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AN EFFECTIVE WEIGHTED K-STABILITY CONDITION FOR

POLYTOPES AND SEMISIMPLE PRINCIPAL TORIC FIBRATIONS

THIBAUT DELCROIX AND SIMON JUBERT

Abstract. The second author has shown that existence of extremal Kähler metrics
on semisimple principal toric fibrations is equivalent to a notion of weighted uniform
K-stability, read off from the moment polytope. The purpose of this article is to prove
various sufficient conditions of weighted uniform K-stability which can be checked
effectively and explore the low dimensional new examples of extremal Kähler metrics
it provides.

1. Introduction

Calabi’s work has been extremely influencial in Kähler geometry, his name being still
associated to some of the most fundamental objects of interest. The present article is
motivated by two of these, Calabi’s extremal Kähler metrics and Calabi’s ansatz.

Extremal Kähler metrics provide a natural notion of canonical Kähler metrics in a
given Kähler class on a compact Kähler manifold X: they are the metrics that achieve
the minimum of the L2-norm of the scalar curvature. Kähler metrics with constant scalar
curvature (cscK metrics for short) are special cases of such metrics, but Calabi showed
in [6] that there may exist extremal Kähler metrics when there exists no cscK metrics at
all, by exhibiting extremal Kähler metrics on Hirzebruch surfaces. In order to show this,
Calabi relied on the simple yet powerful idea that one should search for extremal Kähler
metrics among those Kähler metrics that behave well with respect to the geometry of
the manifold.

This was not a new idea of course. Matsushima showed for example [26] that cscK
metrics must behave well with respect to biholomorphism. More precisely, the automor-
phism group of X must be the complexification of the isometry group of the cscK metric,
if it exists. This is preventing Hirzebruch surfaces from admitting cscK metrics as their
automorphism group is non-reductive.

Calabi went further and restricted to metrics that respect the structure of P1-bundles
of Hirzebruch surfaces. He was then able to translate, for such metrics, the extremal
property into a simple ODE and to solve it, showing the existence of extremal Käh-
ler metrics. His construction was later referred to as Calabi’s ansatz, used in various
situations and generalized in various directions. It would be easy to fill pages with a
bibliographical review of these, but it is not the purpose of this introduction. We only
stress that a common theme is usually the desire to get explicit existence results or cri-
terions. An influential illustration is [1], where a variant of Calabi’s ansatz was used to

2020 Mathematics Subject Classification. 14M25, 32Q15, 32Q26, 53C55.
Key words and phrases. semisimple principal toric fibration, extremal Kähler metric, weighted cscK

metric, uniform K-stability, projective bundle.
1



2 T. DELCROIX AND S. JUBERT

show tat on various P1-bundles, existence of extremal Kähler metrics reduces to checking
the positivity of a polynomial on [−1, 1], the so-called extremal polynomial. In the series
of papers leading to [1], the general idea of Calabi’s ansatz was actually pushed way
further, allowing for example to consider certain fibrations with toric fiber.

The interest for such fibrations was significantly renewed last year, when the second
author proved in [17], using the breakthrough results of Chen and Cheng [7], that a
uniform version of the Yau-Tian-Donaldson conjecture holds for semisimple principal
toric fibrations, a very large class of toric fibrations. While it allows to translate the
question of existence of extremal Kähler metrics on such manifolds into a question of
convex geometry on their moment polytopes, it is not yet an explicitly checkable criterion,
as the conditions to check still form an infinite dimensional space. Motivated by the
more practical philosophy behind Calabi’s ansatz, we prove in the present paper various
sufficient conditions of existence of extremal Kähler metrics which may be easily checked.
Our approach is based on an initial idea by Zhou and Zhu [28], exploited in greater
generality by the first author in [8].

Let us now highlight in the remainder of this introduction our main results. For this,
a few notations are needed. Semisimple principal toric fibrations are certain holomorphic
fiber bundles π : Y → B where the basis B =

∏

aBa is a product of Hodge manifolds
(Ba, ωa) with constant scalar curvature sa, and toric fiber X under a torus T. They
are constructed from certain types of principal T-bundles, essentially determined by the
data of a tuple (pa) of one-parameter subgroups of T. On such manifolds, a Kähler class
is called compatible if it decomposes as the sum of a relative Kähler class induced by
a Kähler class [ωX ] on X, and a sum of real multiples caπ

∗[ωa] of the pull-backs of the
Kähler classes [ωa]. An admissible Kähler class contains admissible Kähler metrics, that
behave well with respect to the fibration structure.

Theorem 1.1. Assume that Y is a semisimple principal toric fibration, that the toric fiber
X is Fano equipped with the Kähler class [ωX ] = tc1(X), and let [ωY ] be an admissible
Kähler class. Assume that with the notations above, for all a, 2 dim(Ba)ca ≥ tsa and
that at every vertex x of the moment polytope P of (X, [ωX ]),

2(dim(Y ) + 1) +
∑

a

tsa − 2 dim(Ba)ca
pa(x) + ca

− tlext(x) ≥ 0

where lext is the extremal affine function. Then there exists an extremal Kähler metric
in [ωY ].

Here the extremal function is encoding the extremal vector field, such that the scalar
curvature of the extremal Kähler metric, if it exists, is a holomorphy potential of this
vector field. We refer to the body of the paper for the precise conventions used. We
actually prove a much more general sufficient condition, Theorem 2.6 that does not
require the fiber to be Fano. Since we obtain already a wealth of new examples with this
particular case, and it is a natural generalization of the P1-bundle case, we focus on this
result for the introduction.

As a simple corollary, we get:
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Corollary 1.2. A Fano semisimple principal toric fibration Y admits an extremal Kähler
metric in c1(Y ) if its extremal function lext satisfies

sup lext ≤ 2(dim(Y ) + 1)

and the latter obviously needs only be verified at vertices of the moment polytope.

We provide, for the reader’s convenience, an elementary Python program implementing
the sufficient condition from Theorem 1.1 in the case when there is only one factor in
B and the fiber is of dimension one or two. It would be easy to imitate these to allow
greater flexibility in the data. It may be used either with all the data given numerically,
or some of the data treated as variable. We use this to our advantage to prove the
existence of extremal Kähler metrics in a wide range of Kähler classes for some examples
of fibrations.

Proposition 1.3. Let Y = PB(O ⊕H−p1 ⊕H−p2), where B is a Kähler-Einstein Fano
threefold, H is the smallest integral divisor of c1(X) and 1 ≤ p1 ≤ p2. Then there exists
an extremal Kähler metric in the Kähler class c1(X) + λc1(B) for λ ≥ 7p2, where c1(X)
and c1(B) respectively denote the relative first Chern class and the pull-back of the first
Chern class, by an abuse of notations.

