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Abstract: Improving the model-based predictions of plant species under a projected climate is
essential to better conserve our biodiversity. However, the mechanistic link between climatic variation
and plant response at the species level remains relatively poorly understood and not accurately
developed in Dynamic Vegetation Models (DVMs). We investigated the acclimation to climate of
Cedrus atlantica (Atlas cedar), an endemic endangered species from northwestern African mountains,
in order to improve the ability of a DVM to simulate tree growth under climatic gradients. Our results
showed that the specific leaf area, leaf C:N and sapwood C:N vary across the range of the species
in relation to climate. Using the model parameterized with the three traits varying with climate
could improve the simulated local net primary productivity (NPP) when compared to the model
parameterized with fixed traits. Quantifying the influence of climate on traits and including these
variations in DVMs could help to better anticipate the consequences of climate change on species
dynamics and distributions. Additionally, the simulation with computed traits showed dramatic
drops in NPP over the course of the 21st century. This finding is in line with other studies suggesting
the decline in the species in the Rif Mountains, owing to increasing water stress.

Keywords: dynamic vegetation modelling; specific leaf area; sapwood nitrogen; leaf nitrogen;
acclimation; net primary productivity; Cedrus atlantica (Endl.) Manetti ex Carrière

1. Introduction

Anthropogenic climate change causes range shifts and might lead to the extinction of
numerous plant and animal species [1–3]. The subsequent redistribution of species and the
alteration of community composition may impact the functioning of whole ecosystems and,
therefore, affect the production of ecosystem services and human well-being [4]. Under-
standing how species are responding to climate change is paramount to help biodiversity
conservationists and to anticipate and adapt to the array of socio-ecological consequences
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of climate change. However, the mechanistic link between climatic variation and plants’
response at the species level remains relatively poorly understood [5].

Global Dynamic Vegetation Models (DVMs) are powerful tools to integrate water and
carbon cycles, soil and species ecophysiology, and hence, provide reliable estimates of
biomass and primary productivity changes. DVMs have increasingly been used to study the
response of vegetation to past climates and projected climate change, e.g., [6–8]. To increase
the accuracy of the DVMs and our ability to apply them in the field, we need to use them at
the species level and scale, which is limited by the knowledge of the species features [9,10].
DVMs require a set of traits that characterize morphology and physiology of the plant
species. These traits describe the exposure thresholds to environmental factors such as
water stress or minimum temperature to break dormancy [11] or morphophysiological
characteristics such as the stomatal conductance or the root depth [12]. Threshold traits
could be extracted from environmental factor maps using species distribution samples [13].
Morpho-physiological traits could be directly quantified by sampling in nature but could
also need experiments [14]. An alternative method to obtain traits is based on a Bayesian
inversion method from the validation dataset of the model outputs [15,16].

However, traits vary not only between species but may also vary within species in
response to environmental factor exposure [17]. These variations might determine, among
others, different aspects of acclimation of species to local conditions and, hence, have to
be taken into account to accurately infer the effect of ongoing global climate change on
plant species [18,19]. Thus, trait variations are key components for the parametrization of
DVMs [20,21] for evaluating the species’ ability to persist within a plant community [22,23].

The western Mediterranean region, especially in northern Africa, is highly sensitive
to climate change, as exemplified by several drought events and increasing temperature
in recent decades [24–26], and projected future decrease in winter rain fall combined
with increase in temperature and evaporation [24]. While the Mediterranean region is
viewed among biodiversity hotspots that deserve particular attention for conservation
efforts [27], it is only recently that the effects of climate change on some important tree
species of the region have been assessed [25,26,28–30]. The Atlas cedar (Cedrus atlantica
(Endl.) Manetti ex Carrière) is a long-lived majestic tree species, classified as endangered
on the IUCN red list [31]. Its extant distribution is limited to mountainous regions of
Morocco and Algeria where it is threatened by anthropogenic activities. Semi-nomadic
pastoral tradition, widespread across the Rif and Atlas Mountains, continues to generate
an intensive grazing pressure that severely prevents natural regeneration [26,32]. Recent
increased aridity and temperature led to a decrease in growth rate and an increase in
mortality [25,26,28,29]. Notably, the range of the Atlas cedar has shrunk by 75% in the Rif
Mountains where populations currently persist in isolated microrefugia [30]. UNESCO has
recently designated the Atlas Cedar Biosphere Reserve to ensure the conservation of this
ecologically and culturally rich region.

