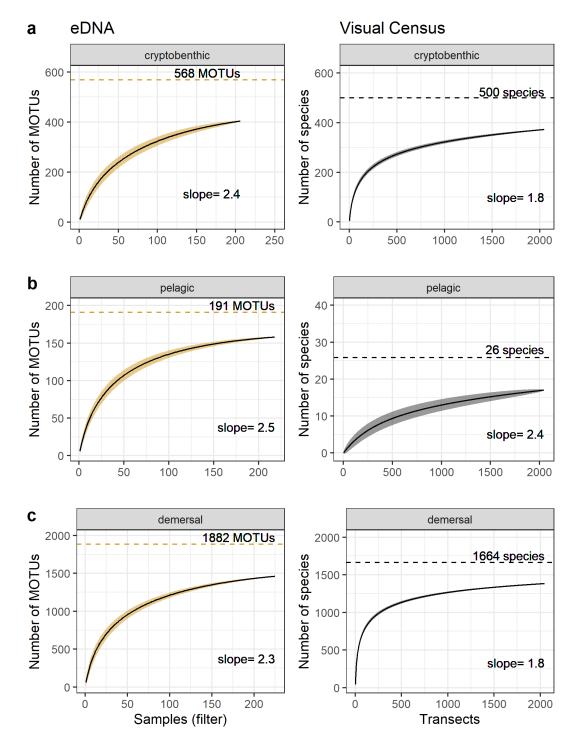
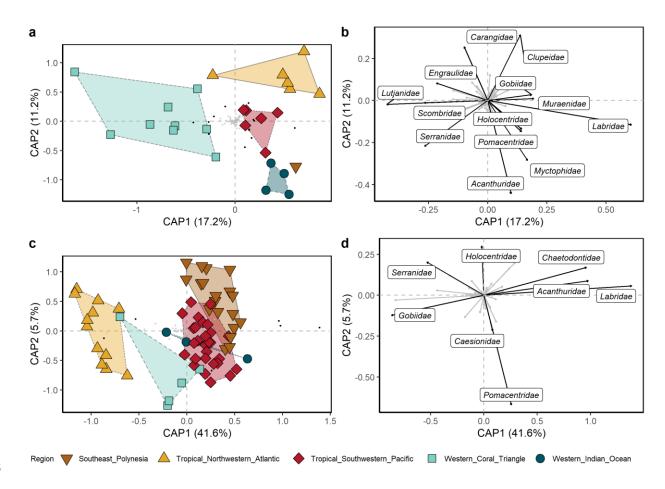