The article is organized as follows. In Section 2, we prove a general sufficient condition
for weighted uniform K-stability of labelled polytopes, and consider the special case
of monotone polytopes. Section 3 provides the geometric translation of this sufficient
condition for weighted cscK metrics on toric manifolds and for extremal Kähler metrics on
semisimple principal toric fibrations. There we prove Theorem 1.1 and Corollary 1.2 using
the monotone case of Section 2, as well as more general statements. We present various
examples of applications of the sufficient condition in Section 4, including Proposition 1.3.
Finally, we include in an appendix elementary Python programs computing the sufficient
condition for fibrations with only one factor in the basis, and a one or two dimensional
Fano fiber.

Acknowledgements. The authors are very grateful to Vestislav Apostolov and Eveline
Legendre for their valuable comments and suggestions on the manuscript. The first
author is partially funded by ANR-21-CE40-0011 JCJC project MARGE and ANR-18-
CE40-0003-01 JCJC project FIBALGA, as well as PEPS JCJC INSMI CNRS projects
2021 and 2022. The second author was supported by PhD fellowships of the UQAM and
of the Université de Toulouse III - Paul Sabatier.

2. Weighted K-stability of labelled polytopes: a sufficient condition

2.1. Weighted K-stability of labelled polytopes. Let V be an affine space of di-
mension ℓ, equipped with a fixed Lebesgue measure dx. A labelled polytope in V is a pair
(P,L) where P is a (compact, convex) polytope in V and L = (Lj)

d
j=1 is a set of defining

affine functions for P , that is,

P = {x ∈ V | ∀j, Lj(x) ≥ 0}

where d is the number of facets (codimension one faces) of P . We denote by Fj :=
{x ∈ P | Lj(x) = 0} the facet of P defined by Lj.
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Definition 2.1. The labelled boundary measure dσ is the measure on ∂P whose restric-
tion to the facet Fj is defined by dLi ∧ dσ = −dx.

Following [12, 18, 23], for v ∈ C0(P,R≥0) and w ∈ C0(P,R), we define the (v,w)-
Donaldson–Futaki invariant of the labelled polytope (P,L) as the functional F on C0(P,R)
such that

(1) F(f) := 2

∫

∂P

f(x)v(x)dσ −

∫

P

f(x)w(x)dx.

Definition 2.2. A labelled polytope (P,L) is (v,w)-uniformly K-stable if there exists a
λ > 0 such that for any continuous convex functions f on P ,

(2) F(f) ≥ λ inf
l∈Aff(V )

∫

P

(

f + l − inf
P
(f + l)

)

vdx

where Aff(V ) denotes the space of affine functions on V .

Remark 2.3. Note that F is linear, and the right-hand side of (2) is always non-negative,
hence the following is a necessary condition for (2) to hold:

(3) ∀f ∈ Aff(V ),F(f) = 0.

2.2. The sufficient condition. We assume from now on that v is given by the restric-
tion of a C1 function defined on an open subset of V containing P , which is positive on
the interior P 0 of P .

We denote by CV0(P ) the space of continuous convex functions on P , and by CV1(P )
the space of all convex functions f on P which are the restrictions to P of a C1 function
defined on an open subset of V containing P . Note that by uniform approximation by
C1 functions, it is enough to consider only functions in CV1(P ) to check condition (2).

In order to deal more efficiently with the right hand side of (2), following [12], we
consider the following normalization of functions. We choose a point x0 in the interior
P 0 of the polytope P . It allows to choose a linear complement CV1

∗(P ) to Aff(V ) in
CV1(P ), defined by

(4) CV1
∗(P ) :=

{

f ∈ CV1(P ) | ∀x, f(x) ≥ f(x0) = 0
}

.

Then, any f ∈ CV1(P ) can be written uniquely as f = f∗ + f0, where f0 is affine and
f∗ ∈ CV1

∗(P ), and we will use these notations in the following. By linearity, F(f) = F(f∗)
if F vanishes on Aff(V ).

Lemma 2.4. The labelled polytope (P,L) is (v,w)-uniformly K-stable if and only if there
exists λ > 0 such that for all f ∈ CV1(P ),

F(f) ≥ λ‖vf∗‖1(5)

where ‖·‖1 denotes the L1-norm on P with respect to the Lebesgue measure dx.

Proof. One direction is immediate since by definition of f∗ = f − f0,

‖vf∗‖1 ≥ inf
l∈Aff(V )

∫

P

(

f + l − inf
P
(f + l)

)

vdx.

Conversely, we can apply the same proof as in [15, Lemma 3.5] (which established
this result for v = 1) except one necessary modification: because v can vanish on the
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Figure 1. The cone decomposition

•x0

Fj

Pj

boundary, we need to use the pre-compactness result of [8, Proposition 7.2] instead of
[12, Corollary 5.2.5].

�

Remark 2.5. If v > 0 on P , then the labelled polytope (P,L) is (v,w)-uniformly K-
stable if and only if there exists λ > 0 such that for all f ∈ CV1(P ),

F(f) ≥ λ‖f∗‖1.(6)

Indeed, it suffices to multiply the constant λ by the minimum of v on P to go from one
characterization to the other.

Recall that Fj denotes the facet of P defined by Lj. For each j, let Pj be the cone
with basis Fj and vertex x0 as illustrated in Figure 2.2. Given a function f ∈ C1(P ), we
let dxf denote its differential at x ∈ P . The following is the main technical result of our
paper, it imitates quite closely part of the proof by Zhou and Zhu [28] of a coercivity
criterion for the modified Mabuchi functional on toric manifolds.

Theorem 2.6. Let v ∈ C1(P,R) such that v is positive on P 0 and let w ∈ C0(P,R).
Assume that F vanishes on Aff(V ) and that for all j = 1, . . . , d, for all x ∈ Pj ,

(7)
1

Lj(x0)
(v(x)(ℓ+ 1) + dxv(x− x0))−

w(x)

2
≥ 0,

then (P,L) is (v,w)-uniformly K-stable.

Proof. Since Lj vanishes on x at all points of Fj , we have Lj(x0) = dxLj(x0 − x) for all
x ∈ Fj . In other words,

∫

Fj

f(x)v(x)dσ =

∫

Fj

f(x)v(x)
−dxLj(x− x0)

Lj(x0)
dσ

For each facet F of ∂Pj different from Fj, and x ∈ F , x− x0 belongs to the vector space
direction of F , hence the interior product ιx−x0

(dx) vanishes on the affine space spanned
by F . If we further use that −dLj ∧ dσ = dx on Fj , we obtain

∫

Fj

f(x)v(x)dσ =
1

Lj(x0)

∫

∂Pj

f(x)v(x)ιx−x0
(dx) .
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Hence by Stokes theorem we obtain
∫

Fj

f(x)v(x)dσ =
1

Lj(x0)

∫

Pj

(v(x)dxf(x− x0) + ℓf(x)v(x) + f(x)dxv(x− x0)) dx.