The climatic conditions found across the Moroccan cedar’s range show strong varia-
tions. Precipitation and temperature regimes are influenced by air masses from the Atlantic
Ocean, the Mediterranean and the Sahara Desert. Such climatic regimes are ideal to investi-
gate trees’ ecophysiological response and acclimation to climate and to test a DVM’s ability
to simulate the growth of a mountain tree species under different climatic gradients. Such
a study would be of particular interest because it would allow us to evaluate our capacity
to make realistic prognosis with a DVM, also for the future of threatened species such as
the Atlas cedar and possibly to highlight which actions or research would be needed to
improve the model outputs. Otherwise, it is difficult to obtain validation data for a DVM,
such as net primary productivity (NPP) and traits values, at the same time and for a sample
of locations. Here, we collect biomass, NPP data and three important traits for DVM
parametrization: specific leaf area (SLA), leaf C:N and sapwood C:N of the Atlas cedar.
Those traits are easy to estimate and potentially vary across the range of the species, as
well as the biomass and the NPP. We then test whether the use of trait values estimated
at sampling sites improve the ability of a DVM to simulate local NPP and biomass, and
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whether the spatial variations in the three traits would improve the simulated range of the
Atlas cedar.

2. Materials and Methods
2.1. Study Area

We collected the three plant traits of the Atlas cedar (Cedrus atlantica (Endl.) Manetti
ex Carrière), in Morocco at three sites of the Rif mountains in March 2017, eight sites of the
Middle Atlas Mountains in November 2017 and five sites in November 2018 in both ranges
(Figure 1, Table 1). Sites were located at altitudes between 1488 and 2205 m above sea
level and encompassed a range of contrasted annual and seasonal regimes of temperatures
and precipitations.

Figure 1. Northern Morocco with the border of Algeria (on the right), extant distribution of the Atlas
cedar (light green areas) and sampling locations (blue dots).

Table 1. Location, altitude, sampling period, numbers of covered plots and of sampled trees.

Site Region Longitude Latitude Altitude
(m asl) Period Plot

Number
Tree

Number

1 Rif −4.9481 35.0295 1524 Spring 2017 2 44
2 Rif −4.7064 34.9597 1551 Spring 2017 2 31
3 Rif −4.3356 34.8703 1768 Spring 2017 1 15
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Table 1. Cont.

Site Region Longitude Latitude Altitude
(m asl) Period Plot

Number
Tree

Number

4 Middle Atlas −5.2564 32.9622 2205 Autumn 2017 2 37
5 Middle Atlas −5.4316 32.9430 1673 Autumn 2017 2 35
6 Middle Atlas −5.2750 32.9442 1960 Autumn 2017 2 56
7 Middle Atlas −5.4290 32.9722 1581 Autumn 2017 3 24
8 Middle Atlas −5.4767 32.9735 1590 Autumn 2017 2 34
9 Middle Atlas −5.4539 32.8101 1488 Autumn 2017 8 15
10 Middle Atlas −5.3812 32.9539 1697 Autumn 2017 2 16
11 Middle Atlas −5.2317 32.8888 1980 Autumn 2017 1 31
12 Rif −4.4243 34.8233 1794 Autumn 2018 2 48
13 Rif −4.5416 34.8519 1820 Autumn 2018 1 37
14 Middle Atlas −5.0287 33.5529 1749 Autumn 2018 2 38
15 Middle Atlas −5.1120 33.4972 1717 Autumn 2018 2 44
16 Middle Atlas −5.1995 33.4122 1755 Autumn 2018 2 41