409 **References**

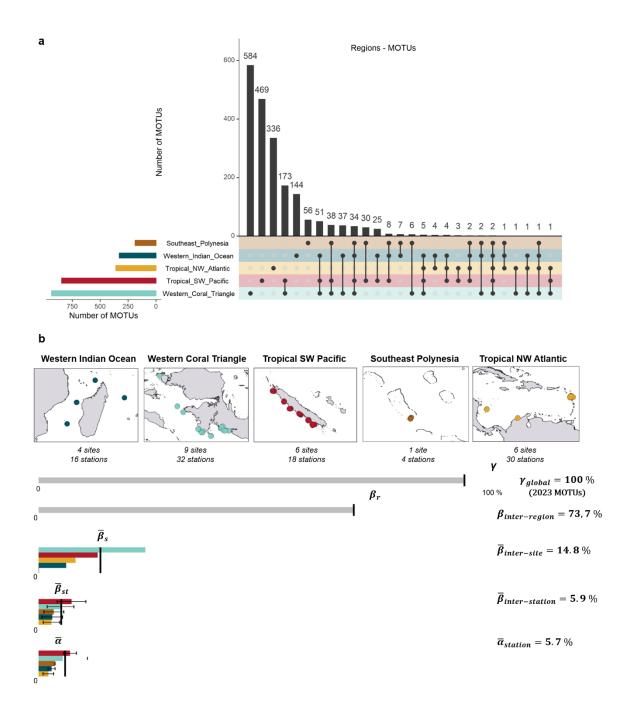

- Parravicini V, Kulbicki M, Bellwood DR, Friedlander AM, Arias-Gonzalez JE, Chabanet P, et al. Global patterns and predictors of tropical reef fish species richness. Ecography (Cop). 2013;36(12):1254–62.
- 412 2. Cowman PF, Bellwood DR. The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. J Biogeogr. 2013;40(2):209–24.
- 414 3. Cinner JE, Zamborain-mason J, Gurney GG, Graham NAJ, Macneil MA, Hoey AS, et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science (80-).
 416 2020;368(April):307–11.
- 4. Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, Brown S, et al. The human imperative of stabilizing global climate change at 1.5°C. Science (80-). 2019;365(6459).
- 419 5. Victor BC. How many coral reef fish species are there? Cryptic diversity and the new molecular taxonomy.
 420 In: Ecology of fishes on coral reefs Cambridge University Press, Cambridge. 2015. p. 76–88.
- 421 6. Siqueira AC, Morais RA, Bellwood DR, Cowman PF. Trophic innovations fuel reef fish diversification. Nat Commun. 2020;11(1):1–11.
- 423 7. Bellwood D, Wainwright P. The history and biogeography of fishes on coral reefs. In: Sale P, editor. Coral
 424 Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. Academic P. San Diego; 2002.
- 8. Bellwood DR, Hughes TP. Regional-scale assembly rules and biodiversity of coral reefs. Science (80-).
 2001;292(5521):1532–4.
- 9. Pellissier L, Leprieur F, Parravicini V, Cowman PF, Kulbicki M, Litsios G, et al. Quaternary coral reef
 refugia preserved fish diversity. Science (80-). 2014;344(6187):1016–20.
- 429 10. Veron J, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, et al. Delineating the Coral
 430 Triangle. Galaxea, J Coral Reef Stud. 2009;11(2):91–100.
- 431 11. Siqueira AC, Morais RA, Bellwood DR, Cowman PF. Planktivores as trophic drivers of global coral reef
 432 fish diversity patterns. PNAS. 2021;118(9).
- 433 12. Morais RA, Bellwood DR. Pelagic Subsidies Underpin Fish Productivity on a Degraded Coral Reef. Curr
 434 Biol. 2019;29(9):1521–7.
- 435 13. Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev. 2018;93:1846–73.
- 437 14. Bender MG, Leprieur F, Mouillot D, Kulbicki M, Parravicini V, Pie MR, et al. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography (Cop). 2017;40(3):425–35.
- Hughes TP, Bellwood DR, Connolly SR, Cornell H V., Karlson RH. Double jeopardy and global extinction risk in corals and reef fishes. Curr Biol. 2014;24(24):2946–51.
- 441 16. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-gonzález JE. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS. 2014;111(38):13757–62.
- 443 17. Alzate A, Zapata FA, Giraldo A. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop. 2014;62(February):359–71.
- Bellwood D, Renema W, Rosen BB. Biodiversity hotspots, evolution and coral reef biogeography: a review.
 In: Biotic Evolution and Environmental Change in Southeast Asia Cambridge: Cambridge University Press.
 2012. p. 216–45.
- 449 19. Mora C. Ecology of fishes on coral reefs. Ecology of Fishes on Coral Reefs. 2015. 1–374 p.
- 450 20. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. Environmental DNA. Mol Ecol. 2012;21(8):1789–93.
- 451 21. Boulanger E, Loiseau N, Valentini A, Arnal V, Boissery P, Dejean T, et al. Environmental DNA
 452 metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves,
 453 Dryad, Dataset. Proc R Soc B. 2021;288(20210112).
- 454 22. Harrison JB, Sunday JM, Rogers SM. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc R Soc B Biol Sci. 2019;286(1915):1–9.
- 456 23. Cordier T, Alonso-Saez L, Apothéloz-Perret-Gentil L, Aylagas E, Bohan DA, Bouchez A, et al. Ecosystem monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol Biol Evol. 2020;may:1–22.
- 459 24. De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science (80-). 2015;348(6237):1–11.
- 461 25. Valdivia-Carrillo T, Rocha-Olivares A, Reyes-Bonilla H, Domínguez-Contreras JF, Munguia-Vega A.
 462 Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Mol Ecol Resour. 2021;(March):1558–74.