Summing the previous identities over j we get

F(f) =
d
∑

j=1

2

Lj(x0)

∫

Pj

(dxf(x− x0)− f(x)) v(x)dx

+

d
∑

j=1

∫

Pj

(

2

Lj(x0)
((ℓ+ 1)v(x) + dxv(x− x0))− w(x)

)

f(x)dx.

(8)

We argue by contradiction to prove the sufficient condition. Assume condition (7) is
satisfied and (P,L) is not (v,w)-uniformly K-stable. Then by Lemma 2.4 and since F
vanishes on Aff(V ), there exists a sequence of {fk}k∈N in CV1

∗(P ) such that

(9) lim
k→∞

F(fk) = 0 and ∀k ∈ N, ‖vfk‖1 = 1.

By [8, Proposition 7.2] (or [12, Corollary 5.2.5] if v > 0 on P ) and the second equality of
(9), {fk}k∈N converges (up to a sub-sequence, still denoted by fk) locally uniformly in P 0

to a convex function f∞. Since all fk are smooth and convex, dxfk(x− x0)− fk(x) ≥ 0
by the normalization condition (4). Then, since condition (7) is assumed to hold, all
terms of the sum in (8) are non-negative. Evaluating (8) at fk and passing to the limit
reveals that limk→∞ dxfk(x−x0)− fk(x) = 0 almost everywhere in P 0, showing that f∞
is affine on P 0. Since f∞ satisfies f∞(x) ≥ f∞(x0) = 0 on P 0, f∞ is identically zero on
P 0. That contradicts the second equality of (9) and concludes the proof. �

Remark 2.7. If v vanishes on Fj0 , then the contribution
∫

Fj0

f(x)v(x)dσ

is zero. As a consequence, for j = j0, we may replace Lj0(x0) in condition (7) by any
value! It doesn’t mean that condition (7) is equivalent to w(x) ≤ 0 on Pj0 , since the
contribution of the Fj0 term was split out in two terms in expression (8), and condition (7)
involves only one of these terms.

Remark 2.8. We stress that the choice of x0 ∈ P 0 in the previous section was arbitrary,
but condition (7) depends on that choice. It is possible and useful in practical uses of the
condition to vary this x0 according to the data of the problem, see 4.4.1 and [8, Section 9
and Section 11].

Remark 2.9. Condition (7) depends continuously on the labelled polytope, the weights,
and the choice of x0.

2.3. Case of monotone polytopes. Let us recall the terminology of monotone poly-
topes, used in [20].

Definition 2.10. A labelled polytope (P,L) is monotone if there exists an x0 ∈ P 0 such
that L1(x0) = L2(x0) = · · · = Ld(x0).
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There is thus an obvious choice of x0 in that case. Our sufficient condition indeed be-
comes much simpler in that case, since the decomposition of the polytope may essentially
be forgotten.

Corollary 2.11. Let (P,L) be a monotone labelled polytope with L1(x0) = L2(x0) =
· · · = Ld(x0) = t. Let v ∈ C1(P,R) such that v is positive on P 0 and let w ∈ C0(P,R).
Assume that F vanishes on Aff(V ) and that for all x ∈ P ,

(10)
1

t
(v(x)(ℓ + 1) + dxv(x− x0))−

w(x)

2
≥ 0,

then (P,L) is (v,w)-uniformly K-stable.

The conditions involved form a finite set of conditions to check, contrary to the defi-
nition of (v,w)-uniform K-stability. It is furthermore easy to implement in a computer
program, via formal or numerical computations depending on the data (P,L, v,w). The
same is true for the more general Theorem 2.6, but the decomposition in cones makes it
a bit more tedious.

3. Geometric applications

3.1. Weighted cscK toric manifolds. The results from Section 2 are motivated by
the study of the existence of weighted cscK metrics on toric manifolds, as studied in [17].

Let T be an ℓ-dimensional compact torus. We denote by t its Lie algebra and by
Λ ⊂ t the lattice of generators of circle subgroups, so that T = t/2πΛ. Let (X,ω,T) be
a compact Kähler toric manifold. Denote by µ the moment map of X with respect to
the action of T, and let P = µ(X) ⊂ t

∗ be the moment polytope. The polytope P is a
Delzant polytope [10], and in particular, there is a natural choice of labelling L of P such
that all the differentials dLj of the defining affine functions Lj are primitive elements in
the lattice Λ.

In the context of toric manifold, the v-weighted scalar curvature was introduced in
[23]. To avoid introducing too much notation, we give the definition of [18], which makes
sense for general compact Kähler manifold and coincide with the one of [23] in the toric
context.

Definition 3.1 (Weighted cscK metrics).

(1) For v ∈ C∞(P,R>0), define the v-scalar curvature of ω as the function

Scalv(ω) := v(µ)Scal(ω) + 2∆ω

(

v(µ)
)

+ Tr
(

Gϕ ◦ (Hess(v) ◦ µ)
)

,

where Scal(ω) is the usual scalar curvature of the Riemann metric gω associated
to ω, ∆ω is the Riemannian Laplacian of gω, Hess(v) is the Hessian of v viewed
as bilinear form on t

∗ whereas Gω is the bilinear form with smooth coefficients on
t, given by the restriction of gω on fundamental vector fields.

(2) If furthermore w ∈ C∞(P,R), then ω is a (v,w)-cscK metric if

Scalv(ω) = w ◦ µ

In general, no YTD correspondence is proved for the existence of weighted cscK metrics
on toric manifolds. However by analogy with the unweighted cscK case, the candidate
notion of K-stability is known, and translates on the polytope as Definition 2. In fact,



8 T. DELCROIX AND S. JUBERT

the direction from existence of weighted cscK metrics to K-stability was proved in general
by Li, Lian, Sheng.

Theorem 3.2 ([24, Theorem 2.1]). If ω is a (v,w)-cscK metric, then (P,L) is (v,w)-
uniformly K-stable.

The converse direction is in general much harder, but is known for special choices of
weights.

• If v and w are constants, this is the uniform YTD conjecture for cscK metrics on
toric manifolds. Then the converse direction is proved thanks to the combination
of [12, 28, 7] (see also [21] for an alternative proof bypassing the argument of
[28]). These results hold as well for extremal metrics on toric manifolds, thanks
to the adaptation by He [14] of the arguments of Chen and Cheng to the extremal
case.

• More generally, the uniform YTD conjecture holds for cscK metrics on spheri-
cal manifolds, as Odaka shows by using Chi Li’s arguments in the appendix of
[8]. In addition, [8] shows that existence of cscK metrics on a horospherical G-
manifold (X,L) is equivalent to (v,w)-uniform K-stability of its moment polytope
for certain degenerate weights (v,w). Note that for general spherical varieties,
the condition is slightly different as one needs to impose slope conditions on the
convex functions.

• If only v is constant, the converse of Theorem 3.2 is known for all w ∈ C∞(P,R)
by [25].