2.2. Morpho-Physiological Trait Estimates

We followed standardized protocols [33]. For SLA and leaf C:N, we collected as far
as possible 2 twigs per tree from 10 trees in each plot, selecting twigs exposed to direct
sunlight. The initial objective was to sample at least two plots with 20 trees per plot but
the number of plots per site varied according to tree density and opportunity (Table 1). To
determine sapwood C:N, we took a single branch with a diameter larger than 5 cm (it was
not possible to take stem slices as suggested [33]), in each plot. The twigs and the branch
were collected in the lowest part of the canopy with a 4 m telescopic handle if necessary. To
estimate SLA, we isolated 5 sub-samples of fresh needles from a composite sample from
the field samples and took pictures using a flat-bed scanner. We put each sub-sample in
a paper envelop for drying in an oven at 70 ◦C to constant weight and weighed the dry
mass. Each scan was analyzed with the ImageJ software (https://imagej.net, accessed on
31 March 2021 [34]). For leaf C:N, we prepared 5 composite sub-samples of needles as
for SLA. For sapwood C:N, we prepared sub-samples by cutting chips with a chisel. N
concentrations were determined following a standard Kjeldahl method. We considered C
concentration as 52.8% in leaves [35] and as 50.1% in sapwood [36].

2.3. Climate Data

We used CRU (Climate Research Unit, (http://www.cru.uea.ac.uk/, accessed on 12
May 2021) monthly climatic anomalies (0.5◦ dataset [37]) combined with WorldClim version
2 monthly climate data for 1971–2000 (30 arc sec dataset [38]) to obtain high-resolution
(∼1 km) transient climatic inputs over the period 1901–2016. Potential evapotranspiration
was computed by the DVM with the Penman formula.

2.4. Traits–Climate Factor Relationships

Using the coordinates of the sampling sites, we linked the trait values with the climate
annual values (temperature, daily temperature range, precipitations, relative humidity,
potential evapotranspiration, wind speed, sunshine duration, using the ‘raster’ R pack-
age [39]). We first tested linear mixed models with traits as dependent variables, climate
factors as fixed effects and season as a random effect. We tested the significance of the
random effect with a likelihood ratio test. Since the random effect was never significant, we
used linear models with fixed effects only. To select the best model in terms of the Akaike
information criterion (AIC), we conducted an exhaustive search of climate factor effects but
limiting the maximal number to be included to 5, using ‘glmulti’ R package [40]. In a pre-
liminary attempt, we evaluated the linear and quadratic effects and pairwise interactions,
and different time frames, the overall means over the 30 last years, only the annual values
of 2016 or the means over the 3 previous years. The models with the linear effects and

https://imagej.net
http://www.cru.uea.ac.uk/
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pairwise interactions produced better fits than models with quadratic effects. Additionally,
the climate factor means over the last 3 years, i.e., corresponding to the development of the
sampled leaves, gave better fit in terms of AIC than the values of a single year or the means
over the last 30 years.

2.5. Field Net Primary Productivity Estimates

To obtain growth between 2012 and 2016, we estimated aboveground growth. We
fixed belowground growth as 0.3 of the aboveground growth. For aboveground growth,
we evaluated (1) wood increments, by forest inventories and (2) the amount of foliage per
unit of surface, by dividing the leaf area index (LAI) by SLA, and making the assumptions
(1) that its amount was constant over the course of the years and (2) that the renewal
time was 3 years. Forest inventories were conducted by establishing, as far as possible,
several circular plots with radius varying between 10 and 15.80 m to approximately include
20 cedar trees with DBH≥ 10 cm. Most of the sites were largely dominated by cedar, except
one site (#9) where cedars were mostly scattered among other tree species. For site #9, we
kept the surface to 315 m2 (10 m radius) and increased the number of plots to approach the
target number of specimens. In each plot, we measured tree height (htot) with a clinometer
(SILVA 70498, Bromma, Sweden) and the diameter at breast height (DBH) of all the trees
with DBH ≥ 10 cm with a forester tape; we also recorded the slope of the plot for area
correction. By applying a specific allometric equation for total volume (VolTot, Equation (1))
from [41]:

VolTot =
htot × c130

2

4π ×
(

1− 1.3
htot

)2 ×
(

a + b×
√

c130

htot
+ c× htot

c130

)
(1)

with c130 the circumference computed from DBH, a the constant (0.340), b the robustness
(1.756) and c the taper (0.002), and taking into account the proportion of basal area of the
Atlas cedar among plot total basal area, we obtained the aboveground wood volumes per
unit of surface of each tree in each plot. The estimation of tree growth was based on lateral
and height growth. For lateral growth, we cored all trees at breast height with a 5 mm-
diameter increment borer (HAGLÖF, Langsle, Sweden) and determined the ring widths
using a standard measuring table equipped with a binocular magnifier and recording
software. These values allowed us to estimate DBH of the previous years by subtractions of
the width of the annual ring. For height growth, we computed a linear relationship between
observed heights and the log of the circumferences with the data of each site. This allowed
us to compute the annual height increments, using the circumferences obtained thanks to
the radial annual increments (Table S1, Figure S1). We estimated the variation of wood
density in the rings of a sample of 44 cores for rings up to 50 years old by X-ray-computed
tomography. All cores were mounted in a custom-made sample holder [42] and scanned
with the Nanowood CT scanner from the UGent Centre for X-ray Tomography (Ghent
University, Belgium) [43]: 2500 projections were acquired over 360◦, each with an exposure
time of 1 s. Density profiles and values per ring were then extracted from the 3D images of
the cores using the Densitometry Toolbox [44].

Density was related to the linear and the quadratic effects of log of ring width and tree
DBH in a linear mixed model, with tree identity as a random effect (Table S2, Figure S2)
using the ‘lme4’ R package [45]. We then used the model to predict the density of each ring
omitting the random effect. The differences in volume between the successive years were
multiplied by wood density to obtain the aboveground net primary productivity of wood.

To estimate LAI, we took 13 hemispheric canopy pictures per plot with a SAMYANG
(Changwon, Korea) 8 mm f/3.5 CS II Fisheye lens mounted on a NIKON (Groot-Bij-gaarden,
Belgium) D3100 camera. The pictures were analyzed with the software Hemisfer [46,47],
following the settings of [48]. The amount of foliage per unit of surface was obtained by
dividing LAI by SLA.
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2.6. Vegetation Model Simulations

We used the CARAIB (CARbon Assimilation in the Biosphere) dynamic vegetation
model [49] to simulate the growth of the Atlas cedar. The functioning of CARAIB has
been widely described [7,11,30]. Our simulations consider only one tree species (the
Atlas cedar) in the overstory and C3 herbs in the understory. We used the climate data
obtained as described above. Atmospheric CO2 concentrations are prescribed from time
series of global values [50,51]. The soil texture was obtained from the global HWSD
v1.21 (30 arc sec) database (FAO/IIASA/ISRIC/ISS-CAS/JRC, Harmonized World Soil
Database (version 1.2), 2012). Exposure thresholds were obtained by superimposing the
above CRU/WorldClim 2 gridded climatology interpolated at a 30 arc sec resolution
with a sample of distribution in natural range of the Atlas cedar, and then selecting the
prescribed quantile in the distribution of the climatic variables. The range of the study
extended between −6.438◦ and −3.004◦ of longitude and between 32.254◦ N and 35.896◦ N
of latitude.

We conducted spatial simulations over the natural range of the Atlas cedar. Four
simulations were carried out, varying the set of traits. The first simulation (PFT traits) used
conifer PFT values (SLA = 100 sq. cm/g; leaf C:N = 55 g/g; sapwood C:N = 400 g/g [52]).
The second one (Field mean traits) used the means of the field values determined in this
study (SLA = 53.1 sq. m/g; leaf C:N = 46.2 g/g, sapwood C:N = 423 g/g). The third
one (Computed traits) used spatial extrapolations of the traits obtained by applying the
traits–climate factor relationships over the study area but limiting the predicted values to
the ranges of the observed values. We also conducted simulations at site scale to retrieve
NPP and biomass estimates for each of the sites where field sampling had been carried out
using the local estimates (Site traits).

The potential distribution of the Atlas cedar simulated with CARAIB is discussed and
compared with the modern geographical distribution of the species. As a threshold of
presence, we selected the site with the lowest biomass field values, recorded in the most
southern site of our sampling, in the Middle Atlas, where only small trees were scattered in
other native species forming a low forest.

