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Abstract. Characterizing the diversity of demographic strategies among species can inform 18 

research in topics such as trait syndromes, community stability, coexistence and ecological 19 

succession. However, this diversity can depend on the spatial scale considered: at the landscape 20 

scale, species often form metapopulations, i.e. sets of local, sometimes short- lived, populations, 21 

inhabiting discrete habitat patches. Metapopulation dynamics are most frequently analyzed in 22 

individual species or pairs of interacting species because of the large amount of data required for 23 

multiple species, and because species vary in their perceptions of what constitutes a favorable or 24 

unfavorable habitat. Here we evaluate, using a case study, whether a metapopulation model can 25 

be used to generate accurate estimates of demographic parameters and to describe the diversity 26 

of dynamics, responses to environment, and prospects of long- term persistence in a guild of 27 

species inhabiting a common fragmented landscape. We apply this approach to a guild of 22 28 

mollusc species that inhabit freshwater habitats on two islands of Guadeloupe, to compare 29 

metapopulation dynamics among species. We analyzed a fifteen-year time series of occupancy 30 

records for 278 sites using a multistate occupancy model that estimates colonization and 31 

extinction rates as a function of site- and year specific environmental covariates, then used model 32 

results to simulate future island metapopulation dynamics. Despite the diverse array of 33 

metapopulation trajectories - a mix of species with either stable, increasing, declining, or 34 

fluctuating metapopulations - and the inherent challenges associated with such data (e.g., 35 

imperfect detection, spatial and temporal heterogeneity), our model accurately captures among-36 

patch variation in suitability for many mollusc taxa. The dynamics of rare species or species with 37 

habitat preferences not fully captured by the retained set of covariates were less well described. 38 

For several species, we detected a negative correlation between extinction and colonization. This 39 

variation in habitat suitability created species-specific extinction-resistant pockets in the 40 
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landscape. Our comparative analysis also revealed that species had distinct strategies for 41 

metapopulation dynamics, such as ‘fast turnover’ species with both a high proportion of 42 

occupied sites and a high rate of site extinction in the landscape. 43 

 44 

Key words: biological invasions; comparative demography; environmental variability; extinction 45 

/ colonization; freshwater snails; metapopulations; predicted dynamics 46 
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INTRODUCTION 48 

 49 

The metapopulation approach, which describes the dynamics of groups of local 50 

populations as discrete spatial entities that exchange migrants and are experiencing extinction 51 

and colonization dynamics (Hanski 1999; Hanski & Gaggiotti 2004), is a theoretical 52 

construction that proved useful to describe and predict species occupancy patterns (e.g., Hanski 53 

et al. 1995; Lawes et al. 2000; Vergara et al. 2016). It has also guided biocontrol and 54 

conservation efforts for diverse groups of species (e.g., Marsh and Trenham 2001; Johst & 55 

Schöps 2003; Pointier & David 2004; Ladin et al. 2016; but see Smith & Green 2005 and 56 

Fronhofer et al. 2012 for a critical assessment of when to consider species in patchy habitats as 57 

metapopulations). However, the overwhelming majority of metapopulation studies have been 58 

conducted on individual species or on pairs of interacting species (Nee et al. 1997; Bull et al. 59 

2006). In patchy landscapes where guilds of phylogenetically or functionally similar species 60 

overlap, species may perceive the same landscape in distinct ways. Species may vary in their 61 

colonization and extinction rates, as well as whether they have stable metapopulation dynamics 62 

or are instead transiently present and expected to become extinct. Comparing metapopulation 63 

rates and dynamics across multiple species can be used to associate species’ properties with their 64 

colonization and extinction rates (e.g., Johansson et al. 2012), to assess the consequences of the 65 

spread of introduced species on communities (Pointier & David 2004; Svenning et al. 2014), to 66 

optimize conservation planning to decrease extinction risk for multiple species (Nicholson et al. 67 

2006), and more generally to better inform current and expected biodiversity patterns. Our 68 

purpose here is to evaluate, using a case study, whether a metapopulation model can be used to 69 

generate accurate estimates of demographic parameters and to describe the diversity of 70 
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dynamics, responses to environment, and prospects of long-term persistence in a guild of species 71 

inhabiting a common fragmented landscape. We present a first multi-species (> 3 species), 72 

comparative metapopulation study, where estimates of demographic parameters and the 73 

environmental covariates that influence extinction and colonization are evaluated for many 74 

species together. Our approach is novel in its focus on more than 1-3 species, since we consider 75 

an entire guild with more than 20 species, as well as in its ability both to estimate metapopulation 76 

equilibrium expectations for species that are not at an equilibrium occupancy and to make 77 

predictions about future occupancy and extinction dynamics. 78 

A metapopulation approach is appropriate when populations are spatially structured into 79 

local populations and when migration among these allows the reestablishment of extinct 80 

populations (Hanski & Gilpin 1997). The current generation of metapopulation models, 81 

stochastic patch occupancy models (SPOMs; Caswell & Etter 1993; Hanski 1997; Moilanen 82 

1999; Heard et al. 2013), focus specifically on the presence of a population in a habitat patch 83 

and allow estimation of colonization and extinction rates and metapopulation occupancy, i.e. the 84 

constitutive parameters of the foundational Levins (1969; 1970) metapopulation model. SPOMs 85 

have become popular because their representation of only the occupancy state (as unoccupied or 86 

occupied) of habitat patches makes them easier to parameterize than models that require local 87 

density estimates (Moilanen 2004). However, some key issues must be considered in order to 88 

accurately and simultaneously apply this modeling framework to several species of a guild in 89 

real, complex, and fragmented landscapes. While solutions to these challenges – imperfect 90 

detection, among-site heterogeneity, and temporally variable metapopulation dynamics - have 91 

been developed for analysis of individual species, we describe here the characteristics of our 92 

approach that were implemented to address them at the multi-species scale. 93 
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First, knowledge of a species’ presence or absence from field data is usually imperfect, 94 

because species might not be detected when actually present (Guillera-Arroita 2017). In some 95 

cases, species may even be known to be systematically undetected by usual survey methods, 96 

such as under stressful circumstances (desiccation, freezing) that trigger the adoption of 97 

quiescent resistant forms (Lamy et al. 2013). Imperfect detection presents a difficulty for the 98 

SPOM approach because the occupancy state of each local population depends on the occupancy 99 

state at the previous time point (Moilanen 2004), and as a consequence estimates of colonization 100 

and extinction may be biased (Moilanen 2002; MacKenzie et al. 2003). In order to reduce these 101 

biases, Lamy et al. (2013) developed an occupancy model that combined two approaches, 102 

estimation of detection probabilities from repeated surveys (MacKenzie et al. 2003) and the 103 

inclusion of additional, undetectable, states beyond the binary of occupied / not occupied (e.g., 104 

multistate occupancy models, MacKenzie et al. 2009). In this model, the different states of 105 

occupancy were associated with an active life stage in wet sites and an aestivating life stage in 106 

dry sites (individuals buried in sediment), which allows estimation of colonization, extinction, 107 

and detectability parameters in wet vs. dry sites. We use the occupancy model of Lamy et al. 108 

(2013) in this study in order to quantify the metapopulation dynamics of a set of species that 109 

likely vary in their detectability and in their propensity to persist in a quiescent, cryptic form. 110 

The second challenge is to account for the species-specific heterogeneity in the 111 

contributions of patches to the overall colonization and extinction dynamics in a metapopulation. 112 

Site heterogeneity has been incorporated in some spatially implicit metapopulation models: 113 

Hanski & Ovaskainen (2002) accounted for the destruction of some habitat patches, and 114 

quantitative variables describing heterogeneity have also been used, mostly to account for 115 

variation in patch size (considered as a proxy for population size and thus overall extinction 116 
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probability) and patch connectivity (Hanski 1994; Moilanen 2000; Wang & Altermatt 2019).  117 

Other spatially realistic metapopulation models have been developed that consider patch 118 

heterogeneity in the landscape (Chandler et al. 2015; Howell et al. 2018) or a site’s position in 119 

a broader spatial network structure (Gillaranz et al. 2012; Holmes et al. 2020). However, a 120 

different approach may be needed when comparing multiple species in a landscape, as the 121 

extinction and colonization probabilities for species with distinct limiting resources and dispersal 122 

modes are unlikely to be captured by a shared measure of size and connectivity. The simple 123 

delimitation of habitat from non-habitat may differ across species as well. Modelling 124 

colonization and extinction parameters as a function of site-specific environmental properties 125 

across sites for each species represents a more general approach to consider site heterogeneity 126 

(Sjögren-Gulve & Ray 1996; Lamy et al. 2013; van der Merwe et al. 2016; Rodhouse et al. 127 

2018). This has previously only been applied to individual metapopulations, but it can account 128 

for the fact that each species may perceive habitat patch quality in its own way. In an assemblage 129 

of species, effects of covariates on colonization and extinction may give rise to species-specific 130 

spatial variation in observed and expected occupancy patterns. Thus, the success of this approach 131 

can be evaluated by its ability to reproduce and provide reasonable understanding of the diversity 132 

of species occupancy maps in the landscape. Additionally, for each species site heterogeneity is 133 

important for its average dynamics at the landscape scale because variance and covariance 134 

among sites in estimates of colonization and extinction rates may alter the predicted mean time 135 

until extinction (Frank & Wissel 2002), the weighted fraction of occupied patches (Ovaskainen 136 

2002), or have other significant impacts on metapopulation dynamics (Sutherland et al. 2012, 137 

Dubart et al. 2019). 138 

pdavid
Texte surligné 
why weighted ?? rather stationary ?
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The third challenge of metapopulation models is to correctly account for temporal 139 

variation, which can arise from three main sources. First, colonization and extinction may vary 140 

temporally because the environment changes in time (Ovaskainen 2002; Perry & Lee 2019). 141 

This can be addressed for example by taking time series of an appropriate length to adequately 142 

sample this temporal variation, by considering time-varying covariates for extinction and 143 

colonization rates (e.g. Rodhouse et al. 2018), or by considering dynamic models of stochastic 144 

patch occupancy that explicitly incorporate this temporal variation (e.g. Bertassello et al. 2020). 145 

Second, the absolute colonization rate (the rate at which an empty site becomes occupied) varies 146 

in time due to changes in the proportion of occupied sites in the metapopulation, which act as 147 

sources of colonists. This relationship is captured by metapopulation models that express 148 

colonization rates on a per-occupied-site basis (i.e. relative colonization rates; Levins 1969) in 149 

the same way that birth rates are expressed as per-capita in standard population growth models. 150 

However, many empirical studies instead estimate absolute colonization rates (e.g., Mackenzie 151 

et al. 2003). These estimates may be problematic especially for invading or declining species, as 152 

projections will not account for natural feedbacks of occupancy on colonization and may fail to 153 

adequately predict the long-term dynamics of the metapopulation (Hanski 1994). This leads to 154 

the third source of temporal variation, which is non-stationarity. Models vary in whether or not 155 

the study system is assumed to be at quasi-equilibrium (not the eventual state of extinction 156 

expected for all systems, but instead the quasi-steady state the system converges to before this 157 

point; see Hanski 1994). Parameterizing a model that assumes quasi-equilibrium (e.g., in early 158 

instances of the incidence function model; Hanski 1994) when the population is not truly at 159 

equilibrium can produce unreliable estimates. For systems away from quasi-equilibrium, long 160 

time-series with state transitions between successive time points are needed to sample 161 
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representative distributions of colonization and extinction events (Moilanen 2000). In this study, 162 

we model a time-series of metapopulation occupancy dynamics that addresses these temporal 163 

considerations in four ways. (i) We use a long time-series, decreasing the chance that 164 

colonization and extinction measures are drawn from a non-representative sample; (ii) our model 165 

estimates relative colonization rates (i.e. per occupied site) rather than absolute ones, which 166 

conforms with Levins’ original formulation; (iii) these rates are purely estimated from temporal 167 

turnover data, which removes the need for any equilibrium assumption and accounts for temporal 168 

variation in occupancy dynamics among species at the landscape scale; and (iv) we included both 169 

spatial and temporal covariates to capture environmental effects on colonization and extinction 170 

rates in our model. The framework of Lamy et al. (2013) allows implementation of all these 171 

features except (ii), and so we modified its formulation to allow for this (see Methods). 172 