• For v-solitons on Fano toric manifolds, which correspond to choosing an arbitrary
weight v ∈ C∞(P,R>0) and w(x) = 2(ℓv(x) + dxv(x)) (see [3, Proposition 1]),
it was proven in [22] that the YTD conjecture holds. Actually, thanks to our
Corollary 2.11, we recover the result of Han Lie [22] without the need of special
test configuration, see Corollary 3.13.

• Finally, as we shall explain in the next sections, the converse of Theorem 3.2
was proven by the second author for weights corresponding to extremal Kähler
metrics on semisimple principal toric fibrations [17].

3.2. Extremal metrics on semisimple principal toric fibrations. Let T be an ℓ-
dimensional compact torus. Let X be a toric projective manifold under the action of T.
Let (Ba, ωa), for 1 ≤ a ≤ k be a family of cscK Hodge manifolds. Let Q be a principal

T-bundle on B :=
∏k

a=1 Ba, equipped with a principal connection θ whose curvature is
of the form

dθ =

k
∑

a=1

ωa ⊗ pa

where the pa ∈ t define one-parameter subgroups of T. The semisimple principal fiber
bundle construction associates to the above data a holomorphic fiber bundle Y = (Q ×
X)/T over B, with distinguished Kähler classes called bundle-compatible, associated to
the data of a Kähler class on X and certain k-tuples of constants (ca). More precisely,
given a T-invariant Kähler form ωX on X, with associated moment map µ : X → t

∗

with respect to T, and a k-tuple of constants (ca) such that for all a, pa ◦ µ + ca > 0,
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a bundle-compatible Kähler metric ωY on Y is defined by the following basic form on
Q×X:

ωY = ωX +

k
∑

a=1

caωa + d(µ ◦ θ).

We refer to section 4.2 for a practical way to construct such fibrations from a collection
of line bundles, and to the remainder of section 4 for more explicit examples.

Theorem 3.3 ([17, Theorem 3]). Let (Y, ωY ) be a semisimple principal bundle with toric
Kähler fiber (X,ωX) and denote by P its moment polytope. Then there exists an extremal
Kähler metric in [ωY ] if and only if P is (v,w)-uniformly K-stable, where

(11) v(x) =

k
∏

a=1

(pa(x) + ca)
na

(12) w(x) =

(

lext(x)−

k
∑

a=1

sa
pa(x) + ca

)

v(x),

and lext is the unique affine function such that (3) holds for (v,w). Equivalently, there
exists a (v,w)-cscK metric in [ωX ].

Note that condition (3) corresponds to vanishing of the modified Futaki character, and
lext encodes the extremal vector field. In particular the extremal metric above is cscK if
and only if lext is constant.

Remark 3.4. It is remarkable that the condition depends on the base only through
the constants (sa) and the existence of a principal T-bundle with connection with cor-
responding data (pa). In particular, when we obtain an existence result for extremal
Kähler metrics, we usually actually obtain the existence of extremal Kähler metrics over
a full deformation family of cscK manifolds.

Theorem 3.3 allows us to translate Theorem 2.6 as the following sufficient condition
of existence of extremal Kähler metrics on fibrations.

Corollary 3.5 (of Theorem 2.6). The semisimple principal toric fibration (Y, ωY ) admits
an extremal Kähler metric in [ωY ] if there exists an x0 ∈ P 0 and corresponding cone
decomposition P =

⋃

j Pj such that for all j and for all x ∈ Pj

1

Lj(x0)

(

ℓ+ 1 +

k
∑

a=1

napa(x− x0)

pa(x) + ca

)

−
1

2

(

lext(x)−

k
∑

a=1

sa
pa(x) + ca

)

≥ 0.

Proof. It suffices to note that for the weight v involved, we have

dxv(y) =

(

k
∑

a=1

napa(y)

pa(x) + ca

)

v(x).

so that in the condition in Theorem 2.6, we can factor by v(x) which is positive every-
where. �
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3.3. Fibrations with Fano fiber. We now turn to the fibrations with Fano fiber, in
order to use Corollary 2.11. With the same notations as in Section 3.2, we now assume
furthermore that the toric fiber is a Fano manifold, and that the Kähler class [ωX ] is
a multiple of the anticanonical class c1(X). As a consequence, the moment polytope
P is a dilation of a reflexive lattice polytope. This implies that the labelled polytope
(P,L) corresponding to the lattice polytope P is monotone, with a preferred point x0 and
L1(x0) = · · · = Ld(x0) = t. Assuming without loss of generality that the (anti-)canonical
normalization is used for the moment polytope of the fiber, we may further assume that

x0 = 0, and t = [ω]
c1(X) .

Corollary 3.6. The semisimple principal toric fibration (Y, [ωY ]) with Fano toric fiber
admits an extremal Kähler metric in [ωY ] if ∀x ∈ P ,

(13) 2(ℓ+
∑

a

na) + 2 +
∑

a

tsa − 2naca
pa(x) + ca

− tlext(x) ≥ 0

Note that ℓ+
∑

a na = dim(Y ).

Proof. Since all Lj(x0) are equal to t, the condition from Corollary 3.5 further simplifies
to

2ℓ+ 2 +
k
∑

a=1

2napa(x) + tsa
pa(x) + ca

− tlext(x) ≥ 0 ∀x ∈ P

as for Corollary 2.11. Writing 2napa(x) = 2na(pa(x) + ca)− 2naca yields the statement.
�

While simple enough, and tractable with numerical optimization techniques, the in-
equality involved is a polynomial inequality in several variables, whose degree can be
equal to the dimension of the basis plus one. If is difficult to solve formally. There is a
further reduction that allows to get a simpler condition which can be checked by a finite
number of evaluations of polynomial functions.

Corollary 3.7. Assume furthermore that for all a, ca ≥ tsa
2na

. Then the semisimple prin-

cipal toric fibration (Y, [ωY ]) admits an extremal Kähler metric in [ωY ] if inequation (13)
is satisfied at every vertex of P .

Proof. The inverse of an affine function is convex on the locus where this affine function
is positive. Hence under the condition in the statement, the function tsa−2naca

pa+ca
is concave

on P . Condition (13) thus amounts to checking the non-negativity of a concave function
on a convex polytope: it is enough to check the non-negativity on vertices. �

Remark 3.8. In the case of a simple principal toric fibration, that is, if there is only
one factor in the basis, then the condition becomes extremely simple for classes with
ca ≥ tsa

2na
: it is enough to check a degree two polynomial inequation on every vertices of

the moment polytope.

Remark 3.9. We can write a similar statement for the general case of toric fibrations,
by working on the cone decomposition. In that case the conditions to impose are: for all
j, for all a, Lj(x0)sa− 2na(pa(x0)+ ca) ≤ 0 and condition (3.5) is satisfied at all vertices
of Pj , that is, some vertices of P and x0.
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3.4. Case of Fano fibrations. An important special case when the toric fiber is Fano
is given by the semisimple principal toric fibrations which are themselves Fano.