3. Results

We set up statistical relationships between the three morpho-physiological trait values
and climate factors. We analyze the differences between the DVM outputs parametrized
with standard parametrization, i.e., with the plant functional type values (PFT traits sim-
ulation), with mean values of field estimates (Field mean traits) or with local estimates of
the traits derived from the relationships with climate factors (Computed traits). We then
compare NPP and biomass DVM outputs with the field estimates.

3.1. The Traits and Their Relationships with Climate Factors

The three traits estimated in the field considerably varied between the sites, particularly
those of sapwood C:N (Figure 2, Table S3). SLA values were in the lower range of the
values reported in [53] for Gymnosperms but in [54], a nitrogen value in Cedrus deodora is
given, which combined with mean C content gives leaf C:N of 52.8 g/g, rather close to the
mean value of this study. The observed sapwood C:N values were very high compared
to the value for temperate Gymnosperms given in [36], but they were in the range of
the values compiled for Gymnosperms in [55,56]. The variations are within the ranges
found in other studies. SLA inside species variation among 1300 individuals belonging
to 383 species accounts for 30% of the total [57]. SLA varies between 10 and 32 sq. cm/g
among 10 species [58]. Leaf N variation inside species contributes to 50 % of total variation
among 442 samples of 223 species [59] and leaf C:N ranges between 20.2 and 53.4 g/g
among 10 species [60]. Additionally, sapwood C:N values in [61] comprise between 84.7
and 1360.8 g/g among 59 species.
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Figure 2. Boxplots of the morpho-physiological traits estimated in field.

Additionally, we found significant relationships between the traits and the climate
factors, with R-squared between 0.6551 and 0.9086 (Figure 3). All the tested climate factors
appeared at least once in the relationships and most of the effects were pairwise interactions
(Table S4).

Figure 3. Relationships between observed traits (see also Table S3) and predicted values with models
shown in Table S4.

The relationships between traits and climate factors allow us to produce successions
of maps of trait distribution over the study area for each year (examples in Figure 4). The
traits smoothly vary over the course of the years, probably owing to the fact that the climate
factors were averaged over three years (Figure 5).
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Figure 4. Examples of predicted distribution of the 3 traits (for 2016 growth year) over the study area with sampling locations (red dots). (A): specific leaf area,
(B): leaf C:N, (C): sapwood C:N).
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Figure 5. Evolution in the course of the years of the predicted specific leaf area (SLA), leaf C:N and
sapwood C:N, over the pixel of two sampling locations (black: Middle Atlas #9, brown: Rif #12).

3.2. Comparisons of the DVM Outputs According to Parametrization

The comparisons of the NPP simulations from 1901 to 2016 produced with PFT traits,
field mean traits computed traits or site traits showed contrasted levels and variabilities in
time and space (Figure 6 and Videos S1–S3) but, nevertheless, that NPP is predicted higher
in the Rif than in the Middle Atlas. PFT trait simulations showed the lowest NPP level and
variability. Field mean trait simulation was intermediate while computed trait simulation
gave the highest values and variability. These observations were confirmed over the
sampling sites, particularly with site trait parametrization where the differences between
sites were larger (Figure 7). Otherwise, the simulated ranges were much larger than the
extant range (Figure 6). Finally, the biomass distribution produced by the model under the
four parametrizations reflects the NPPs, but simulated values were much smaller than the
estimated ones (Figure 8 and Table S5). The simulations also sometimes showed sudden
local drops in biomass (Videos S4–S6).
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Figure 6. Cont.
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Figure 6. Examples of simulated net primary productivity annual distributions for selected years. Comparisons of simulation outputs using PFT traits, field mean
traits or computed traits, with sampling locations (blue squares), and contours of the extant distribution (red lines).
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Figure 7. Simulated net primary productivity (NPP) between 1900 and 2016 over the sampling
locations (Middle Atlas in blue colors, Rif in reds) using PFT traits, field mean traits, computed traits
and site traits.
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Figure 8. Predicted biomass in 2016. Comparisons of simulation outputs using PFT traits, field mean traits or computed traits with sampling locations (blue squares),
and contours of the extant distribution (red lines). The threshold of 11.7 kg C/sq. m corresponding to the lowest recorded field value (site #9) was only reached in
the Rif with the field and the computed trait simulations.
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3.3. Comparisons of DVM Outputs with Field Estimates