We applied this spatially implicit metapopulation modeling framework to the guild of snail 173 

species that inhabit freshwater habitats of two islands (Grande-Terre and Marie-Galante) in the 174 

Guadeloupe archipelago, Lesser Antilles. These islands harbor over 3000 freshwater habitats that 175 

are connected to one another to various degrees, especially during the rainy season. Many sites 176 

are dry for several months, but some species can aestivate in the sediment for several weeks or 177 

more (Pointier 1976). We collected occupancy records of 22 mollusc taxa in 278 sites sampled 178 

annually from 2001 to 2015. We analyzed this time series using a modeling framework adapted 179 

from Lamy et al. (2013), a multistate occupancy model that estimates colonization and 180 

extinction rates as a function of site- and year-specific environmental covariates. We provide 181 

estimates of these rates, determine how they vary over time and across sites, and use them in 182 

simulations to predict either the equilibrium proportion of occupied sites or the time until 183 

extinction, while taking uncertainty in parameter estimation into account. We use our results to 184 
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address five main questions: (i) How do snail taxa vary in their colonization and extinction rates, 185 

and in their likelihood to persist, increase, or decrease at the landscape scale, and can we use our 186 

models to characterize different types of metapopulation behaviors reflecting the phylogenetic 187 

and life history diversity in this guild? (ii) Are colonization and extinction rates sensitive to year- 188 

and site-specific environmental properties, do these sensitivities vary among species, and can we 189 

adequately measure these sensitivities and use them to model species differences in habitat use 190 

and spatial distribution in the landscape? (iii) Can a comparative analysis of metapopulation 191 

parameters across multiple species reveal general patterns of life history strategies at the 192 

landscape scale? (iv) Does the inclusion of habitat-dependent variation alter predictions 193 

regarding persistence and global occupancy in the landscape, and for which species? (v) What 194 

are the methodological limits to our approach? 195 

 196 

METHODS 197 

 198 

Study system 199 

The islands of Grande-Terre (639 km2) and Marie-Galante (170.5 km2) lie in the 200 

Guadeloupe archipelago in the Lesser Antilles (see Pointier 2008, Lamy et al. 2013, Chapuis et 201 

al. 2017 for a description of the system). The islands are geographically and geomorphologically 202 

similar to one another and distinct from other nearby islands, which is why we consider their 203 

snail populations together. They harbor diverse types of freshwater habitats, including ponds, 204 

small rivers, and swamp grasslands connected to mangroves (subsequently referred to as back-205 

mangrove), all of which vary dynamically in water levels and connectivity. Our study focuses on 206 

27 taxa of freshwater molluscs (Appendix S1: Table S1) that occupy these habitats and constitute 207 
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the major part of the macrobenthos. These taxa mainly belong to two groups: pulmonate snails 208 

belonging to the order Hygrophila (subclass Heterobranchia, 15 taxa in three families), and 209 

operculate snails of the subclass Caenogastropoda (10 taxa), belonging to three families 210 

(Ampullaridae, Cochliopidae, Thiaridae each in a different order). In addition one gastropod of 211 

subclass Neritimorpha, and one bivalve (family Sphaeridae) are represented. We considered six 212 

morphotypes of the caenogastropod Melanoides tuberculata and treated them as separate 213 

metapopulations because they reproduce parthenogenetically, and each of them represents a 214 

morphological and genetic clone with its own invasion history in the islands (Facon et al. 2003; 215 

2008). Prior to the 1970s, the archipelago harbored a relatively stable number of native snail 216 

species, but invasive species have appeared and settled since then (Pointier 1976; Pointier & 217 

Augustin 1999; Pointier & Jarne 2011). Native and invasive species differ in whether or not 218 

their metapopulation dynamics have stabilized and invasive species are also in different stages of 219 

their invasion sequence. Overall, we have a mix of species with either stable, increasing, 220 

declining, or fluctuating metapopulations. The metapopulation dynamics of one of the most 221 

common species, Drepanotrema depressissimum, was evaluated in Lamy et al. 2013, showing 222 

higher colonization and persistence in dry than in wet sites (as a consequence of aestivation in 223 

dry sites) and a marked influence of some environmental parameters (e.g., positive effect of 224 

connectivity on colonization in wet sites). 225 

 226 

Multistate occupancy model  227 

Based on Lamy et al. (2013), we utilized a state-space model with a state process capturing 228 

transitions between site states (occupied / not occupied) and an observation process linking the 229 

data (detected / not detected) to the underlying states, to take into account imperfect species 230 
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detection. The model estimates extinction and colonization probabilities as well as detection 231 

probability (the probability that a species is successfully detected during a site visit), and 232 

accounts for the existence of aestivating snails that may persist (unseen) in the ground of dry 233 

sites. Our model differed slightly from that of Lamy et al. (2013) in a few ways. First, instead of 234 

estimating as a single parameter the absolute colonization probability (that is equal to c*p), 235 

which depends on the proportion of occupied sites p (that can act as sources of propagules for 236 

colonization) and the colonization rate per empty patch c, we modeled the true relative 237 

colonization rate c. This rate determines the transition probability that an un-occupied site 238 

becomes occupied the next year, through: !(0 → 1|0) = 1 − *!"#, where + = $∑ &!,#$%&
!'% '
( , M is 239 

the number of sites, and xi,t-1 is the true occupancy status of site i at occasion t-1. This 240 

formulation reflects colonization as a continuous process in time, where e-cp is the probability 241 

that a site has not been colonized by any propagule in one unit of time. The occupancy dynamics 242 

of a site thus can be modeled as: 243 

 244 

Eq. 1: xi,t = xi,t-1[φ + (1 - φ)(1-e-cp)] + [1 – xi,t-1](1 – e-cp), 245 

 246 

where φ is the probability of persistence from one occasion to the next. Following Lamy et al. 247 

(2013), the φ and c values used depend on the wet or dry state of the site at times t-1 and t. The 248 

probability of persistence in a wet site (φW) is used when the site is wet at t-1, and φD (dry site) 249 

when the site is dry at t-1. cW (respectively cD) is used when the site is wet (respectively dry) at 250 

time t. cD is likely a very small value as the time window during which colonization can occur is 251 

reduced in dry sites. Given the very low precision of cD estimates in initial runs of the models, 252 

we preferred to reduce the number of parameters and set colonization rate of dry sites to cD = 0 253 
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(our results did not differ qualitatively when cD was estimated). This implementation of the 254 

model estimated the probability of detecting a species in a wet site (dW; referred to as pW in Lamy 255 

et al. 2013) with the detectability set to 0 in dry sites. The model requires turnover data (changes 256 

in species detection over years within sites) and uses repeatability data (replicated visits of the 257 

same site within each annual sampling period; the time between sampling and resampling was 258 

short enough to preclude colonization and extinction) to estimate colonization and extinction 259 

rates and detectability, but does not make an equilibrium assumption. The initial occupancy of 260 

the metapopulation at the first sampled occasion is therefore estimated as an additional parameter 261 

Ψ (rather than deduced from other parameters or equilibrium assumptions). 262 

Fitting of the model to data was conducted using a Bayesian procedure in JAGS (Just 263 

Another Gibbs Sampler, which implements Monte Carlo Markov Chain sampling; Plummer 264 

2003), implemented in R (version 3.3.3, 2017) using the base package, the ‘coda’ package 265 

(Plummer et al. 2006), and the ‘rjags’ package (Plummer 2016). The prior distribution of dW, 266 

φW, φD, and cW were U(0,1), a uniform distribution over the interval [0, 1]. Initial occupancy 267 

probabilities for sites on the two islands (Grande-Terre and Marie-Galante), ΨGT and ΨMG, were 268 

estimated separately, both with prior distributions U(0,1), and each island had an island-specific 269 

mean occupancy probability each year pt. 270 

 271 

Data 272 

We used records of 27 taxa (22 species, with six genetically distinct morphotypes of one 273 

species; Appendix S1: Table S1) that were surveyed in 278 sites (250 sites in Guadeloupe, 28 274 

sites in Marie-Galante) annually from 2001 to 2015. Some species did not occur in the 275 

metapopulation until after 2001 and not all sites were sampled in all years (total number of site 276 
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visits = 3593, mean and standard deviation of number of site visits per year = 222 ± 59). 277 

Sampling during the year 2012 had to be reduced to 57 sites for financial reasons, and those sites 278 

were chosen non-randomly as sites where Physa acuta had never been observed (this was crucial 279 

information for another study to document the invasion progression of this species) and as sites 280 

with risk of drying (from our own experience) to determine their dry or wet status. The 2012 281 

survey data is therefore biased for low presence of Ph. acuta and of species that are not drought 282 

tolerant. Further sampling details are given in Lamy et al. (2012, 2013), Chapuis et al. (2017), 283 

and Dubart et al. (2019). 284 

To determine occupancy in this survey, each site was explored by three persons for 285 

approximately 15 min at each visit (total searching time: 45 min). The presence of snails was 286 

assessed by foraging the sediment and plants using a scoop, and rock surfaces or floating debris 287 

were visually surveyed as well. A randomly chosen subset of ~30 sites was revisited to evaluate 288 

species detection or non-detection. For each year and site, we recorded the detection or non-289 

detection of each taxon, and a series of environmental properties including the dry state (whether 290 

a site was dry or not; species cannot be detected in dry sites), size (pond diameter or river width 291 

in m), percent vegetation cover (included taxa are given in Appendix S1: Table S2), water 292 

connectivity to neighboring freshwater habitats (four levels of never, occasionally, often, and 293 

always connected; measures structural connectivity of sites), and overall hydrological regime 294 

(five levels, from fully permanent to frequently dry during the dry season). Connectivity, 295 

vegetation cover, and site hydrology were visually assessed (Appendix S1: Table S3). Sites were 296 

also characterized as ponds, rivers or back-mangroves (Appendix S1: Table S3). A small subset 297 

of sites had no observation of dry/wet state in some years (69 of 3593 total observations). In 298 

these instances, this state was replaced with a probability of that site (i) being dry in that year (t): 299 
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dryi,t = 1-wi,t (where wi,t is the probability of site i being wet in year t). This probability was 300 

estimated by fitting a generalized linear mixed-effects model (GLMM) with site and year as 301 

random effects and a binomial error structure (implemented in R using the ‘lme4’ package, 302 

Bates et al. 2014) to all sample occasions where dry/wet state was observed. 303 

 304 

Model without covariates 305 

For each species, we fitted the multistate occupancy model to the data using a Bayesian 306 

framework to generate estimates of φW, φD, and cW. Colonization of dry sites cD was assumed to 307 

be zero (data, JAGS code, and R code for the model without covariates are in Data S1). The 308 

model was run with 20,000 iterations, the first 10,000 of which were discarded as a burn-in 309 

period, with three parallel chains (initial values of dW, ΨGT, ΨMG, φW, φD, and cW = 0.1 for chain 310 

1, 0.5 for chain 2, and 0.9 for chain 3). Model fit to observed data was assessed by comparing the 311 

mean and 95% credibility interval (C.I.) of the posterior distribution for model-estimated 312 

proportion of occupied sites with the observed proportion each year (a posterior predictive 313 

check; Rubin 1984; Gabry et al. 2019). The observed values (per year, pt,obs) were calculated by 314 

dividing the number of sites a species was observed in (or observed in either visit, for sites 315 

visited twice) by the number of sites visited. Since the model generates posterior distributions for 316 

occupancy values in site×year instances that were not observed in our dataset, we report model 317 

predictions for each year both as the predicted proportion of occupied sites (pt) and as the 318 

probability of observing a given taxon that year, i.e. the proportion of wet sites that were 319 

occupied multiplied by the detection probability in wet sites and by the proportion of wet sites w 320 