Lemma 3.10 ([3, Lemma 5.10]). Assume that each Ba is a Fano Kähler-Einstein man-
ifold. Let ωa denote a Kähler-Einstein metric on Ba so that Ia[ωa] = c1(Ba), where Ia
denotes the Fano index of Ba. We fix a principal bundle with connection (Q, θ) as before
(with associated data (pa)). We further assume that (X,ωX) is a Fano toric manifold
with a T-invariant Kähler form ωX ∈ c1(X), with the natural choice of moment map µ.
If for all a, pa ◦ µ + Ia > 0, then the semisimple principal fibration Y associated to the
above data is a Fano manifold, and ωY is in c1(Y ) for the k-tuple (ca) = (Ia).

Note that in the above situation, the scalar curvature of ωa is indeed constant, equal
to 2naIa where na is the complex dimension of Ba.

By our general sufficient condition, we obtain a very simple condition for the existence
of extremal Kähler metrics on Fano toric fibrations.

Corollary 3.11. A Fano semisimple principal toric fibration Y admits an extremal Käh-
ler metric in c1(Y ) if its extremal function lext satisfies:

(14) sup lext ≤ 2(dim(Y ) + 1)

Proof. By Lemma 3.10, for all a, sa = 2naca and the condition from Corollary 3.6
becomes

2 dim(Y ) + 2− lext ≥ 0 on P

�

Of course, as in Corollary 3.7, it is enough to check this condition on vertices of the
polytope.

Remark 3.12. If lext is constant, it is equal to 2 dim(Y ) since the class is the anticanon-
ical one. As a consequence, the condition is strictly satisfied:

2 dim(Y ) + 2− lext = 2 > 0.

In particular, We recover that a Fano toric fibration with vanishing Futaki invariant
admits a Kähler-Einstein metric [3]. Furthermore, by Remark 2.9, it shows that, on a
neighborhood of c1(X) in the subcone of bundle-compatible Kähler classes, there exists
extremal Kähler metrics. Of course, this is already known by Lebrun-Simanca [19] and
[3]. However, in the present setting, working directly with the condition it is not hard to
find an explicit neighborhood which works. More generally, if one focuses on the cscK
metrics existence problem, the same remarks as above show that, whether or not the
Futaki invariant of c1(X) does vanish, there is a neighborhood of c1(X) in the subcone
of compatible Kähler classes where existence of a cscK metric is equivalent to vanishing
of the Futaki character, a further illustration of a phenomenon observed in [8].

In [22], Han-Li showed that the YTD conjecture holds for v-soliton. By definition a
v-soliton is a Kähler metric ω such that

Ric(ω)− ω =
1

2
ddclog(v),
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where Ric(ω) is the Ricci form of ω. On Fano semisimple principal toric fibrations, a
Kähler metric ωY ∈ 2πc1(Y ) is a v-soliton iff its corresponding metric ωX ∈ 2πc1(X)
is (vv0, ṽ)-cscK (see [3, Lemma 2.2, Lemma 5.11]) for the weights ṽ := 2(ℓv0(x)v(x) +
dx(v0v)(x)) and v0 is defined in (11). Since the polytope must be reflexive hence mono-
tone, one has x0 = 0, t = 1 and condition (10) becomes v ≥ 0 on the polytope, which
is obviously satisfied. Moreover, by [17, Proposition 7.8], the (v, ṽ)-uniform K-stability
implies the coercivity of the corresponding weighted (v, ṽ)-Mabuchi functional. Involv-
ing [22, Theorem 3.5], we obtain the existence of a Ricci-soliton in 2πc1(Y ) (see also [3,
Proof of Theorem 3]). We then recover the result of Han-Li [22], bypassing some of the
arguments allowing to reduce to special test configurations:

Corollary 3.13. Let Y be a Fano semisimple principal toric fibration with associate
Delzant polytope P and fix the weights corresponding to v-solitons defined above. Then, if
the weighted Donaldson-Futaki invariant F vanishes, there exists a v-soliton in 2πc1(Y ).

3.5. Further ways to apply Theorem 2.6. To end this section, we describe two,
somewhat indirect, ways to apply Theorem 2.6, that provide further examples of classes
where we may find extremal Kähler metrics.

The first way relies on a by now standard method, often called the adiabatic regime
[16, 13, 1, 2, 5, 11]. Given a semisimple principal toric fibration Y , we let the tuples (ca)
parametrizing admissible Kähler classes vary. When, say, ca0 goes to +∞, we observe that
in the associated weighted uniform K-stability condition the dominant term is controlled
by the analogous weighted uniform K-stability condition for another semisimple principal
toric fibration Z, with the same toric fiber, and all data associated to the factor Ba0 of
the basis removed (for example if Y was simple, then Z = X is simply the toric fiber).
If Z is weighted uniformly K-stable for the admissible Kähler class corresponding to the
tuple (cb)c 6=a0 , then we deduce that for large enough ca0 , the admissible Kähler class on
Y , corresponding to the tuple (ca) with ca = cb for b 6= a0, admits an extremal Kähler
metric. We may thus apply our criterions to Zand obtain induced extremal Kähler classes
on Y . This is explained by the adiabatic picture since Y is actually a fibration over Ba0

with fiber Z. One may of course apply the same idea to an arbitrary subset of indices
{a0, a1, . . . , am}.

The second way is related to the blowup phenomenon, and provides an easy way to
get extremal Kähler classes for polytopes which are not monotone. Consider again a
semisimple principal toric fibration Y , and let now some ca decrease so that, at the limit,
some of the corresponding affine functions pa + ca vanish on some facets of the polytope
P . In particular, the associated weight v vanishes on these facets. If the base point x0
and labelling L of P can be chosen so that the Lj(x0) are independent of j for all j such
that v vanishes on the facet Fj , then Remark 2.7 allows to apply Theorem 2.6 in a way
that is just as efficient as Corollary 3.6. Although such a data does not strictly speaking
correspond to an admissible Kähler class on the fibration, if the polytope P is weighted
uniformly K-stable for these weights, then the same limiting argument as before shows
that for nearby Kähler classes, there exists extremal Kähler metrics.
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4. Examples

4.1. Examples of bases. In this section we comment on examples of possibles bases for
the semisimple principal toric fibration construction. This allows to determine possible
values of sa to plug into the condition. The easiest way to get a cscK basis is to choose
a Kähler-Einstein manifold, equipped with a multiple of its first Chern class when it is
definite, and with an arbitrary Kähler class for Calabi-Yau manifolds.