The field estimations of NPP considerably varied between the sites (Table S5). The
comparison of the simulated NPP values with the field estimates revealed the poor response
of the model parametrized with PFT traits. The simulations seemed improved with field
mean traits and more with computed traits or site traits (Figure 9). However, this was only
partially confirmed by the performance indicators. For instance, the highest R-squared
value was obtained with the computed trait simulation for 2016 but the root mean square
and the mean bias were also higher (Figure 10). Otherwise, the relationships between
simulated and field values of biomass were insignificant.

Figure 9. Cont.
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Figure 9. Comparison of net primary productivity (g C/sq. m/yr) model outputs for years 2012 to
2016 with sites estimates, when using PFT traits, field mean traits, computed traits or site traits.

Figure 10. Cont.
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Figure 10. Performance indicators of net primary productivity model outputs for years 2012 to 2016
(comparisons with field estimates), when using PFT traits, field mean traits, computed traits or site traits:
R-squared, root mean squared errors (RMSE, g C/sq. m/yr) and mean biases (g C/sq. m/yr).

4. Discussion

In accordance with our hypothesis, the estimations of the three selected traits showed
large variations between the sampling sites (Figure 2), notably for sapwood C:N. We identify
significant but complex relationships between the traits and the climate factors over the
3 previous years (Figure 3, Table S4). These relationships were better than those obtained
with 30-year climate means or with current year values. They allowed us to produce smooth
annual trait maps, which were used in the computed trait simulation (Figures 4 and 5). NPP
estimated at the field sampling sites also considerably varied (by a factor of 170, Table S5).
The four simulations performed with CARAIB (PFT traits, field mean traits or computed traits)
produced comparable ranges but were dramatically larger than the extant range. The use
of the computed traits increased the range of the temporal and the spatial responses of the
model (Figures 6–8). Comparisons of the four simulations with the field-estimated NPP
suggest an improved response of the model parametrized with computed traits or site traits,
but this was not confirmed by the statistics (Figures 9 and 10).

The differences in NPP estimations between the sampling sites have been explored.
Differences in site fertility may often play a role because the Atlas cedar occurs in pure or
in quasi-monospecific stands. At margins when competition with other species increases,
site fertility probably plays a minor role [62]. The Atlas cedar growth responds to tem-
perature, precipitation and drought stress [29] and the capacity for regeneration relies
on winter temperature, which affects the germination rate [63]. We cannot exclude some
estimation deviations related to insufficient sampling, uneven radial growth, distribution
of wood density, and estimation of the height. Nevertheless, DBH responds well to climate
variation [64]. Also, aboveground biomass estimates obtained with allometric equations
Combined with tree ring data give similar results to successive estimations in permanent
plots [65]. In addition, we varied wood density with ring width and DBH, since this factor
is recognized as more important than the selection of allometric equation to estimate carbon
immobilization [64]. Using the allometric equations of [35] rather than those provided
by [41] has a minor impact on the results. In addition, most of our estimations were in
the range of the extrapolated standing wood biomass produced over one century by [66]
in Algerian cedar forests. Using estimations based on [35] to obtain branches, leaves and
belowground NPP, we found for the Algerian Atlas cedar stands an NPP between 18.5 and
605 g C/sq. m/yr. In our study, the most productive sites have high biomass and trees with
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extremely large rings, while those sites with the lowest productivity have very small and
scattered trees, smaller than the average with finer rings. The latter may not be considered
as cedar forests.