(pvisit,t dW w). This measure is most directly comparable to observed data. 321 
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Metapopulations are expected to persist if the ratio of the extinction rate to the colonization 322 

rate is less than one (Levins 1969). To compare our results to this persistence threshold, we 323 

converted φ to the instantaneous extinction rate e (the same as e in the Levins model) using e  = -324 

ln(φ) (this arises from considering that extinction occurs as a continuous process and the 325 

probability of not being extinct in one unit time is exp(-e)). To evaluate the influence of 326 

considering snail aestivation in dry sites for persistence, we compared two ways of calculating 327 

e/c: eW/cW (considering wet sites only) and ,(*()∗-.(*))∗(/!-)
"(∗-

- (averaging rates over wet and dry 328 

sites). Here w is the overall probability of a site being wet, estimated as the average of all fitted 329 

values obtained from the GLMM of the observed dry state data described previously (that 330 

produced wi,t values). We also calculated posterior distributions for the predicted equilibrium 331 

frequency according to the Levin’s model (p*=1-e/c), multiplied by detection probability (dW). 332 

Multiplication of model-expected values for p by dW allows comparison to field observed data, 333 

which underrepresents true occupancy because of imperfect species detection. These estimates 334 

were compared across species and also between native and introduced species. 335 

 336 

Model with covariates 337 

For each species, we ran a second model incorporating factors that may influence 338 

demographic parameters (see Lamy et al. 2013, Dubart et al. 2019). Site-specific 339 

environmental variables (i.e. with one value per site that does not vary across years) were site 340 

size (Si), vegetation cover (Vi), water connectivity (Ci), site stability (Stabi), back-mangrove (mi), 341 

and river (ri). The values of Si and Vi were log10(1+X) transformed to better approximate a 342 

normal distribution, and the Si, Vi, and Ci values were averaged over the 15 survey years 343 

(Appendix S1: Table S3). We chose to average these values and thus only consider them as site 344 
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covariates because, although some sites show strong temporal variation, our annual measure is 345 

unlikely to capture the relevant weekly to monthly differences expected in small semi-permanent 346 

or temporary ponds. Our averaging of the annual measures instead captures a snapshot of site 347 

features at a common point in time, the beginning of the dry season. 348 

To contrast between smaller, more variable semi-permanent or temporary sites and larger, 349 

more permanent sites, we developed a composite measure of among-year variability, Stabi. Stabi 350 

was computed as the first axis (explaining 65% of total variance) of a principal component 351 

analysis including the average hydrological regime (across years), the proportion of visits during 352 

which the site was dry over the 2001-2015 period, and the temporal variances of the log10(1+X)-353 

transformed values of site size and vegetation cover. Year-specific environmental variables (i.e. 354 

identical for all sites within a year) included cumulative rainfall during the little rainy season 355 

(LRSt, mm, from March 1 to May 31) and the rainy season (RSt, mm, from July 1 to December 356 

31) of the year preceding the sampling campaign. Rainfall covariates were taken as the average 357 

value from five weather stations (data gathered from Météo-France; information about each 358 

station in Appendix S1: Table S4, imputation of missing data points, and the choice of dates for 359 

RSt are explained in Appendix S1: Section S1). 360 

We also used an index of local propagule pressure per site i and year t, Di,t. We estimated 361 

Di,t as Di,t = NiPi,t, where Ni is the total number of freshwater habitats occurring within a 4-km 362 

radius circle around site i (visited or not) and Pi,t is the proportion of occupied sites at time t 363 

among the surveyed sites within that circle (see Lamy et al. 2013 for further detail). The 4-km 364 

distance was chosen based on practical considerations such as having a reasonable number of 365 

surveyed sites to estimate Pi,t around each site and having circles that were still relatively small 366 

compared to the entire island. The lists and maps of all freshwater sites on Grande-Terre and 367 
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Marie-Galante were generated as described in Appendix S1: Section S2. This covariate is not a 368 

spatially-explicit dispersal kernel, which requires exhaustive sampling of all potential habitats to 369 

sum the separate contributions of all occupied sites to the propagule pressure on each empty site. 370 

As our main focus was not on dispersal kernels, we instead used Di,t as a correction for potential 371 

spatial variation in the local density of occupied sites. 372 

Persistence probabilities in wet sites for each species were modeled as linear-logistic 373 

functions of six environmental variables (see Lamy et al. 2013 for explanation of model 374 

construction): 375 

 376 

Eq. 2: logit(φW) = α1 + β1Si + β2Vi + β3Stabi + β4LRSt + β5mi + β6ri, 377 

 378 

where α is the intercept and each β is a regression coefficient to be estimated. We did not 379 

estimate the effects of covariates on persistence rates in dry sites, so we only estimated the 380 

intercept for φD as: 381 

 382 

Eq. 3: logit(φD) = α2. 383 

 384 

Colonization rates in wet sites for each species were modeled as log-linear functions of 385 

eight environmental variables: 386 

 387 

Eq. 4: log(cW) = α3 + β7Si + β8Vi + β9Stabi + β10Ci + β11RSt + β12Di,t + β13mi + β14ri. 388 

 389 
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Choices for inclusion of model covariates are described in Lamy et al. (2013): 390 

connectivity and local propagule pressure were expected to act only on colonization, the rainy 391 

season variable (RSt) is likely to only impact colonization because this is when floods and water 392 

connections among sites occur, and the little rainy season (LRSt) is likely to influence 393 

persistence as this is when sites tend to shrink in size or sometimes desiccate. Colonization rates 394 

of dry sites were assumed to be 0. We chose to construct models with various subsets of the 395 

covariates both to limit overfitting and to reflect hypotheses about expected relationships. We did 396 

not use covariates for φD because it was unrealistic to fit them correctly given the low number of 397 

instances of dry sites in the data. All the covariates were centered and reduced to obtain the β 398 

values on a standardized scale. The intercepts (α values) thus represent the expected value of 399 

logit(φW) or log(cW) in a site and year with average covariate values. We assessed inclusion or 400 

exclusion of environmental covariates using stochastic search variable selection (SSVS; George 401 

and McCulloch 1993; O’Hara and Sillanpää 2009), where in each iteration of the model, each 402 

regression parameter was either estimated or set to 0. The prior distribution of each regression 403 

parameter was the same as in Lamy et al. (2013) - in this model with covariates, the prior 404 

distribution for the intercept terms of φW, φD, and cW was N(0, 10). We assessed inclusion of 405 

model covariates by evaluating the posterior of αp, which is a binary indicator variable used in 406 

SSVS that is set to either 0 or 1. A covariate was considered to have a credible posterior estimate 407 

of effect size β if the proportion of posterior models that included a given covariate (Pαp = 1 | 408 

data) was ≥ 0.6. This value was chosen to ensure that posterior (Pαp = 1 | data) values were not 409 

simply reflecting the prior mean of αp, which was 0.5. The model was run with 20,000 iterations, 410 

the first 10,000 of which were discarded as a burn-in period, with three parallel chains. Initial 411 

values of dW, ΨGT, and ΨMG = 0.1 for chain 1, 0.5 for chain 2, and 0.9 for chain 3, while initial 412 
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values of α1, α2, α3, and each β parameter = -0.2 for chain 1, 0 for chain 2, and 0.2 for chain 3 413 

(data, JAGS code, and R code for the model with covariates are in Data S2). 414 

 We generally expected positive effects of connectivity, local propagule pressure, and rainy 415 

season for colonization and variable effects of little rainy season for persistence depending on 416 

whether a species is harmed or aided by site desiccation. We also expected site stability to 417 

positively influence persistence for most species. Mangrove and river covariates were expected 418 

to be significant with a positive influence for species known to prefer these habitats (e.g., 419 

mangrove: Biomphalaria glabrata and Drepanotrema cimex; river: Neritina virginea) and not 420 

important for species without this habitat preference. Finally, we also expected an overall 421 

positive influence of site size on persistence and colonization in accordance with this general 422 

assumption in models of island biogeography (MacArthur & Wilson 1967) and in 423 

metapopulation models as well (Hanski 1994; Moilanen & Hanski 1998). 424 

We compared the effects of covariates for colonization and persistence across all taxa in 425 

two ways. First, we ran a principal component analysis using the posterior mean value for each 426 

of the 14 β coefficients estimated from the model (including those for colonization and 427 

persistence for the seven environmental variables in the same analysis; calculated as the singular 428 

value decomposition of the centered and scaled matrix of coefficients). Second, we evaluated 429 

whether principal component scores differed for pulmonate (Hygrophila) and Caenogastropod 430 

taxa using a discriminant analysis of principal components (DAPC, implemented using R 431 

package ‘adegenet’, Jombart 2008; Jombart & Ahmed 2011; the analysis thus excluded N. 432 

virginea and Eupera viridans, two rare species that belong to neither of these two groups), and 433 

determining the percent of species successfully reassigned to their taxonomic grouping using the 434 

a single discriminant axis to describe the first two PC axes. 435 
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 436 

Spatial variation: site-specific persistence 437 

Significant environmental covariates suggest there is no single colonization and extinction 438 

rate for each species, but rather that site-specific properties influence a species’ ability to 439 

colonize and persist in a particular site. We plotted each site’s model-estimated value of 440 

extinction rate divided by colonization rate (ei/ci), averaged across all years. This was done by 441 

taking the mean posterior estimate of eW(i,t), eD(i,t), and cW(i,t) for each site and each year obtained 442 

when all covariates were taken into account, then weighing these values by the probability a 443 

given site was wet, then averaging these values across all years. In this formulation, 
*!
"!
=444 

∑ [$*)(!,#)'$/!-!,#'.$*((!,#)'$-!,#'] "((!,#)∗-!,#2,#'%
3 , where T is the total number of years of observations 445 

(15 for this dataset) and wi,t is the probability a given site is wet in a given year. wi,t was 446 

estimated from the observed dry state data using the GLMM described previously. 447 

Heterogeneity among sites may alter expectations for metapopulation occupancy and long-448 

term persistence because favorable sites can provide extinction-resistant pockets even if many 449 

other sites are unfavorable (Frank & Wissel 2002; Ovaskainen 2002; we also present a 450 

simplified derivation of the effects of variance and covariance in colonization and extinction in a 451 

spatially implicit metapopulation model, which is the case in this analysis, in Appendix S3: 452 

Section S1). The use of covariates is a first way to account for this heterogeneity, but it is also 453 

possible that some species are completely unable to live in some sites, for example if they are 454 

specialized on a particular resource or condition that is not captured by our covariates. In that 455 

case, fitting the model on the entire set of sites might represent an overly pessimistic view of 456 

their possibility to persist as a metapopulation. An optimistic view would be to consider only 457 

those sites in which the species has been detected at least once, which demonstrates its ability to 458 
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colonize or persist in that site. To better understand how site-specific covariates modify our 459 

expectations for species persistence, we calculated ei and ci using (i) only the model intercept 460 

value (and therefore using the same value for eW(i,t), eD(i,t), and cW(i,t) for each site), (ii) using all 461 

covariates, and (iii) using all covariates but only considering sites where the species was 462 

observed at least once during our survey (we also report results in appendices using only 463 

covariates that were retained by the SSVS procedure in ≥ 60% of the Bayesian model iterations, 464 

but this did not qualitatively change the main results). For scenario (iii), we did not re-fit the 465 

entire model using this subset of sites but instead used the values obtained for these sites from 466 

the overall model with covariates (Equations 2-4). The variance, covariance, and Pearson’s 467 

correlation coefficient for all ei and ci values were calculated as well. 468 

 469 

Temporal analysis: metapopulation persistence expectations 470 

To provide expectations for how long each species would be expected to persist on the 471 

islands and what proportion of sites would be occupied each year based on the results of our 472 

model-estimated colonization and extinction parameters, we simulated occupancy dynamics 473 