For canonically polarized manifolds, there always exists a Kähler-Einstein metric in
−c1(X), and there exists such manifolds in every dimension. In particular, the value
sa = −2na

ka
are always allowed, for ka ∈ Z>0. For manifolds with zero first Chern class,

there always exist Kähler-Einstein metrics with zero scalar curvature. For the positive
curvature case, since the projective space of dimension n is a Kähler-Einstein manifold of

index n+1, all the values sa = 2na(na+1)
ka

are allowed, for ka ∈ Z>0. More generally, for a

Kähler-Einstein Fano basis of dimension na and index Ia, then all the values sa = 2naIa
ka

are allowed, for ka ∈ Z>0. Note that the Fano index of an n-dimensional Fano manifold
is always an integer between 1 and n+ 1. Here are a couple known results on existence
of Fano Kähler-Einstein manifolds when n is small or I is large:

• if I = n+1 then X = Pn is the n-dimensional projective space, and it is Kähler-
Einstein,

• if I = n then X = Qn is the n-dimensional quadric, and it is Kähler-Einstein,
• if n = 1 then X = P1, I = 2 and it is Kähler-Einstein,
• if n = 2 then P2 (index 3), X = P1 × P1 (index 2) and the blowups of P2 (index

1) at three or more points are Kähler-Einstein,
• if n = 3, then the existence of Kähler-Einstein metrics on a general member of

a deformation family of smooth Fano threefolds was recently settled in [4], and
the families where the general member is not Kähler-Einstein are the following,
in the labelling used in [4], 2.23, 2.26, 2.28, 2.30, 2.31, 2.33, 2.35, 2.36, 3.14, 3.16,
3.18, 3.21, 3.22, 3.23, 3.24, 3.26, 3.28, 3.29, 3.30, 3.31, 4.5, 4.8, 4.9, 4.10, 4.11,
4.12, 5.2.

4.2. Preliminaries: projectivization of sums of line bundles. Let (B,ωB) :=
∏k

a=1(Ba, ωa) be a product of compact complex manifolds Ba endowed with cscK metrics

ωa with 1
2π [ωa] primitive element of H2(Ba,Z). We consider holomorphic line bundles

Li −→ B, i = 1, . . . , ℓ, and we suppose that their first Chern classes satisfy

2πc1(Li) =
k
∑

a=1

pai[ωa],

where by definition pai is the ωa-degree of Li. The natural C∗
i -action on Li induces an

action of S1i ⊂ C∗
i , providing a T-bundle π : Q −→ B, where T =

∏

i S
1
i is a compact

ℓ-torus. We choose a Hermitian metric hi on Li and consider the norm function ri(u) :=

(hi(u, u))
1

2 for any u in Li. On L̃i, the C∗-bundle obtained from Li by removing the
zero section, ri is positive and we let ti = log(ri). We fix a basis ξ = (ξi)

ℓ
i=1 of the

Lie algebra t of T and we denote by ξL̃i the generator of the S1i -action on L̃i. We then

consider the t-valued one-form t :=
∑ℓ

i=1 tiξi and we define a connection one-form θ on
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Q as the restriction of dct to Q, seen as the T-bundle of unit element on each (Li, hi).
For all i = 1, . . . , ℓ, it satisfies

θ(ξL̃i) = ξi.

We obtain by construction

dθ =
ℓ
∑

i=1

ξi ⊗ π∗(ωhi
) =

ℓ
∑

i=1

ξi ⊗
(

k
∑

a=1

paiπ
∗(ωa)

)

=

k
∑

a=1

pa ⊗ π∗(ωa),

(15)

where ωhi
is the opposite of the curvature form of the Chern connection of (Li, hi)

and pa =
∑ℓ

i=1 paiξi. We consider the ℓ-projective space (Pℓ, ωPℓ ,T) endowed of an
hamiltonian T-action with respect to a fixed Kähler metric ωPℓ . We fix the principal
T-bundle Q with its connection one form θ, the cscK Kähler manifolds (Ba, ωa) and the
toric Kähler manifold (Pℓ, ωPℓ ,T). From this datas, we define a semisimple principal toric
fibration Y := Q ×T Pℓ. By construction, Y is biholomorphic to the total space of the

projectize bundle P(E), E := O ⊕
⊕ℓ

i=1 Li.

Suppose ωPℓ belongs the the first Chern class 2πc1(P
ℓ) of Pℓ and denotes by P the

canonical ℓ-simplex associate to (Pℓ, 2πc1(P
ℓ),Tℓ) via Delzant correspondence [10]. By

(15), any compatible Kähler metric on Y is of the form

(16) ωY =

k
∑

a=1

( ℓ
∑

i=1

paixi + ca

)

ωa + ωPℓ, x = (x)ℓi=1 ∈ P

with

(17) ca >
ℓ
∑

i=1

pai,

In the above formulas, by abuse of notation, ωPd denotes both the Kähler metric on Pℓ

and its induced metric in 2πc1(OE(ℓ+ 1)). The tuples (ca) satisfying (17), parametrize
the compatible Kähler classes.

Furthermore, suppose that B is a product of Kähler-Einstein manifolds (B,ωB) :=
∏k

a=1(Ba, ωa). By Lemma 3.10, if we choose ca equal to the Fano index Ia of Ba, the
corresponding compatible Kähler form ωY defined in (16) belongs to the first Chern class
2πc1(Y ). In particular, if

(18) Ia >

ℓ
∑

i=1

pai,

Y is a Fano manifold with compatible first Chern class.
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4.3. P2-fiber over Fano threefold. We consider the 2-dimensional projective space
(P2,T2, 2πc1(P

2)). Identifying the lattice Λ of T2 with Z2, we consider its labelled mo-
ment polytope (P,L) in R2

(19) P =
{

(x1, x2) =: x ∈ R2 | L1(x) ≥ 0, L2(x) ≥ 0, L3(x) ≥ 0
}

,

where L1(x) := x1+1, L2(x) := x2+1, L3(x) := −x1−x2+1. Let (B,ωB) be a KE Fano
3-fold with αB := [ωB] primitive element of H2(B,Z) proportional to the first Chern class
2πc1(B). Let Li −→ B be a holomorphic line bundle of degree pi proportional to the
anticanonical line bundle −KB , i.e. piαB = 2πc1(Li). We consider a simple principal
toric fibration (i.e. the basis has only one factor) π : Y := P(L0 ⊕L1⊕L2) −→ B. Since
the holomorphic class of Y is invariant by tensoring L0 ⊕L1 ⊕L2 with a line bundle, we
can suppose without loss of generality that L0 = O is the trivial line bundle and pi ≥ 0,
i = 1, 2. When B is a local Kähler product of nonnegative cscK metric and p1 = p2 > 0
or p2 > p1 = 0, it is know [1, Proposition 11], that there exists an extremal metric in
every compatible Kähler classes. We then suppose p2 ≥ p1 > 0.

The compatible Kähler classes are parametrized by constants c and are of the form

(20) αc := 2πc1(OE(3)) + cπ∗(αB).