- 464 26. West K, Travers MJ, Stat M, Harvey ES, Richards ZT, DiBattista JD, Newman SJ, Harry A, Skepper CL,
 465 Heydenrych M, Bunce M. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and
 466 transitions over tropical north-western Australia. Diversity and Distributions. 2021 Oct;27(10):1942-57.
- 467 27. Kume M, Lavergne E, Ahn H, Terashima Y, Kadowaki K, Ye F, et al. Factors structuring estuarine and coastal fish communities across Japan using environmental DNA metabarcoding. Ecol Indic [Internet].
 469 2021;121(November 2020):107216. Available from: https://doi.org/10.1016/j.ecolind.2020.107216
- 470 28. Fraija-Fernández N, Bouquieaux MC, Rey A, Mendibil I, Cotano U, Irigoien X, et al. Marine water
 471 environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial
 472 patterns in a large oceanic area. Ecol Evol. 2020;10(14):7560–84.
- 473 29. Aglieri G, Baillie C, Mariani S, Cattano C, Calò A, Turco G, et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol Ecol. 2020;(August):1–13.
- 30. DiBattista JD, Berumen ML, Priest MA, De Brauwer M, Coker DJ, Sinclair-Taylor TH, et al.
 Environmental DNA reveals a multi-taxa biogeographic break across the Arabian Sea and Sea of Oman.
 Environ DNA. 2021;(December 2020):1–16.
- 478 31. Edgar GJ, Stuart-Smith RD. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci Data. 2014;1:1–8.
- 480 32. Juhel JB, Utama RS, Marques V, Vimono IB, Sugeha HY, Kadarusman, et al. Accumulation curves of
 481 environmental DNA sequences predict coastal fish diversity in the coral triangle. Proceedings Biol Sci. 2020;287(1930):1–10.
- 483 33. Castellanos-Galindo GA, Krumme U, Rubio EA, Saint-Paul U. Spatial variability of mangrove fish assemblage composition in the tropical eastern Pacific Ocean. Rev Fish Biol Fish. 2013;23(1):69–86.
- 485 34. Willis TJ, Anderson MJ. Structure of cryptic reef fish assemblages: Relationships with habitat characteristics and predator density. Mar Ecol Prog Ser. 2003;257:209–21.
- 487 35. Harnik PG, Simpson C, Payne JL. Long-term differences in extinction risk among the seven forms of rarity.
 488 Proc R Soc B Biol Sci. 2012;279(1749):4969–76.
- 489 36. Crist TO, Veech JA. Additive partitioning of rarefaction curves and species-area relationships: Unifying α -, β and γ -diversity with sample size and habitat area. Ecol Lett. 2006;9(8):923–32.
- 491 37. Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, et al. The commonness of rarity:
 492 Global and future distribution of rarity across land plants. Sci Adv. 2019;5(11):1–14.
- 493 38. Dornelas M, Connolly SR, Hughes TP. Coral reef diversity refutes the neutral theory of biodiversity. Nature.
 494 2006;440(7080):80–2.
- 495 39. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 2016;25(4):929–42.
- 497 40. West K, Travers MJ, Stat M, Harvey ES, Richards ZT, Dibattista JD, et al. Large-scale eDNA
 498 metabarcoding survey reveals marine biogeographic break and transitions over tropical north- western
 499 Australia. Divers Distrib. 2021;(00):1–16.
- 500 41. Boussarie G, Kiszka JJ, Mouillot D, Bonnin L, Manel S, Kulbicki M, et al. Environmental DNA illuminates
 501 the dark diversity of sharks. Sci Adv. 2018;4(5):1–8.
- Brandl SJ, Tornabene L, Goatley CHR, Casey JM, Morais RA, Côté IM, et al. Demographic dynamics of
 the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science (80-). 2019;(May):799–802.
- 43. Kimmerling N, Zuqert O, Amitai G, Gurevich T, Armoza-Zvuloni R, Kolesnikov I, et al. Quantitative species-level ecology of reef fish larvae via metabarcoding. Nat Ecol Evol. 2018;2(2):306–16.
- 506 44. Beckley LE, Holliday D, Sutton AL, Weller E, Olivar MP, Thompson PA. Structuring of larval fish
 507 assemblages along a coastal-oceanic gradient in the macro-tidal, tropical Eastern Indian Ocean. Deep Res
 508 Part II. 2019;161(March 2018):105–19.
- 45. McLean M, Stuart-Smith RD, Villéger S, Auber A, Edgar GJ, MacNeil MA, et al. Trait similarity in reef
 fish faunas across the world's oceans. Proc Natl Acad Sci. 2021;118(12):e2012318118.
- 46. Gaboriau T, Leprieur F, Mouillot D, Hubert N. Influence of the geography of speciation on current patterns of coral reef fish biodiversity across the Indo-Pacific. Ecography (Cop). 2018;41(8):1295–306.
- 47. Ahmadia GN, Tornabene L, Smith DJ, Pezold FL. The relative importance of regional, local, and
 evolutionary factors structuring cryptobenthic coral-reef assemblages. Coral Reefs. 2018;37(1):279–93.
 515 48. Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML. Spatial patterns of cryptobenthic coral-reef
- 515 48. Coker DJ, DiBattista JD, Sinclair-Taylor TH, Berumen ML. Spatial patterns of cryptobenthic coral-reef
 516 fishes in the Red Sea. Coral Reefs. 2018;37(1):193–9.
- 517 49. Goatley CHR, González-Cabello A, Bellwood DR. Reef-scale partitioning of cryptobenthic fish
 518 assemblages across the Great Barrier Reef, Australia. Mar Ecol Prog Ser. 2016;544(February):271–80.
- 519 50. Wang S, Loreau M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol Lett. 2016;19:510–8.