(annual transition between occupied and un-occupied states) on a 1000-site landscape for 999 474 

years (or until the species went extinct) using a combination of model-estimated parameters and 475 

observed site and year properties. We chose to simulate dynamics on a landscape with more sites 476 

than we have data available for because our sampled sites represent only a subset of the total 477 

number of sites on the islands. The simulation model considered both among-site and among-478 

year variation in ei and ci to provide an expectation for metapopulation dynamics. We repeated 479 

the simulations 999 times to generate confidence intervals for the estimate of proportion of sites 480 

occupied (or time until extinction) by each species. To initialize the simulation, each of the 1000 481 
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simulated sites was randomly assigned the identity and associated values of one of the 278 482 

observed sites. These properties are (i) the site- and year-specific wi,t (estimated from the GLMM 483 

described previously), (ii) the model-estimated site-specific average occupancy xi (this is the 484 

posterior mean of the average occupancy for each site across all 15 years), which was used as the 485 

initial occupancy probability xi,0 in the simulation, and (iii) the site- and year-specific model-486 

estimated values of eW(i,t), eD(i,t), and cW(i,t). The initial occupancy of each simulated site was 487 

obtained by a draw from a Bernoulli distribution with probability xi,0 and the initial dry state wi,0 488 

was obtained by a draw from a Bernoulli distribution with a probability wi,t where t was 489 

randomly chosen from 1-15. For each of the 999 years of the simulation, one of the 15 years of 490 

the observed data was chosen at random, and the characteristics (climatic covariates and 491 

proportion of dry sites) of the observed data for that observed year were used in the simulated 492 

year. We randomly assigned the dry state to each site each year with probability wi,t and the new 493 

occupancy state for that simulated year was drawn at random based on the previous occupancy, 494 

the dry state, and the appropriate transition probability matrices incorporating eW(i,t), eD(i,t), and 495 

cW(i,t) (Equation 1). The main goal was to simulate the expected proportion of occupied sites (pt, 496 

estimated by p1000, the proportion of occupied sites in year 1000 of the simulation) or the time 497 

until population extinction. 498 

To illustrate how site-specific covariates modify our expectations for species persistence in 499 

this simulated model, we utilized five estimates of eW(i,t), eD(i,t), and cW(i,t): (i) estimates from the 500 

model with no covariates, (ii) estimates using only the intercept values from the model with 501 

covariates, (iii) estimates including all covariates, (iv) estimates from the model with all 502 

covariates but only including sites where the species was observed at least once during our 503 

survey, and (v) estimates using only covariates where SVSS support (Pαp = 1 | data) equaled or 504 
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exceeded 0.6. To compare the frequency of observation of species at each site in the 505 

metapopulation (pi,obs) with the occupancy expectation at quasi-equilibrium generated by the 506 

simulation model (pi*), we calculated pi,obs as the number of times the species was detected at a 507 

site divided by the number of visits to that site and we calculated pi* = dW[cip* / (cip* + ei)], 508 

where p* was taken as the proportion of sites occupied by the species in year 1000 of the 509 

simulation that used all covariates (assumed to be our best estimate of quasi-equilibrium 510 

metapopulation occupancy). Here, ci and ei were calculated as described previously (i.e. taking 511 

wi,t into account), and dW was the posterior mean detection probability obtained from the 512 

Bayesian model with covariates. 513 

 514 

RESULTS 515 

 516 

Overview 517 

The freshwater snails of Guadeloupe were observed to be diverse in several ways. Some 518 

native species (Aplexa marmorata, D. depressissimum, Drepanotrema surinamense) and some 519 

invasive species (Biomphalaria kuhniana, Ph. acuta, Pseudosuccinea columella) were observed 520 

frequently (> 30% of the 3429 total site×year visits of wet sites) in many sites (> 74% of the 278 521 

sites in the study; Appendix S1: Table S1). Other species (Marisa cornuarietis, Pomacea glauca, 522 

E. viridans) were observed consistently (in ~12-24% of visits) but at a more limited number of 523 

sites (~31-43% of sites). Many (15) of the taxa were rare, observed in < 5% of the total visits to 524 

wet sites, but some of these were found consistently in habitats with particular characteristics. 525 

For example, D. cimex and Pyrgophorus parvulus were detected in 28 and 30 sites respectively, 526 

15 and 11 of which are in back-mangrove. We subsequently give results for all 27 taxa, 527 
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highlighting results for the most frequent taxa (i.e. observed in more than 150 of the 3429 total 528 

site × year visits to wet sites; Appendix S1: Table S1). 529 

The taxa also varied substantially in their metapopulation occupancy dynamics over the 530 

course of the 15 year survey (Figure 1, Appendix S2: Figures S1 and S2). Some were declining 531 

(B. glabrata, Biomphalaria schrammi) and some were stable or slowly decreasing with a degree 532 

of fluctuation (A. marmorata, D. depressissimum, D. surinamense). Some introduced species 533 

were observed to be spreading, at either a rapid (Ph. acuta) or slow (Ma. cornuarietis, Tarebia 534 

granifera) pace, while other introduced species remained restricted to a few sites (Indoplanorbis 535 

exustus, Helisoma duryi). 536 

 537 

Model without covariates 538 

The model provided estimates that fit well with the observed data (Figure 1, left column; 539 

Appendix S2: Figure S1; see Appendix S1: Table S10 for a list of Tables and Figures that allow 540 

comparison of results for models without and with covariates), especially when comparing the 541 

model-estimated probability of observing a taxa in a given survey year (pvisit,t dW w; blue points in 542 

Figure 1) with the observed occupancy data (pt,obs; orange points in Figure 1). The mean 543 

detection probabilities over all snail taxa was 0.59, with some variation among taxa (standard 544 

deviation ± 0.18; Table 1). This becomes 0.67 (± 0.12) when considering the most frequent taxa 545 

(≥ 150 total occurrences in the data set). This illustrates the variation in estimate uncertainty for 546 

taxa that appear at various frequencies in the dataset (Tables 1 and Appendix S1: Table S1). 547 

Detection probabilities were generally estimated with a high degree of certainty using our site re-548 

visit procedure (average width of the 95% C.I. of the posterior distribution for dW = 0.23 ± 0.21; 549 

0.10 ± 0.05 for the most frequent taxa). On average, the 27 snail taxa experienced high 550 
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persistence (φW: 0.86 ± 0.09; 0.85 ± 0.09 for the most frequent taxa) and colonization (cW: 0.21 ± 551 

0.14; 0.26 ± 0.17 for the most frequent taxa) rates in wet sites. Persistence in dry sites was both 552 

lower and more variable among taxa (φD: 0.59 ± 0.22; 0.72 ± 0.23 for the most frequent taxa). 553 

This parameter was estimated with a relatively low degree of certainty (average width of the 554 

95% C.I. of φD posterior distribution = 0.66 ± 0.28; 0.46 ± 0.22 for the most frequent taxa), 555 

likely due to the relative dearth of dry sites (164 out of 3593 total observations across all sites 556 

and all years) and the fact that species that are very rare or occur only in stable sites will thus not 557 

have any survey records that allow estimating dry persistence. For example, for species with ≤ 558 

50 total occurrences in the dataset, the estimates reflected the uniform prior distribution (i.e. 559 

posterior mean close to 0.5 and C.I. close to 0.025-0.975; Table 1). Nevertheless, some species 560 

(e.g., A. marmorata, D. depressissimum, D. lucidum, B. straminea, Ma. cornuarietis) did have 561 

both high and reliable estimates for φD. The 95% C.I. of the posterior distributions for φW, φD, 562 

cW, and dW are given in Table 1. 563 

Some taxa would be projected to persist (as opposed to decline to extinction) under a 564 

Levins equilibrium assumption that populations persist when colonization rates exceed extinction 565 

rates (e/c < 1; Figure 2). The inclusion of dry sites and φD estimates did influence the persistence 566 

threshold estimates, decreasing the prospects of persistence for some species (Figure 2, white 567 

points). Seven species are expected to persist with high confidence (i.e. the 95% C.I. for log(e/c) 568 

is entirely below 0): D. surinamense, D. depressissimum, A. marmorata, Ph. acuta, B. kuhniana, 569 

Ma. cornuarietis, and E. viridans. Five species are expected to be extinct with high confidence 570 

(Po. glauca, B. glabrata, B. schrammi, Gundlachia radiata, and D. aeruginosum). Seven taxa are 571 

expected to persist but the 95% C.I. crosses the extinction threshold (Ps. columella, Galba 572 

cubensis, Plesiophysa guadeloupensis, Me. tuberculata PAP, Me. tuberculata GOS, Me. 573 
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tuberculata FAL, and Me. tuberculata CPF) and eight taxa are expected to be extinct but have 574 

95% C.I. that span the persistence threshold (Py. parvulus, D. cimex, T. granifera, Me. 575 

tuberculata MAD, N. virginea, I. exustus, Me. tuberculata SEN, and H. duryi). The predicted 576 

equilibrium frequency according to the Levins model (p*=1-e/c), after multiplying by detection 577 

probability (dW), can be plotted against the frequency of detection of each species observed from 578 

the data (averaged over years; Figure 3a). This plot shows whether species are expected to 579 

decline (observed > expected, above the 1:1 line in Figure 3a) or increase (expected > observed, 580 

below the 1:1 line in Figure 3a) in the long term. Both declining and increasing trends are 581 

predicted for some native and introduced species, indicating that not all introduced species are 582 

experiencing a continued successful invasion process. However, some introduced species (Ph. 583 

acuta, Ma. cornuarietis) are clearly still spreading (Figures 1 and 3a). 584 

The extinction rate parameter e represents the relative rate of turnover in occupied sites 585 

when considered in the long term, since at equilibrium the colonization of new sites exactly 586 

replaces extinct sites. The snail taxa can thus be broadly classified as fast turnover (D. 587 

aeruginosum, Ps. columella, B. kuhniana, B. schrammi, and I. exustus – but note from Figure 2 588 

that only some of these species are expected to persist in the long term), slow turnover (Ma. 589 

cornuarietis), and intermediate turnover (all other species; Figure 4a). Some species have similar 590 

expected equilibrium occupancies (p*), but differ in extinction rate. For example, the two most 591 

common Me. tuberculata morphs (GOS and PAP), as well as Ga. cubensis, have a much lower 592 

turnover (e) rate than Ps. columella and B. kuhniana despite their similar range of expected 593 

stationary occupancy values (p* = 0.07-0.3l; Figure 4a). 594 

 595 

Model with covariates 596 
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The model provided estimates of proportion of sites occupied for each year in the study 597 

period (pt, pvisit,tdWw) that fit well with the observed data (pt,obs; Figure 1 and Appendix S2: 598 

Figure S2). Including covariates slightly improved the match between the observed proportion of 599 

occupied sites (p) and the model-predicted proportion of occupied sites at equilibrium (p*), as 600 

indicated by more species being closer to the 1:1 line in Figure 3b than in Figure 3a (Pearson 601 

correlation between p and p* for model without covariates = 0.81, for model with covariates = 602 

0.82). Consideration of site and year covariates shifted the posterior distributions of estimated 603 

parameters from the model without covariates. On average across all 27 taxa, φW = 0.76 ± 0.14 604 

(0.71 ± 0.12 when considering the most frequent taxa), cW = 0.19 ± 0.19 (0.27 ± 0.23), φD = 0.57 605 

± 0.24 (0.61 ± 0.28), and dW = 0.61 ± 0.20 (0.61 ± 0.21) (Table 1) based on intercepts of the 606 

models given in Equations 2-4 - most of these values, especially persistence rates, were slightly 607 

lower than when covariates were not considered. Some of the covariates influenced colonization 608 

and extinction (the posterior 95% C.I. did not include zero and Pαp ≥ 0.6 - the proportion of 609 

Bayesian posterior samples where SSVS included the covariate; details in Appendix S1: Tables 610 

S5 and S6 and plotted in Appendix S1: Figures S1 and S2; posterior means are given only 611 

including iterations where αp = 1). Each covariate strongly influenced φW or cW (i.e. αp ≥ 0.6) for 612 

at least three of the 27 taxa and on average taxa were strongly influenced (αp ≥ 0.6) by 4.11 ± 613 

2.68 of the 14 covariates. Some species were particularly influenced by environment. For 614 

example, Ph. acuta persistence in wet sites (φW) was positively influenced by rainfall in the little 615 

rainy season (posterior mean and 95% C.I. of βLRS: 0.34 ≤ 0.76 ≤ 1.24, αp = 0.99) and was higher 616 

in back-mangrove sites (βm: 0.37 ≤ 1.14 ≤ 2.38, αp = 1.00), while its colonization rate in wet sites 617 

was positively influenced by size (βS: 0.23 ≤ 0.40 ≤ 0.56, αp = 1.00) and connectivity (βC: 0.29 ≤ 618 