Our study shows that the three traits varied spatially and that these variations may be
related to recent potential acclimation of the Atlas cedar to the ongoing climate change in
the Mediterranean. SLA increases with temperature and water availability and decreases
with light intensity and duration [53]. In evergreen conifers, N is stored in the youngest
needles as photosynthetic proteins [67] and leaf N decreases with increasing temperature,
drought and irradiance [19,68–70]. Leaf N is positively correlated with wood N [71] but N
is not stored in the wood of conifers [67]. Sapwood N does not seem related to drought or
temperature [72] and its relationship to soil N is not established [71,73], probably because
of its low concentration. For instance, relationship of N sapwood with soil N only appears
in the outer stem after N fertilization [74]. Combined with the proportion of sapwood
to heartwood, which positively scales radial growth to satisfy the conductive needs and
adjusts to tree height and leaf mass [75,76], sapwood N is nevertheless an important
component to compute respiratory cost.

We found relationships between traits and climate factors (Figure 3). A single climate
factor or aggregated variables have little predictive power, which may explain the data
dispersion, e.g., [77]. We assume that the selected models have some predictive power in
the range of the observed climate. However, the studied sites do not cover the whole range
of conditions over the simulated area and years, which probably limit their relevance.

SLA is considered as a major factor for plant growth rate, although its relationship to
maximized photosynthetic function is not well understood [33,57,78]. As SLA increases,
the number of photosynthetic cells per unit of plant weight increases too, which boosts
photosynthetic rate and carbon uptake. Additionally, high growth rate is reached at
the expense of structural tissues and stress protection and notably water stress. SLA
triggers N leaf concentration, when N is available [68]. As SLA, leaf N (also leaf C:N)
is a major morpho-physiological trait favoring photosynthesis assimilation because it
allows the synthesis of enzymes and particularly of Rubisco, but it is also a driver of dark
respiration [79]. Sapwood N (also sapwood C:N) is another important trait in trees because
it reflects the importance of wood parenchyma [80] and, hence, of wood respiratory costs,
which might be significant in the carbon budget, even during the dormant season [81]. The
main factors controlling tree performance are the availability of light, water and nutrients;
however, performances also rely on the capacity of trees to collect these resources and their
efficiency in their use. These features are mediated by intraspecific traits. It is concluded that
individual traits are poor predictors of individual performance variation [57,82] because
many traits affect more than a single aspect of the physiology and that acclimation, like
adaptation, would finally be a combination of opposite requirements. In the DVM CARAIB,
SLA allows the conversion of the assimilated carbon into leaf area index [16], which is a
fundamental factor of the canopy sub-model computing light assimilation [49]. The leaf
C:N ratio controls the dark respiration rate and the maximum carboxylation velocity in
the Farquhar et al. photosynthesis model [83], and the sapwood C:N controls sapwood
respiration [49]. A major feature of the DVMs is their ability to integrate ecophysiological
variables that have opposite effects.

Simulated NPP was strongly influenced by the three traits values as previously ob-
served [9]. The annual and spatial variability notably increased when we used the field-mean,
the computed or the site traits. However, the gain in performances of the model was modest.
Process-based models lack the ability to reproduce the full range of productivity variability
of natural or artificial plant systems. For instance, the simulation of wheat yield for several
years across a European gradient indicated the low performances of a set of process-based
models [84]. Comparisons of gross primary productivity outputs of several DVMs at
a global scale showed low ability to reproduce interannual variations [85]. CARAIB sim-
ulating vegetation over Western Europe responded to the strong climate gradients but
tended to underestimate the highest NPP values and overestimate the lowest ones [11].
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When several PFTs are simulated together over an area, the traits differences between plant
types allow geographic turnover in the simulation, mimicking trait acclimation. This is
the reason why the DVMs show reasonable agreement with observational data. On the
contrary, when a single species is simulated, there is only one trait set and no acclimation
mimicry is possible. Adjusting traits (height, SLA, leaf C:N, root depth) to species may
markedly modulate the simulated NPP [9]. Additionally, adjusting traits of plant types
(SLA, leaf nitrogen and phosphorus, and wood density) to local conditions provided more
accurate model predictions in a tropical altitudinal gradient only thanks to solar radia-
tion [86,87]. Beyond SLA and N concentrations, the DVMs may also benefit from improved
parametrization for other traits. Notably, stomatal conductance related with water stress is
an important trait because it controls the internal CO2 concentration and photosynthesis
dark reaction. Plants also acclimatize to water availability by adjustment of the root to shoot
ratio [88,89], of stomatal regulation sensitivity [90] and of leaf features, such as trichomes,
epicuticular wax, cuticle, hypoderm, and stomata density [91–97]. Thus, in our computed
and site trait simulations, we assume that the increased variations of NPP may be balanced
by variations of other traits.