As introduced in Section 4.1, since B is a Fano threefold, the only possible Fano indices
I are 1, 2, 3 or 4. In the case where B is the quadric Q3 or the projective space P3 (i.e.
if I = 3 or I = 4 respectively), Leray-Hirch Theorem shows that H2(Y,R) ∼= R2. It
follows that, up to scaling, all Kähler classes are compatible, i.e. of the form of (20). It is
known that [2, Theorem 4] for c sufficiently large, the class αc is extremal. The following
Proposition gives a precise value for c, depending on p1 and p2, from which αc admits
an extremal metric.

Proposition 4.1. Let Y = P(O ⊕ L1 ⊕ L2) −→ B be a simple principal toric fibration
over a Kähler-Einstein Fano threefold B, where L1 and L2 are holomorphic line bundles
of degrees 1 ≤ p1 ≤ p2 proportional to the anti-canonical line bundle −KB of B. Then
there exists an extremal metric in αc for c ≥ 7p2.

Proof. Since the arguments are identical for each Fano index I, we give the proof only
for I = 4.

By Corollary 3.7, for c ≥ 4, it is sufficient to check (13) evaluated in each vertices
v1 := (−1, 2), v2 := (−1,−1), v3 := (2,−1) of the polytope P .

Using Programm 2 in Appendix A, we find that the LHS of (13) evaluated in v1 is a
rational fraction in the variables c, p1, p2:

LHS of (13) =
P (c, p1, p2)

Q(c, p1, p2)
.

We give the explicit expression of the polynomials P and Q in Appendix B. Suppose now
c ≥ 7p2 and p2 ≥ p1 ≥ 1. Then we can find two polynomials

R(c) :=12250c10 − 73500c9 − 295470c8 + 1296540c7 − 3657150c6 + 3776220c5

− 6537672c4 + 5624964c3 − 6193584c2 + 85920232c − 1889568
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and

S(c) :=6125c10 + 18375c9 + 6615c8 + 19845c7 + 127575c6

+ 382725c5 + 17496c4 + 52488c3 − 288684c2 − 866052c

such that

0 < R(c) ≤ P (c, p1, p2)

and

0 < S(c) and S(c) ≥ Q(c, p1, p2).

It implies that

LHS of (13) =
P (c, p1, p2)

Q(c, p1, p2)
≥

R(c)

S(c)
≥ 0.

We proceed analogously for the vertex v2 and v3. We conclude the proof by involving
Corollary 3.7.

�

Remark 4.2. In Proposition 4.1, we obtain a lower bound on c depending only on the
degrees p1 and p2 of the line bundles L1 and L2. For given values of p1 and p2 it is
possible to obtain a more optimal result. Indeed, suppose p1 and p2 are fixed. Then, the
LHS of (13) is a rational fraction F depending only on the variable c. We then only need
to look for constant α such that F is non-negative for c ≥ α. For example, if B = P3,
respectively B = Q3, p1 = 1 and p2 = 2, (13) show the existence of an extremal metric
in αc for c ≥ 7.09, respectively c ≥ 9.08. We refer to Appendix A for further exemples
of application of the sufficient condition on simple principal P2 fibrations.

4.4. Comments on the rank one case.

4.4.1. Varying x0 and prescribing weighted scalar curvature on P1. As noted in Re-
mark 2.8, it can be useful to vary the base point x0. In this short paragraph, we want
to illustrate this phenomenon in the simplest possible case, that is, when working on
the one-dimensional polytope [−1, 1] ⊂ R with the weights v ≡ 1 and arbitrary w. We
further choose the lattice labelling of [−1, 1] induced by the lattice Z ⊂ R (in other word,
we work on the anticanonical moment polytope of P1). More precisely, the labelling
(L1, L2) is given by L1(x) = 1 + x and L2(x) = 1 − x. Since v ≡ 1, we have dxv ≡ 0,
hence condition (7) from Theorem 2.6 translates as

1

4
w|[−1,x0] ≤

1

1 + x0
and

1

4
w|[x0,1] ≤

1

1− x0

The latter condition is illustrated in Figure 2, and it is obviously less restrictive if one
can choose x0 than the uniform condition corresponding to the obvious choice of x0 = 0
for the monotone lattice polytope [−1, 1].

We end this paragraph by recalling that (1,w)-uniform stability of the lattice polytope
[−1, 1] translates to existence of certain canonical Kähler metrics on P1 thanks to [25].
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Figure 2. Varying x0

(-1,0) (1,0)•
x0

(−1, 1
x0+1)

(1, 1
1−x0

)

4.4.2. Extremal metrics on P1-bundles. We have focused on applications of our sufficient
condition to semisimple principal toric bundles with dimension two toric fiber. This is
because in the case of a one-dimensional toric fiber, quite a few strong results have been
shown in [1]. For example, it is proved in [1, Proposition 11] that if all factors (Ba, ωa) of
the basis have non-negative constant scalar curvature, and the fiber is one-dimensional,
then there exists an extremal Kähler metric in all compatible Kähler classes.

There cannot be such a result if some factors of the basis have negative constant
scalar curvature, as shown by examples in [1]. More importantly, some of these examples
motivated the initial introduction of the notion of uniform K-stability, as they are likely
relatively K-polystable in the sense of [27], but do not admit extremal Kähler metrics.

On the positive side, by [1, Theorem 1], there always exist extremal Kähler metrics
on a a semisimple principal P1-fibration, when all the ca are large enough, as explained
in Section 3.5. However, it is not so easy to derive explicit Kähler classes with extremal
Kähler metrics from this asymptotic proof. A possible approach to get explicit classes
with extremal Kähler metrics would be to compute the extremal polynomial (in the
terminology of [1]) and check when it is positive. This is less practical than our sufficient
condition, which involves only checking the positivity of a polynomial at two points.
We provide in the appendix an elementary computer program which checks whether our
sufficient condition is satisfied for a simple principal P1-fibration, which could easily be
adapted to the case of a semisimple principal P1-fibration.

4.4.3. A more explicit example. Consider B a three-dimensional canonically polarized
manifold, equipped with its Kähler-Einstein metric in −c1(X), whose scalar curvature is
thus equal to −6. We consider the sufficient condition for existence of extremal Kähler
metrics in admissible Kähler classes on the P1-bundles P(OB ⊕ Km

B ). Up to rescaling
and symmetry, this amounts to checking (v,w)-uniform K-stability of the reflexive lattice
polytope [−1, 1] ⊂ R with respect to the weights

v(x) = (px+ c)3 and w(x) =

(

lext(x)−
−6

px+ c

)

(px+ c)3
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where p ∈ Q, c ∈ R and c > p > 0. Our sufficient condition allows to obtain the following
explicit families of extremal Kähler classes. We only show an example with very rough
estimates to illustrate the results, but of course one could get much more classes by
using more precise estimates in the proof, and even more classes by using the sufficient
condition in Theorem 2.6 in its full generality.