0.50 ≤ 0.75, αp = 1.00) and negatively influenced by vegetation (βV: -0.74 ≤ -0.60 ≤ -0.45, αp = 619 
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1.00), rainfall in the rainy season (βRS: -0.56 ≤ -0.34 ≤ -0.14, αp = 0.96), and the back-mangrove 620 

habitat (βm: -1.71 ≤ -1.12 ≤ -0.73, αp = 1.00). On the other hand, A. marmorata was influenced 621 

by only one covariate, i.e. vegetation cover increased persistence in wet sites (βV: 1.58 ≤ 2.09 ≤ 622 

2.63, αp = 1.00). 623 

The PCA of posterior mean β coefficients for covariates highlighted additional properties 624 

of species metapopulation demography. The first two axes explained 37% of the variation. PC 625 

axis 1 oriented some species that had higher colonization and persistence rates in unstable sites 626 

with high vegetation cover (Vi), in mangrove sites (mi), and when rainfall in the rainy season is 627 

low (RSt; e.g. B. glabrata, B. schrammi), against other species that thrived in stable sites with 628 

little vegetation (Vi) and that colonized more efficiently when rainfall in the rainy season was 629 

high (RSt; e.g. T. granifera, Gu. radiata; Figure 4b). Positive values on PC axis 2 were 630 

associated with species that had high persistence in riverine sites (ri) and also with colonization 631 

rates that depended on connectivity (Ci) and local propagule pressure (Di,t; Ga. cubensis, Po. 632 

glauca, Py. parvulus; Figure 4b). 633 

The clustering of species by their taxonomic group (Caenogastropods or pulmonates) in PC 634 

space was reflected in the discriminant function analysis. The linear discriminant function of the 635 

PC scores for model covariate coefficients was successful in sorting snail taxa into the two 636 

taxonomic groups, successfully re-assigning 80% of taxa to their correct classification (12 of 15 637 

pulmonate snails and 8 of 10 Caenogastropoda; Figure 5). The position of covariate regression 638 

parameters (βi) along the discriminant function axis indicates that taxonomic groups are broadly 639 

described by the effects of stability. The association of strong positive effect sizes for site 640 

stability (Stabi), rainfall in the rainy season (RSt), site size (Si), local propagule pressure (Di,t), 641 

and site connectivity (Ci) for colonization and for site stability (Stabi) and riverine sites (ri) for 642 

pdavid
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persistence indicate that Caenogastropods are more likely to colonize and persist at sites that are 643 

large, stable, and highly connected to other sites. Pulmonate snails were associated with strong 644 

positive effect sizes of vegetation (Vi) and rainfall in the little rainy season (LRSt) for persistence 645 

and of vegetation (Vi) for colonization. For these taxa, site stability was less important for 646 

colonization and persistence (Figures 4b and 5). Some taxa do not conform to these broad 647 

patterns, such as Gu. radiata (which has a strong positive effect of stability and size for 648 

colonization) and Ga. cubensis (which has a strong positive effect of propagule pressure and 649 

connectivity for colonization). 650 

 651 

Site-specific colonization and extinction 652 

Our visualization of among-site habitat suitability across the islands of Grand-Terre and 653 

Marie-Galante indicates that for most species, sites vary in whether they are metapopulation 654 

“sources” (ei/ci > 1) or “sinks” (ei/ci < 1). For some species, the sources greatly outnumber the 655 

sinks throughout the islands (Figures 6a, b, d). Depending on species, source sites are spatially 656 

scattered (Figure 6f), or clustered (Figures 6c, and 6e; maps for all taxa are given in Appendix 657 

S2: Figure S3). Plots of each site’s estimated ei and ci values from the model with covariates are 658 

given in Figure 7, while plots using different subsets of data (i.e. using only the model intercept 659 

value, all covariates, or all covariates but only for sites where the species was observed at least 660 

once) are provided in Appendix S1: Figure S3 (Appendix S1: Figure S4 includes results when 661 

considering only covariates that were retained by the SSVS procedure in ≥ 0.6 of the Bayesian 662 

model iterations, but this did not qualitatively change the results). These plots indicate that while 663 

the model intercepts are helpful in summarizing the overall persistence expectation, sites varied 664 

substantially in their ei and ci values when covariates were taken into account. The effect of 665 
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covariates on extinction and colonization is expected to result in negative correlations between ei 666 

and ci across sites in most species (Appendix S1: Table S7; Appendix S1: Figure S5), which is 667 

important because it indicates that extinction-prone sites are less likely to be colonized and 668 

suitable sites are more likely to be colonized. 669 

 670 

Metapopulation persistence expectations 671 

Model predictions obtained by simulation suggest that metapopulation persistence and 672 

stationary state can depend on covariates. For the most frequent taxa, the difference is a small 673 

variation in the proportion of occupied sites (Figure 8). However, for species of low to moderate 674 

frequency, considering covariates can substantially alter the expectations (Figures 6 and 675 

Appendix S1: Figure S6; Table S8). Many species that would go extinct in the model using only 676 

the intercept values for φW, φD, cW instead persist (Me. tuberculata PAP, GOS, FAL, MAD, Po. 677 

glauca, B. glabrata, Ga. cubensis, Gu. radiata, Py. parvulus, D. cimex, T. granifera, and Pl. 678 

guadeloupensis) or go extinct at a much later time in the simulations (B. schrammi, D. 679 

aeruginosum, N. virginea). None of the species expected to persist using only the intercept went 680 

extinct when covariates were taken into account. For most of the species expected to persist in 681 

the three scenarios (no covariates, intercept from model with covariates, and all covariates), the 682 

expected p1000 was higher when covariates were taken into account. The opposite pattern was 683 

however observed in A. marmorata, Ph. acuta, Ma. cornuarietis, and E. viridans. In these cases 684 

the decrease in p1000  was small, except for Ma. cornuarietis, which has a posterior mean p1000 of 685 

0.63 without covariates and 0.49 with covariates. The simulation results differed in some 686 

instances when the metapopulation was modelled excluding (i.e. considering as non-habitat) the 687 

sites where the species was never observed (Appendix S1: Figure S6, Table S8). This assumption 688 
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resulted in large decreases in p1000 for Ph. acuta, Ma. cornuarietis, Me. tuberculata GOS, and T. 689 

granifera, four species that are experiencing ongoing invasions. This suggests that these species 690 

have not yet encountered potentially favorable sites, and excluding these sites provides an 691 

underestimate of favorable habitats. The only species with expected extinction in all scenarios 692 

except the reduced sites scenario was B. schrammi. 693 

We compared the observed site-specific occupancy pi,obs with the simulation model 694 

expectation of pi*. We first evaluated these deviations averaged across all 278 sites. For many 695 

species, the deviations of the expected pi* from pi,obs were relatively small (the average deviation 696 

across all 27 taxa, across all 278 sites = -0.031 ± 0.198), and the observed frequency matched the 697 

predicted values more closely than the model without covariates (i.e. comparing Figures 3a and 698 

3b). The taxa with observed frequencies below the expected value were primarily introduced 699 

taxa such as Ph. acuta and Ma. cornuarietis that experienced an increase in the number of sites 700 

occupied over the survey period. These taxa are predicted to reach equilibrium occupancy at 701 

much higher values than their average past occupancy, irrespective of whether covariates are 702 

included or not in the model. We also evaluated site-specific variation in the deviation between 703 

observed and simulated occupancy values. Deviations across sites were relatively small for most 704 

of the most frequently observed taxa, with most average deviation values < 0.1 and a largely 705 

positive correlation between predicted and observed site-specific occupancies (Appendix S1: 706 

Table S9; Appendix S2: Figure S4). The species with the largest deviations again include 707 

recently invasive species (i.e. Ph. acuta, Ma. cornuarietis, T. granifera) for which the model 708 

indicates more favorable sites than the species has been observed in during the study period. 709 

Sites with pi* values that greatly exceeded pi,obs values  are locations where the invasive species 710 

are expected to expand their range. 711 
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 712 

DISCUSSION 713 

 714 

Metapopulation models have successfully been used to describe the dynamics of single 715 

species in fragmented landscapes. We generalized this approach to a guild of 27 mollusc taxa 716 

occupying freshwater habitats on the islands of Grand-Terre and Marie-Galante and used 717 

simulations to explore their dynamics in the landscape. Importantly, these taxa were quite 718 

diverse in terms of current dynamics, prevalence, spatial distributions, and their ease of detection 719 

during field surveys. We subsequently address the five main questions raised in the Introduction 720 

based on the findings of our study. 721 

 722 

A high diversity of metapopulation dynamics in a guild of taxa inhabiting the same landscape 723 

The first issue was to characterize the diversity of demographic rates and future dynamics 724 

in the landscape, and this was first performed using a mean-field approximation treating all sites 725 

and years as identical, i.e. using models without covariates. These models already fit the 726 

observed data remarkably well (Figure 1 and Appendix S2: Figure S1). This fit is noteworthy 727 

given the diversity of observed trajectories, including introduced taxa that were invading the 728 

system slowly (Ma. cornuarietis, Me. tuberculata GOS) or rapidly (Ph. acuta) and local species 729 

that were slowly declining (B. schrammi, B. glabrata, Po. glauca) or fluctuating around 730 

stationary occupancies at various levels (high in A. marmorata and D. depressissimum; low in E. 731 

viridans).  732 

Demography within populations is usually characterized through time-independent 733 

parameters (carrying capacity) and per-capita temporal rates (birth, death and growth rates) 734 
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(Verhulst 1838). These notions have inspired well-known classifications of strategies such as 735 

the r-K continuum (MacArthur & Wilson 1967; Pianka 1970; Reznick & Bashey 2002), the 736 

Grime CSR triangle (Grime 1977; but see Silvertown et al. 1992), and the fast-slow continuum 737 

(Stearns 1983; Franco & Silvertown 1996; Oli 2004), all of which attempt to relate trait 738 

syndromes (especially life-history traits) to demography. These approaches could be applied to 739 

the landscape scale using metapopulation equivalents of carrying capacity and temporal rates 740 

derived from Levins’ e and c parameters, provided these metapopulation parameters are 741 

measured for several species in a landscape. Our results provide such information and illustrate 742 

the diversity of metapopulation strategies in the studied guild. A first way to characterize 743 

strategies is with the metapopulation equivalent of the carrying capacity, the theoretical 744 

stationary occupancy (proportion of sites occupied at stationary state, p* = 1 – e/c; 745 

Amarasekare 1998), which in our study ranges from 0% (species predicted to go extinct) to 746 

70% of sites for A. marmorata and Ph. acuta (Figures 2 and 4a). For native species, these 747 

stationary occupancies are usually close to those observed during our survey (Figure 3a). 748 

Differences arise for multiple reasons. Predicted values are lower than observed ones for some 749 

native species such as B. glabrata and Po. glauca that are declining and may become extinct. 750 

Predicted occupancies tend to be higher for introduced species experiencing the invasion process 751 

(Ph. acuta, Me. tuberculata morphs, T. granifera), especially for slow invaders such as Ma. 752 

cornuarietis. 753 

The second way to characterize taxa is using the Levins model e parameter, which 754 

represents the metapopulation turnover rate. For any given stationary occupancy p*, e is also 755 

proportional to the metapopulation growth rate which is . #∗
/!#∗/ * , equivalent to the r in a 756 

population (Amarasekare 1998). We found that taxa with similar expected stationary occupancy 757 
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(p*) may experience very different turnover rates. For example, Ps. columella and the most 758 

abundant morphs of Me. tuberculata (PAP and GOS) are introduced taxa with similar expected 759 

occupancy, but in this stationary state approximately half of the occupied sites change every year 760 

for Ps. columella while only around 15% change for the Me. tuberculata morphs (Figure 4a). 761 