Concerning the range prediction in this study, it is worth noting that four simulations
produced comparable results in terms of NPP and biomass (Figures 6 and 8), the differences
being mainly in the levels and the variations, but not in the distributions. This is because
of the constraints exerted by the bioclimatic thresholds. With the minimal NPP value
(20 g C/sq. m/yr observed at site #9), the simulated potential ranges are much larger
than the modern range of the Atlas cedar, which confirms that CARAIB predicts the
fundamental climate niche because it is constrained by climate extremes [12]. To compute
the realized niche and to delineate the actual range, the model needs to take into account the
intensity of the main biotic interactions. DVMs are able to partially simulate interspecific
competition, i.e., competition for light and water, but this requires correct parametrization
for each species, which leads us back to the main issue of this study, while natural grazing,
parasitism and the pressure generated by anthropic activities require the coupling of the
DVMs with other sources of information.

5. Conclusions

In this study, we show that traits vary across the range of the Atlas cedar in relation-
ship with climate, that their use improves the DVM simulations of local NPP, and that
adjusting these traits with climate could lead to better performances. However, the benefit
of predicting traits with multiple regressions driven by climate factors was modest and
a more sophisticated approach such as a more mechanistic approach for each trait with
climate factors would be desirable. Notwithstanding the limits of our results, it should
also be underlined that the levels obtained for simulated NPP are in the correct range of
the observed values despite the absence of any calibration phase. Thus, quantifying the
influence of climate on traits and including these variations in DVMs may be of paramount
importance for evaluating the consequences of global climate change on species dynamics
and plant community persistence. Besides SLA and leaf and sapwood C:N, additional
traits concerning physiological processes such as stomatal regulation, or elements of plant
structure such as the root to shoot ratio, should be adjusted or modelled in the DVMs to
allow for more reliable simulations.

So far, our best simulation shows the Atlas cedar NPP collapses over several years of
the 21st century in the Rif mountains (Figure 7, computed traits), which has to be viewed in
parallel with a probable reduction in available soil water and field observed episodes of
decline due to water stress [30]. Even if these dramatic modelling results are perfectible, they
are nevertheless congruent. However, most of all, they also concern the most productive
stands that we encountered and what is considered to be modern microrefugia, essential
for the future conservation of the species. This is disturbing because it suggests that even
these scattered populations would not be sheltered from climate change.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13030446/s1, Figure S1: Relationships between Cedrus atlantica
circumference at breast height and height per site; Figure S2: Relationship between ring width and
wood density of 44 cores of Cedrus atlantica; Table S1: Linear models of Cedrus atlantica height as a
function of log of circumference for each site; Table S2: Linear mixed model of Cedrus atlantica wood
density as a function of linear and quadratic effects of the log of ring width and tree diameter at breast
height as fixed effects, and tree identity as random effect; Table S3: Traits estimated for each site;
Table S4: Linear models of three traits (specific leaf area, leaf C:N and sapwood C:N) as a function
of climate factors (means over 2014, 2015 and 2016 of precipitation: prc, of daily temperature range:
dte, of temperature: tem, of sunshine hours: shr, wind speed: wnd, of potential evapotranspiration:
pet, of relative humidity: rhu) effects (linear effects and pairwise interactions). Best models (with
max-imum 5 terms for sample sizes = 16) after exhaustive searches and selections on the basis of AIC
and F tests; Table S5: Estimations of mean biomass for 2013 to 2017 (kg C/sq. m) and of net primary
productivity (NPP) for years 2012 to 2016 (g C/sq. m/yr); Videos S1–S3: Simulated net primary
productivity over the study area between 1900 and 2016 with PFT traits, Field mean traits or Computed
traits; Videos S4–S6: Simulated biomass over the study area between 1900 and 2016 with PFT traits,
Field mean traits or Computed traits.
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