- 521 51. Benkwitt C, Wilson S, Graham NAJ. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol. 2020;4:916–26.
- 523 52. Marques V, Milhau T, Albouy C, Dejean T, Manel S, Mouillot D, et al. GAPeDNA : Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. 2020;(April):1–13.
- 525 53. Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA)
 526 metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol
 527 Conserv. 2019;17:e00547.
- 528 54. Polanco A, Richards FE, Flück B, Valentini A, Altermatt F, Jean- SB, et al. Comparing the performance of
 529 12S mitochondrial primers for fish environmental DNA across ecosystems. Environ DNA. 2021;(June):1–
 530 15.
- 55. Brandt MI, Trouche B, Quintric L, Günther B, Wincker P, Poulain J, et al. Bioinformatic pipelines
 combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic
 metabarcoding. Mol Ecol Resour. 2021;21(6):1904–21.
- 56. Marques V, Guérin PÉ, Rocle M, Valentini A, Manel S, Mouillot D, et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences.
 536 Ecography (Cop). 2020;43:1–12.
- 537 57. Sales NG, Wangensteen OS, Carvalho DC, Deiner K, Praebel I, McDevitt A, et al. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. bioRxiv. 2020;1–38.
- 539 58. Stauffer S, Jucker M, Keggin T, Marques V, Andrello M, Bessudo S, et al. How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs? Authors : bioRxiv. 2021;
- 54159.Collins RA, Wangensteen OS, O'Gorman EJ, Mariani S, Sims DW, Genner MJ. Persistence of
environmental DNA in marine systems. Commun Biol. 2018;1(185):1–12.
- 54360.Collins RA, Bakker J, Wangensteen OS, Soto AZ, Corrigan L, Sims DW, et al. Non-specific amplification544compromises environmental DNA metabarcoding with COI. Methods Ecol Evol. 2019;10(11):1985–2001.
- 545 61. Zhang S, Zhao J, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol Evol. 2020;2020(January):1609–25.
- 547 62. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:1–22.
- 549 63. Martin. M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 1994;17(1):10–2.
- Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:1–12.
- 55365.Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. obitools: A unix-inspired software package554for DNA metabarcoding. Mol Ecol Resour. 2016;16(1):176–82.
- 558 67. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, et al. Marine Ecoregions of the
 World: A Bioregionalization of Coastal and Shelf Areas. Bioscience. 2007;57(7):573–83.
- 560 68. Escalas A, Troussellier M, Yuan T, Bouvier T, Bouvier C, Mouchet MA, et al. Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environ Microbiol. 2017;19(8):3268–82.
- 563 69. Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213–51.
- Veech JA, Summerville KS, Crist TO, Gering JC. The additive partitioning of species diversity: Recent revival of an old idea. Oikos. 2002;99(1):3–9.
- 566 567

8 Figures


Figure 2. Estimates of overall fish richness from eDNA and visual census across habitat
categories. (a) accumulation curve of crypto-benthic eDNA MOTUs (left) and visual census
species (right), (b) accumulation curve of pelagic MOTUs (left) and visual census species (right),
c, accumulation curve of demersal MOTUs (left) and visual census species (right). Accumulation
model is fitted with a nonlinear Lomolino model (see Methods).

587 Figure 3. Partial Distance-based Redundancy analysis of MOTU proportions of each family

in each site. (*a*) dbRDA on eDNA dataset, with 133 families in 26 sites ($R^2=0.21$, F=3.11, p=0.001), (*b*) families with scores > 95% of scores distribution on each axis for eDNA, (*c*) dbRDA on a subset of Visual Census dataset to select only the sites in the same regions as in the eDNA dataset, with 76 families in 68 sites ($R^2=0.5$, F=15.8, p=0.001), (*d*) families with scores > 95% of scores distribution on each axis for Visual Census. Axis labels indicate the percentage of variance explained by the 2 first dbRDA dimensions (CAP1 and CAP2).

Figure 4. Hierarchical partitioning of MOTU occurrences across spatial scales. (*a*) Number of MOTUs found in only one region, or shared between 2, 3, 4 or all 5 regions. Histograms indicate the number of MOTUs present in all the regions identified by the dots in the lower part. (*b*) Global fish diversity (y_{global}) is partitioned into $\beta_{inter-region}$ + mean $\beta_{inter-site}$ + mean $\beta_{inter-station}$ + mean $\bar{\alpha}_{station}$. Mean values at global scales are indicated with the black vertical segments. For $\beta_{inter-site}$, $\beta_{inter-station}$ and $\bar{\alpha}_{station}$, mean values are given for each region (colored bars) with the standard errors. $\beta_{inter-region}$ contributes the highest to gamma global (73.7%).