Among species sharing a given stationary occupancy, high-turnover ones are also theoretically 762 

expected to reach this stationary state more rapidly and to be more prone to stochastic fluctuation 763 

than low-turnover ones. 764 

Despite their simplicity, the mean field models (without covariates) perform remarkably 765 

well in capturing past dynamics of species inhabiting a common landscape. While it is not yet 766 

possible to determine how well simulations will fit future occupancy dynamics, their fit to past 767 

observed dynamics represent useful starting points to predict the fate of the mollusc community 768 

on the scale of a few years to a decade, provided the environment remains similar and no new 769 

invaders with large effects are introduced. The validity of any model projection depends on the 770 

quality and abundance of data, and taxa in our dataset varied in their frequency of appearance. 771 

Larger confidence intervals for model parameters were obtained for taxa that were rare in the 772 

dataset, which means their predicted dynamics are uncertain. Importantly, these species turn out 773 

to belong to two categories with very different implications for conservation. The first category 774 

includes species that may be able to occupy potentially more habitats than they now occupy but 775 

are currently declining (this is the case for B. glabrata, which was formerly very common on the 776 

island; Pointier 1976; Pointier & David 2004). The second category includes taxa that may be 777 

stable but restricted to particular types of habitats representing a small fraction of the total sites 778 

(known specialists of brackish sites or back-mangroves such as N. virginea, D. cimex or Py. 779 
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parvulus; Pointier 1976; 2008). For the latter, the predictions should therefore be improved by 780 

including among-site variation in extinction and colonization rates. 781 

 782 

Environmental variation in metapopulation parameters and the diversity in habitat use in a 783 

metacommunity 784 

Although the incidence function model introduced by Hanski (1994) considers patch 785 

variation in patch area and isolation, these properties are not always sufficient to predict 786 

metapopulation or occupancy dynamics (e.g. Prugh et al. 2008). Instead, an increasing number 787 

of studies consider variation in properties beyond patch size or isolation (Fleishman et al. 2002; 788 

Heard et al. 2015; Howell et al. 2018). Studies that considered environmental properties 789 

directly, not just via their impact on patch area and isolation, have demonstrated the importance 790 

of environmental features to predict occupancy (Sjögren-Gulve & Ray 1996; Fleishman et al. 791 

2002; Schooley & Branch 2009; Heard et al. 2015) and thus that patches likely vary in their 792 

values of the metapopulation parameters that influence occupancy. 793 

In addition, theoretical metapopulation studies that consider how colonization varies 794 

among sites usually focus on among-patch variation in contribution to the propagule pool and do 795 

not explicitly consider the variation in the capacity of a site to receive propagules. The latter may 796 

vary because of positional effects in spatially explicit models, but are not usually modelled as a 797 

function of site-specific habitat variables (e.g., Moilanen & Hanski 1998; Hanski & 798 

Ovaskainen 2000). However such responses to local habitat properties may be likely in natural 799 

landscapes, such as if local topography affects the receptive area for colonization. In this study 800 

we tried to capture these effects through our connectivity measure, which had positive effects for 801 

colonization rate in many taxa, confirming its importance. More generally, we modelled the 802 



 
 

 37 

effects of site characteristics on the probability to be colonized and to be extinct, while leaving 803 

aside other potential effects such as variation in site contribution to the propagule pool and 804 

spatial distance effects (the relatively weak effects of our local propagule pressure covariate 805 

suggest that potential improvements by relaxing these assumptions may be limited, but this 806 

requires further studies to be confirmed). This allowed us to quantify the responses of site-807 

specific colonization rates and extinction rates to different sets of local habitat characteristics and 808 

also the variance and covariance among these rates emerging from such effects. 809 

Our results confirmed that many site- and year-specific covariates, including (but not only) 810 

patch size and isolation, had substantial and taxon-specific effects on colonization and extinction 811 

rates (Appendix S1: Figures S1 and S2), and the model with covariates accurately reflected the 812 

observed occupancy dynamics and known habitat preferences of taxa (e.g., the back-mangrove 813 

specialists  Py. parvulus and D. cimex, the riverine N. virginea, and species such as D. 814 

depressissimum and B. schrammi known for their ability to successfully colonize unstable 815 

habitats; Figure 6; Appendix S1: Figures S1 and S2). In addition, the predicted equilibrium 816 

occupancies matched the observed ones more closely than those of the mean-field model 817 

(Figures 3a vs. 3b). These results suggest that covariates register important information in the 818 

dataset.  However, the dynamics of some species, especially rare ones, remained difficult to 819 

capture. Our approach does not capture potential specialization of particular taxa to habitat types 820 

that are not reflected in our list of covariates. For example, Gu. radiata, a small limpet-like 821 

pulmonate, is often found attached to dead leaves (Pointier 2008), and no variable in our list 822 

represents this resource. 823 

The inclusion of covariates allowed us to map spatial variation in site suitability and 824 

compare it to spatial patterns of species occurrence. From the site-specific ei and ci values, we 825 
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can evaluate whether the metapopulation would persist (ei/ci <1) or not (ei/ci >1) if all sites were 826 

identical to that particular site, and determine which sites act as sources of colonization or sinks 827 

of extinction in the metapopulation. This characterization of sites is not the same as the formal 828 

definition of source and sink populations (Pulliam 1988; Runge et al. 2006), which considers 829 

site-specific birth and death rates. We rather evaluate sites from a metapopulation perspective, 830 

using colonization and extinction rates. For our metapopulation analysis, these ei/ci values 831 

highlight the diversity of habitat use among taxa at the landscape scale (Figure 6 and Appendix 832 

S2: Figure S3). Taxa vary substantially in the overall distribution of source vs. sink habitats, both 833 

in their relative frequency and in their geographic proximity. For some species, the sources 834 

greatly outnumber the sinks throughout the islands (e.g., A. marmorata, Ph. acuta, D. 835 

depressissimum, and Ma. cornuarietis). For some species, a subset of spatially scattered habitats 836 

are sources (e.g., Me. tuberculata GOS), while for other species these sources are spatially 837 

clustered (e.g., Po. glauca, Me. tuberculata PAP), and in one instance reduced to a small patch 838 

of back-mangrove sites (B. glabrata). 839 

For abundant taxa, model-estimated site-specific stationary occupancy (pi*) matched quite 840 

well with the proportion of times a species was observed at a site (Appendix S2: Figure S4, 841 

Appendix S1: Table S9), suggesting a good fit of the model.  The match was weaker for some 842 

rare taxa (see above the example of Gu. radiata) and for some recently introduced species. For 843 

the latter, the model thus identifies potentially favorable habitats not yet reached when our 844 

survey began. Our approach at a landscape scale thus compares to distribution models and 845 

ecological niche models at a regional scale, i.e. modelling environmental preferences as a 846 

function of observed occurrences or abundance (Phillips et al. 2006; Elith & Leathwick 2009; 847 

Warren & Seifert 2011; Norberg et al. 2019). The dependency on presence-only data and lack 848 
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of consideration for sites where species are absent is a well-documented feature of these models, 849 

and is one way our modeling approach differs (see Guisan & Zimmermann 2000 and Kéry et 850 

al. 2013 for discussion of species distribution models including presence-absence data and 851 

Warren 2012 for a discussion on the application of presence-only models). Expectations for 852 

occupancy and persistence can shift when only sites where the species was ever observed are 853 

considered, especially for invasive species because their potential habitat is not taken into 854 

account (Figure 8 and Appendix S1: Figure S6), and so our model’s combination of including 855 

many freshwater sites and site-specific covariates can identify these potential sites for future 856 

expansion. Our modelling approach is also mechanistic rather than purely correlative, as it 857 

explicitly considers underlying demographic rates at the landscape scale and how they are tied to 858 

theoretical expectations for metapopulation persistence. However, we did not (yet) incorporate a 859 

detailed dispersal modelling and within-population demographic modelling as seen in other 860 

approaches (e.g., Bocedi et al 2014; see Normand et al. 2014 for a review). 861 

 862 

Comparative analysis of metapopulation dynamics across multiple species 863 

One advantage of fitting the metapopulation model to data for 27 taxa is that we can 864 

compare results across taxa, and determine whether particular groups of species have similar or 865 

distinct strategies in their occupancy of the landscape. We distinguished between pulmonates and 866 

Caenogastropods, and found that fast-turnover species (based on e) were primarily pulmonate 867 

snails (Figure 4a). We observed that many of these species showed visible fluctuations around 868 

their expected equilibrium occupancy (the native D. depressissimum and D. surinamense, the 869 

introduced B. kuhniana and Ps. columella, see Figure 1, Figure 4a, Appendix S2: Figure S1, and 870 

Appendix S2: Figure S2) or rapidly increased towards their expected equilibrium (Ph. acuta). On 871 
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the other hand, low-turnover species which include most Caenogastropods show slow, regular 872 

trends over the entire sampling period (Figure 1, Appendix S2: Figure S1, and Appendix S2: 873 

Figure S2). This gradual and regular trend was observed both for declining (the native Po. 874 

glauca) and increasing (Me. tuberculata GOS, T. granifera, Ma. cornuarietis) taxa. 875 

The different metapopulation behaviors between pulmonates and Caenogastopods likely 876 

reflect their life-history characteristics. Pulmonates are generally small-sized, light-shelled and 877 

short-lived compared to Caenogastropods. They have shorter generation times and are known for 878 

their ability to rapidly proliferate (Davis 1982; Taylor 1988; Dillon 2000), and they are 879 

hermaphrodites capable of self-fertilization, which can be an advantage for colonization (Jarne 880 

& Charlesworth 1993; Escobar et al. 2011). They also have lungs and spend time breathing air 881 

at the surface, while most Caenogastropods dwell on the bottom. This lifestyle is likely why 882 

pulmonates easily attach to water birds (Rees 1965; Malone 1965; van Leeuwen & van der 883 

Velde 2012) and are usually the first snails to colonize new ponds (Davis 1982; Barnes 1983; 884 

Kappes & Haase 2012). We found that comparing the effects of covariates across taxa and also 885 

evaluating whether covariate effect sizes can discriminate between the two taxonomic groups 886 

provided insights beyond descriptions of each species independently. Pulmonates broadly 887 

depended on colonization and persistence at sites with high vegetation cover, while 888 

Caenogastropods were instead better able to colonize large, stable sites, with colonization that 889 

was more strongly dependent on rainfall during the rainy season. They also experienced higher 890 

persistence at more stable, connected sites. These trends are observed in both multivariate 891 

analyses (Figures 4b and 5). However, we detected exceptions such as the pulmonate Gu. radiata 892 

that tended to colonize stable sites and whose persistence was negatively influenced by site size 893 

and vegetation cover (Figures 4b, 5, Appendix S1: Figures S1 and S2). Metapopulation 894 
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parameters may thus be related to trait syndromes to some extent, although this requires support 895 

from more comparative metapopulation studies with precise trait measurements for more taxa. 896 

 897 

The role of among-site variation for metapopulation persistence and occupancy 898 

An important goal of the study was to understand how expected metapopulation occupancy 899 

and persistence can be influenced by variance and covariance in colonization and extinction rates 900 

induced by habitat characteristics (Frank & Wissel 2002; Ovaskainen 2002). While including 901 

among-patch heterogeneity in size and position does not modify the general behaviour of the 902 

Levins metapopulation model (Gyllenberg & Hanski 1997; Etienne 2002), Frank & Wissel 903 

(2002) showed that among-patch heterogeneity in colonization and extinction rates, including 904 

spatially correlated extinctions, can influence the mean lifetime of a metapopulation. Temporal 905 

synchrony among sites in colonization and extinction is the focus of other studies that consider 906 

patch heterogeneity as well (e.g., Ovaskainen 2002; Sutherland et al. 2012). 907 

Among-site variation in e and c as well as their negative covariance can increase 908 

equilibrium occupancy or prolong metapopulation persistence over time (Frank & Wissel 2002; 909 

Ovaskainen 2002; Sutherland et al. 2012; see also Appendix S3: Section S1 for a simplified 910 

derivation to illustrate this). In our study, the effects of covariates generated non negligible 911 

amounts of variance and negative correlations between ei and ci (Appendix S1: Table S7; 912 

Appendix S1: Figure S5). Incorporating habitat-driven variability in colonization and extinction 913 

indeed seemed to improve prospects of persistence for several taxa in the landscape, compared to 914 

simulation results derived from the mean-field model without covariates, or using only model 915 

intercepts (i.e. scenarios with the same c and e for all sites). This was especially true for many 916 
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species with low frequency in the dataset (e.g., B. glabrata, Ga. cubensis, Gu. radiata; Figure 8 917 

and Appendix S1: Figure S6; Appendix S1: Table S8). 918 

Site size is a classic example of a source of negative covariance between e and c (Hanski 919 

1994), as large sites can harbor large, extinction-resistant populations and attract more colonists 920 

at the same time. In our study, while site size has a generally positive effect on colonization, it 921 

has inconsistent effects on persistence (Appendix S1: Figures S1 and S2). Instead, descriptors of 922 

site quality such as vegetation cover, hydrological stability, and habitat type (mangrove or river) 923 

seem to be important drivers of variance and covariance among sites depending on species. This 924 

is especially true of species concentrated in particular habitats (back-mangrove: B. glabrata and 925 

D. cimex; riverine: N. virginea; unstable habitats: D. depressissimum and B. schrammi), some of 926 

which are predicted to go extinct in the simulation models using the mean-field or intercept 927 

parameter estimates but persist when covariates are considered. Overall, our results suggest that 928 

the diversity in site characteristics in the Guadeloupe landscape generally plays a protective role 929 

for metapopulation persistence, and that accounting for this variation through the use of 930 

covariates improves predictions, especially for rare or specialized species. 931 

 932 

Limits of our approach 933 

Although our method generally succeeded in capturing the diversity of uses of a common 934 

landscape by different species, often in line with field observations of habitat use, it also has 935 

some limitations to consider for future applications. First, our methodology, like any other, 936 

requires sufficient data to make accurate inferences. The validity of model inference may be 937 

questionable for fugitive species (species that may occasionally found locally abundant 938 

populations with a short half-life; e.g., D. aeruginosum), for species recently introduced in one or 939 
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a few sites that are still at an uncertain initial invasion stage (e.g., H. duryi, I. exustus), or for 940 

species that are abundant in particular types of sites that are only marginally represented in the 941 

dataset (e.g., N. virginea). The potential consequences of surveying several species in a common 942 

set of sites highlight the importance of a careful study design where species with overlapping 943 

ranges of possible habitats that are reasonably represented in the sample are considered. The 944 

validity of model predictions also necessarily depends on our choice of covariates and not 945 

overlooking crucially important variables, a general issue in ecology. 946 

Another limitation for long-term predictions is the assumption that features of the 947 

environment, including the quantity and quality of available habitat, are not also directionally 948 

changing with time. In fact, the freshwater habitats on the island of Guadeloupe are far from 949 

static. Ponds are sometimes lost to urbanization or land use changes. Although our rainfall 950 

variables did not indicate climatic tendencies over the 15 years of the study, on the long term, 951 

Caribbean islands are expected to experience a 2-5 °C increase in annual mean temperature, 952 

decreased overall rainfall and increased variability in rainfall, increase in cyclone activity, and 953 

sea level rise that can further exacerbate freshwater habitat loss (Neelin et al. 2006; Karmalkar 954 

et al. 2013). In addition, colonization and extinction parameters that depend on habitat quality 955 

may be time-dependent as well (ter Braak et al. 1998; Moilanen 1999; Pellet et al. 2009; van 956 

der Merwe et al. 2016), and temporal variation in habitat quality and associated colonization 957 

and extinction rates can influence metapopulation extinction risk (Ranius 2007). Our modeling 958 

approach focused on the use of environmental covariates to distinguish patch use among species, 959 

and we thus did not attempt to detect temporal trends in estimates of ei and ci (other than related 960 

to rainfall) for the multiple species considered in this study. Future simulation models can take 961 
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into account the loss of freshwater habitat as well as environmental shifts expected under climate 962 

change scenarios. 963 

An additional feature that our model currently does not take into account is interactions 964 

among species. For example, one species, B. glabrata (Figure 6c), seems restricted to a favorable 965 

subset of sites that overlap with the distribution of another species, Ma. cornuarietis (Figure 6d). 966 

Biomphalaria glabrata was previously much more widespread in Guadeloupe (Pointier 1976; 967 

Noya et al. 2015), but its range has contracted (mostly before our survey began) after the 968 

introduction of Ma. cornuarietis, a voracious grazer that greatly reduces the plant used as a 969 

substrate by B. glabrata for laying eggs (Pointier & David 2004). In this instance, though Ma. 970 

cornuarietis presence is not used as a covariate for B. glabrata, vegetation is used and had a 971 

positive influence on both its persistence (Appendix S1: Figure S1) and colonization (Appendix 972 

S1: Figure S2). Our model thus indirectly captures the impact of Ma. cornuarietis presence on B. 973 

glabrata through the vegetation covariate. Our model also successfully predicted the divergent 974 

spatial distributions of two morphs of M. tuberculata, PAP (Figure 6e) and GOS (Figure 6f), that 975 

are suspected to compete strongly with one another. In this way, our comparative metapopulation 976 

model may capture competitive interactions without explicitly modeling them. Nevertheless, 977 

interactions not reflected in the measured environmental covariates are likely, especially for 978 

species that have not reached their potential range expansions. For example, the future spread of 979 

invasive species such as Ma. cornuarietis may impact colonization and extinction of various 980 

local species and come to act as a source of environmental degradation in those habitats. Our 981 

projections may thus be improved by explicitly considering competitive interactions (see Dubart 982 

et al. 2019 for consideration of model predictions for a pair of competing species in this system). 983 

 984 
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CONCLUSION 985 

 986 

We conducted a comparative analysis of metapopulation dynamics in a guild of species 987 

inhabiting the same area and general habitat (freshwater bodies). This approach proved useful for 988 

characterizing colonization and extinction rates and their dependence on site- and year-specific 989 

environmental properties, and to project future dynamics. An important aspect of our model 990 

system is that it is disconnected from the continent and from other Caribbean islands, which 991 

means that colonization from outside can be disregarded as a contributor to metapopulation 992 

dynamics, although it explains the occasional arrival of new species. This approach can certainly 993 

be improved by considering competition among species and future shifts in climate with 994 

subsequent effects on the environmental variables considered here. Importantly our comparative 995 

approach could be considered as a first step to link metapopulation approaches that focus on 996 

single species in patchy environments (as studied by Hanski and others; see references above) to 997 

metacommunity approaches (e.g., Leibold et al. 2004; Vellend 2010) that describe collective 998 

features of guilds. It is also complementary to (joint) species-distribution models (e.g., Little & 999 

Altermatt 2018; Norberg et al. 2019), which can potentially include environmental covariables 1000 

and can consider more complex guilds with more diverse types of species interactions, but which 1001 

also provide less detailed knowledge on demographic dynamics. Our approach provides insight 1002 

on demographic strategies at the metapopulation level such as low- and high-turnover species 1003 

dynamics that reflect life-history properties. It can thus complement classic metapopulation, 1004 

metacommunity, and species distribution models to better understand how species respond to 1005 

environmental variation. 1006 

 1007 
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Table 1. Persistence (φ), colonization (c) and detection probability (d) at the metapopulation scale for the 22 species studied (and 

clones in Me. tuberculata) for models without (no cov.) and with covariates (cov.). We provide the mean values and 95% credible 

intervals derived from posterior distributions. Values are given for species in descending order of number of appearances in the dataset 

(Detectiontot in Appendix S1: Table S1). The subscripts W and D indicate wet and dry sites respectively. 

 

Species φW φD cW dW  
no cov. cov. no cov. cov. no cov. cov. no cov. cov. 

A. marmorata 0.87 
(0.83, 0.9) 

0.8 
(0.74, 0.85) 

0.85 
(0.67,0.99) 

0.92 
(0.71, 1) 

0.47 
(0.38, 0.57) 

0.67 
(0.57, 0.78) 

0.82 
(0.8, 0.84) 

0.84 
(0.82, 0.86) 

D. depressissimum 0.89 
(0.86, 0.92) 

0.8 
(0.75, 0.85) 

0.97 
(0.9, 1) 

0.95 
(0.77, 1) 

0.22 
(0.15, 0.29) 

0.33 
(0.22, 0.43) 

0.7 
(0.67, 0.73) 

0.75 
(0.71, 0.78) 

B. kuhniana 0.75 
(0.69, 0.8) 

0.66 
(0.55, 0.73) 

0.76 
(0.49, 0.97) 

0.77 
(0.39, 1) 

0.44 
(0.36, 0.52) 

0.48 
(0.4, 0.56) 

0.74 
(0.71, 0.78) 

0.75 
(0.71, 0.79) 

D. surinamense 0.87 
(0.82, 0.91) 

0.66 
(0.57, 0.73) 

0.98 
(0.92, 1) 

0.94 
(0.73, 1) 

0.25 
(0.17, 0.33) 

0.44 
(0.3, 0.57) 

0.61 
(0.57, 0.65) 

0.69 
(0.65, 0.73) 

Ph. acuta 0.89 
(0.85, 0.92) 

0.88 
(0.82, 0.93) 

0.76 
(0.46, 0.98) 

0.85 
(0.48, 1) 

0.44 
(0.37, 0.52) 

0.49 
(0.39, 0.59) 

0.73 
(0.7, 0.76) 

0.74 
(0.71, 0.77) 

Ps. columella 0.66 
(0.59, 0.73) 

0.49 
(0.38, 0.58) 

0.16 
(0.01, 0.48) 

0.27 
(0, 0.98) 

0.6 
(0.51, 0.7) 

0.61 
(0.52, 0.72) 

0.73 
(0.68, 0.78) 

0.74 
(0.7, 0.79) 

Me. tuberculata PAP 0.89 
(0.87, 0.92) 

0.82 
(0.74, 0.87) 

0.6 
(0.32, 0.89) 

0.78 
(0.29, 1) 

0.18 
(0.14, 0.22) 

0.18 
(0.13, 0.25) 

0.74 
(0.71, 0.78) 

0.76 
(0.73, 0.79) 

Ma. cornuarietis 0.98 
(0.97, 0.99) 

0.98 
(0.96, 0.99) 

0.83 
(0.61, 0.97) 

0.87 
(0.64, 1) 

0.08 
(0.05, 0.1) 

0.05 
(0.03, 0.08) 

0.86 
(0.84, 0.88) 

0.86 
(0.84, 0.89) 

Po. glauca 0.92 
(0.89, 0.94) 

0.84 
(0.73, 0.91) 

0.45 
(0.17, 0.8) 

0.51 
(0.03, 0.99) 

0.07 
(0.05, 0.11) 

0.07 
(0.04, 0.1) 

0.7 
(0.65, 0.74) 

0.73 
(0.69, 0.78) 

E. viridans 0.89 
(0.85, 0.93) 

0.85 
(0.77, 0.92) 

0.79 
(0.45, 0.99) 

0.9 
(0.56, 1) 

0.21 
(0.15, 0.27) 

0.21 
(0.15, 0.29) 

0.51 
(0.46, 0.57) 

0.55 
(0.48, 0.61) 

B. glabrata 0.9 
(0.87, 0.94) 

0.62 
(0.4, 0.81) 

0.68 
(0.35, 0.97) 

0.28 
(0, 0.96) 

0.06 
(0.03, 0.1) 

0.06 
(0.03, 0.1) 

0.71 
(0.65, 0.77) 

0.77 
(0.69, 0.84) 

Me. tuberculata GOS 0.88 
(0.82, 0.93) 

0.8 
(0.68, 0.9) 

0.48 
(0.04, 0.96) 

0.52 
(0, 1) 

0.23 
(0.17, 0.31) 

0.18 
(0.11, 0.26) 

0.64 
(0.57, 0.72) 

0.68 
(0.6, 0.75) 

Ga. cubensis 0.86 0.8 0.8 0.73 0.18 0.07 0.48 0.56 
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(0.79, 0.92) (0.56, 0.94) (0.48, 0.99) (0.06, 1) (0.12, 0.26) (0.03, 0.13) (0.4, 0.57) (0.46, 0.67) 
B. schrammi 0.7 

(0.57, 0.8) 
0.61 

(0.34, 0.83) 
0.93 

(0.74, 1) 
0.77 

(0.18, 1) 
0.21 

(0.11, 0.35) 
0.18 

(0.06, 0.36) 
0.45 

(0.35, 0.57) 
0.49 

(0.35, 0.68) 
Gu. radiata 0.88 

(0.8, 0.94) 
0.78 

(0.6, 0.91) 
0.22 

(0.01, 0.64) 
0.15 

(0, 0.71) 
0.12 

(0.05, 0.21) 
0.11 

(0.04, 0.21) 
0.23 

(0.17, 0.31) 
0.25 

(0.18, 0.33) 
Py. parvulus 0.96 

(0.92, 0.99) 
0.59 

(0.25, 0.89) 
0.43 

(0.04, 0.93) 
0.37 
(0, 1) 

0.08 
(0.04, 0.14) 

0.03 
(0, 0.07) 

0.52 
(0.45, 0.6) 

0.68 
(0.58, 0.78) 

D. cimex 0.94 
(0.89, 0.98) 

0.52 
(0.16, 0.9) 

0.49 
(0.16, 0.87) 

0.43 
(0, 0.99) 

0.05 
(0.02, 0.1) 

0.03 
(0, 0.08) 

0.52 
(0.43, 0.6) 

0.55 
(0.44, 0.67) 

T. granifera 0.89 
(0.82, 0.95) 

0.87 
(0.69, 0.97) 

0.43 
(0.02, 0.96) 

0.41 
(0, 1) 

0.17 
(0.1, 0.27) 

0.08 
(0.03, 0.15) 

0.81 
(0.73, 0.89) 

0.83 
(0.75, 0.91) 

D. aeruginosum 0.62 
(0.15, 0.85) 

0.64 
(0.09, 0.94) 

0.72 
(0.2, 0.99) 

0.62 
(0.01, 1) 

0.28 
(0.03, 0.8) 

0.13 
(0, 0.51) 

0.1 
(0.05, 0.19) 

0.1 
(0.05, 0.22) 

Me. tuberculata FAL 0.9 
(0.8, 0.97) 

0.85 
(0.59, 0.98) 

0.44 
(0.02, 0.96) 

0.45 
(0, 1) 

0.22 
(0.1, 0.38) 

0.15 
(0.04, 0.3) 

0.66 
(0.5, 0.79) 

0.66 
(0.5, 0.8) 

Me. tuberculata 
MAD 

0.93 
(0.81, 0.99) 

0.93 
(0.75, 1) 

0.44 
(0.02, 0.96) 

0.43 
(0, 1) 

0.12 
(0.02, 0.26) 

0.04 
(0, 0.14) 

0.62 
(0.45, 0.8) 

0.65 
(0.48, 0.81) 

Pl. guadeloupensis 0.89 
(0.7, 0.99) 

0.79 
(0.37, 0.99) 

0.42 
(0.02, 0.95) 

0.35 
(0, 0.99) 

0.23 
(0.08, 0.47) 

0.13 
(0.02, 0.33) 

0.54 
(0.35, 0.81) 

0.61 
(0.35, 0.97) 

N. virginea 0.91 
(0.77, 0.99) 

0.49 
(0.02, 0.99) 

0.46 
(0.02, 0.97) 

0.46 
(0, 1) 

0.05 
(0, 0.19) 

0.02 
(0, 0.08) 

0.54 
(0.34, 0.73) 

0.5 
(0.3, 0.7) 

Me. tuberculata CPF 0.91 
(0.72, 1) 

0.94 
(0.57, 1) 

0.46 
(0.02, 0.97) 

0.4 
(0, 1) 

0.22 
(0.06, 0.46) 

0.1 
(0, 0.33) 

0.4 
(0.19, 0.73) 

0.35 
(0.15, 0.78) 

I. exustus 0.77 
(0.53, 0.95) 

0.8 
(0.42, 0.98) 

0.45 
(0.02, 0.96) 

0.4 
(0, 1) 

0.23 
(0.06, 0.52) 

0.1 
(0.01, 0.3) 

0.75 
(0.34, 0.99) 

0.75 
(0.32, 0.99) 

Me. tuberculata SEN 0.86 
(0.62, 0.99) 

0.9 
(0.53, 1) 

0.47 
(0.02, 0.97) 

0.45 
(0, 1) 

0.14 
(0.01, 0.42) 

0.04 
(0, 0.17) 

0.62 
(0.14, 0.99) 

0.45 
(0.11, 0.97) 

H. duryi 0.82 
(0.46, 0.99) 

0.75 
(0.1, 1) 

0.49 
(0.02, 0.97) 

0.48 
(0, 1) 

0.2 
(0.01, 0.66) 

0.05 
(0, 0.27) 

0.27 
(0.06, 0.61) 

0.24 
(0.05, 0.52) 
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Figure legends 

 

Figure 1. Observed and model-estimated proportion of occupied sites across the study years 

2001-2015 for models without (left panels) and with (right panels) environmental covariates. 

Shown are six of the 27 taxa included in the study (a: A. marmorata, b: Ph. acuta, c: B. glabrata, 

d: Ma. cornuarietis, e: Me. tuberculata PAP, and f: Me. tuberculata GOS), which represent a 

range of metapopulation occupancy dynamics: species are increasing, decreasing, common and 

rare.  The full set of species is represented in Appendix S2: Figures S1 and S2.The figures show 

the proportion of occupied sites that were observed from the data collected at 278 sites (pt,obs; 

orange points), that were estimated by the model (pt; gray points), and that were estimated by the 

model but restricted to include only site×year instances where the site was actually visited (since 

not all sites were visited each year) and where the site was observed to be wet (3170 out of 3593 

total observations) modified by the detection probability (pvisit,t dW w; blue points). The points 

represent the mean of the posterior distribution sampled from the Bayesian model, and the error 

bars are the 95% C.I. values. The survey year 2012 was anomalous, with only 57 sites visited 

(see Methods). 

 

Figure 2. Metapopulation extinction and colonization rates. The ratio of extinction over 

colonization (log-transformed; with 2.5% and 97.5% CI) for all taxa from the model without 

covariates is shown. Black points are values calculated using eW/cW and white points are values 

calculated using (eW w + eD (1-w)) / (cW w). Values below 0 (black vertical dashed line) indicate 

the species is expected to persist according to the equilibrium expectation (p*: grey vertical 

lines) of the model of Levins (1969). The taxa are arranged in descending order by their 
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decreasing frequency of observations in the dataset (Appendix S1: Table S1). Species that 

appeared frequently in the dataset (in > 150 of the 3429 total instances where it was possible to 

observe the species, i.e. the total number of site-by-year visits where the site was observed to be 

wet) are shown in white, and species that appeared infrequently in the dataset (in ≤ 50 or ≤ 150 

instances, or 1.46% and 4.37% respectively, of the total 3429 observation instances possible) are 

highlighted with grey coloring. 

 

Figure 3. Metapopulation observed and equilibrium occupancy for all taxa. (a) Comparison of 

observed proportion of occupied sites and the model-predicted proportion of occupied sites at 

equilibrium for the model with no covariates. The x-axis is the average value from the posterior 

distribution of the model expected p* value (1-e/c) multiplied by the model-estimated detection 

probability (dW). The y-axis is the observed detection frequency p (number of sites a species was 

observed in each year divided by the number of sites visited that year, averaged across years). 

The shaded part of the plot (below the 1:1 line) indicates species that were detected at 

frequencies below their equilibrium expectation and the unshaded proportion indicates species 

above their expected frequency. Introduced species are black points and native species are white 

points. (b) Same as (a) for the model with covariates. In this instance, the x-axis is pi*, the 

occupancy expectation at quasi-equilibrium generated by the simulation model. This value was 

calculated as pi* = dW[cip* / (cip* + ei)], where p* was taken as the proportion of sites occupied 

by the species in year 1000 of the simulation that used all covariates. The ci and ei values were 

calculated taking wi,t into account, and dW was the posterior mean detection probability obtained 

from the Bayesian model with covariates. The y-axis is the same as in (a). 
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Figure 4. Comparison of metapopulation demographic properties across the 27 snail taxa 

inhabiting the ponds of Guadeloupe. (a) Comparison of the posterior means for model-estimated 

equilibrium proportion of occupied sites (p*, x-axis) and extinction rate (e, y-axis; calculated 

using eW w + eD (1-w)), for the model without covariates. The comparison indicates the expected 

site turnover (given by e) or change in occupied sites for species when at their equilibrium 

occupancy (p*). (b) Biplot of the first two axes from a principal component analysis (PCA) of 

the posterior mean of coefficients for covariates influencing persistence (φ) and colonization (c) 

rates. PC1 and 2 are on the first two PCA axes. Arrows (and black labels) correspond to each 

coefficient’s alignment with PCA axes (for persistence rate at wet sites, φ, and for colonization at 

wet sites, C; size refers to Si, veg refers to Vi, stab refers to Stabi, lrs refers to LRSt, man refers to 

mi, riv refers to ri, connec refers to Ci, rs refers to RSt, and col refers to Di,t). A label for each 

species indicates their scores along each PC axis - pulmonate snails are labeled in red, 

Caenogastropods in blue, and the two additional species in grey. 

 

Figure 5. Discriminant analysis of metapopulation demographic properties. A density plot of 

species associations with a single linear discriminant function (DF1) that separates 

Caenogastropods from pulmonates is shown. The density of Caenogastropods (blue) and 

Hygrophila (pulmonates; red) are depicted, as well as the position of coefficients for site and 

year covariates along the DF1 axis. 

 

Figure 6. Map of extinction / colonization ratio per site (ei/ci) for six species in Grande-Terre 

(GT, larger island) and Marie-Galante (MG, smaller island), when taking into account all site-

specific covariates. Continuous plots were constructed using Inverse Distance Weighting of 
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model-estimated ei/ci values with a distance coefficient of 5. Taxa included are (a) A. marmorata, 

(b) Ph. acuta, (c) B. glabrata, (d) Ma. cornuarietis, (e) Me. tuberculata PAP, and (f) Me. 

tuberculata GOS. The ei/ci values above 1 (indicating that location acts as a metapopulation sink) 

are colored red and values below 1 (metapopulation source) are colored in blue. The two islands 

are shown to scale, but their relative positions have been modified for easier visualization; the 

small framed map in the last panel shows their true relative positions. Maps for all species are 

given in Appendix S2: Figure S3. 

 

Figure 7. Colonization (ci) and extinction (ei) values (ln of values are shown) predicted from the 

model with covariates for six mollusc taxa. Gray points represent the model-estimated values at 

each site (the posterior mean value when all covariates are taken into account). Red ellipses are 

the 95% confidence ellipse, which defines the region that contains 95% of all samples that can be 

drawn from the underlying Gaussian distribution (estimated using function dataEllipse in R 

package ‘car’; Fox & Weisberg 2011) and red dots are the centroids of the values. The black dots 

indicate the posterior mean of the intercepts of the model. 

 

Figure 8. Distribution of occupancy (proportion of sites where species persists, x-axis) in year 

1000 of a simulated 1000-site metapopulation for (a) A. marmorata, (b) Ph. acuta, (c) B. 

glabrata, (d) Ma. cornuarietis, (e) Me. tuberculata PAP, and (f) Me. tuberculata GOS. Density 

plots give the relative density (y-axis) of p1000 values for 1000 runs of the simulation model, for 

five scenarios that differ in the data used for the eW(i,t), eD(i,t), and cW(i,t) estimates: model with no 

covariates (black), intercept values for the model with covariates (red), using all covariates 

(blue), using all covariates with sites restricted to those where the species was ever observed 
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(green), or considering only covariates where SVSS support equaled or exceeded 0.6 (grey). 

Plots for all species are given in Appendix S1: Figure S6. Instances where a scenario has no 

colored density plot indicates that the species went extinct before year 1000 in that scenario 

(Appendix S1: Table S8). 
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