Proposition 4.3. With the above notations, if c ≥ 15p, then [−1, 1] is (v,w)-uniformly
K-stable. The corresponding Kähler classes on the P1-bundles P(O⊕Km

B ) admit extremal
Kähler metrics.

Proof. Using Program 1 in the appendix or straightforward but tedious computations,
we obtain up to elementary simplifications that the sufficient condition reads as

75c7 − 300c6 − 65c5p2 + 160c4p2 − 15c3p4 − 180c2p4 − 27cp6 + 48p6

is greater than

|−75c6p+ 5c4p3 + 80c3p3 − 105c2p5 + 15p7|

Without attempting to give an optimal result, we may as well check that it is greater
than

75c6p+ 5c4p3 + 80c3p3 + 105c2p5 + 15p7

since c and p are positive. Writing c = αp for some α > 1 and simplifying by p6, we get
a linear inequation in p

(21) pA+B ≥ 0

where

A = 75α7 − 75α6 − 65α5 − 5α4 − 15α3 − 105α2 − 27α− 15

B = −300α6 + 160α4 − 80α3 − 180α2 + 48

Since α > 1, the coefficient A is larger than (75α − 307)α6 and in particular, it is
non-negative for α ≥ 307

75 . Using the same lower bound for the leading coefficient, in-
equation (21) is certainly satisfied at p = 1 if

(75α − 307)α6 − 300α6 − 160α4 − 80α3 − 180α2 − 48 ≥ 0

Using again α > 1 and very rough estimates, this is implied by the inequality

(75α − 1075)α6 ≥ 0

The latter is satisfied at least for α ≥ 15, and since 15 ≥ 307
75 , we obtain that if α ≥ 15,

the sufficient condition is satisfied for all p ≥ 1. �

Appendix A. An elementary Python program

We provide, as a courtesy to the reader, elementary Python programs using SymPy
that checks the sufficient condition from Corollary 3.7 for simple principal toric fibrations
(that is, the basis has only one factor) with Fano toric fiber X of dimension one or two
such that [ωX ] a multiple of c1(X).

The only data from the simple principal toric bundle needed to compute the condition
is:

• from the basis, the dimension n ∈ Z and scalar curvature s ∈ Q
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• from the Fano toric fiber of dimension ℓ ∈ {1, 2}, the reflexive moment polytope

P ⊂ Rℓ = Zℓ ⊗ R, and the multiple t = [ωX ]
c1(X) ∈ R

• the one-parameter subgroup p from the principal bundle, identified with an inte-
ger p ∈ Z if the fiber is one-dimensional, and with an element p = (p1, p2) ∈ Z2

if the fiber is of dimension two,
• and the constant c ∈ R defining the admissible Kähler class.

We wish to compute the expression given by the right-hand side of (13)

test = 2(ℓ+ n+ 1) +
ts− 2nc

p(x) + c
− tlext(x)

in order to check the condition. For this, it suffices to compute the extremal function
lext by solving the linear system which defines it. Our short programs compute lext,
then test, then evaluate test at the vertices of P and returns the minimum if all data
are explicitly given. It the minimum returned by the program is non-negative, the data
correspond to a simple principal toric fibration with an admissible Kähler class and
c > ts

2n , then there exists an extremal Kähler metric. We may also let some of the data
remain unknown and treat them as variables.

1 import sympy as sym

2 # variable on the line (here the fiber is one -dimensional )

3 x = sym.symbols(’x’)

4 # data of the simple principal toric fibration

5 p, c = sym.symbols(’p,c’)

6 n, s, t = 3, -6, 1

7 # weights

8 l = c+p*x

9 v, w0 = l**n, -s*l**(n -1) # for now , unknown l_ext is replaced with zero

10 # Donaldson -Futaki invariant with weights (v,w0)

11 def DF0(f):

12 interior =sym.integrate (f*w0 , (x, -t, t))

13 facets =(f*v).subs (x,-t)+(f*v).subs (x,t)

14 return(interior +facets)

15 # Compute the extremal function lext

16 X=sym.Matrix (2, 1, [1, x])

17 M=sym.Matrix (2, 2, lambda i,j:

18 sym.integrate (X[i ,0]* X[j,0]*v, (x, -t, t)))

19 V=sym.Matrix (2, 1, [DF0 (1), DF0(x)])

20 Lext =M.LUsolve(V)

21 lext =(( Lext .T)*X)[0,0]

22 # Compute expression test at the two vertices and print it

23 test =2*(1+1+ n)+(t*s-2*n*c)/l-t*lext

24 print(sym.factor(test .subs (x,-t)))

25 print(sym.factor(test .subs (x,t)))

Program 1. Rank one simple principal toric fibrations

Program 1 prints the condition to check when c and p are variables, n = 3, s = −6
and t = 1, as used in Proposition 4.3. By modifying Line 5 and 6, one can obtain the
conditions for an arbitrary simple principal P1-bundle.
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1 import sympy as sym

2 # variables on the plane

3 x1 , x2 = sym.symbols(’x1 ,x2 ’)

4 # data of toric fibration and admissible Kahler class

5 c, p1 , p2 , n, s, t = 12, 1, 2, 3, 18, 1

6 ## weights associated to the data

7 l=c+p1*x1+p2*x2

8 v=l**n

9 w0=-s*l**(n-1) # for now , unknown l_ext replaced with zero

10 # list of vertices of the polytope

11 vert = [[2*t,-t], [-t,-t], [-t ,2*t]]

12 # Donaldson -Futaki invariant with weights (v,w0)

13 def DF0(f):

14 interior =sym.integrate (sym.integrate (f*w0 ,(x2 ,-t,t-x1)) ,(x1 ,-t ,2*t))

15 facet1=sym.integrate ((2*f*v).subs (x2 ,-t) ,(x1 ,-t,2*t))

16 facet2=sym.integrate ((2*f*v).subs (x2 ,t-x1) ,(x1 ,-t,2*t))

17 facet3=sym.integrate ((2*f*v).subs (x1 ,-t) ,(x2 ,-t,2*t))

18 return(interior +facet1+facet2+facet3)

19 # Compute the extremal function l_ext

20 X=sym.Matrix(3, 1, [1, x1 , x2])

21 M=sym.Matrix(3, 3, lambda i,j:

22 sym.integrate (sym.integrate (X[i,0]* X[j ,0]*v,(x2 ,-t,t-x1)) ,(x1 ,-t,2*t)

))

23 V=sym.Matrix(3, 1, [DF0 (1) , DF0(x1), DF0(x2)])

24 Lext =M.LUsolve (V)

25 lext =(( Lext .T)*X)[0,0]

26 # Compute and print the minimum of expression test on vertices

27 test =2*(1+2+ n)+(t*s-2*n*c)/l-t*lext

28 test_vertices =test .subs (x1 ,vert [0][0]).subs (x2 ,vert [0][1])

29 for i in range(1,len(vert)):

30 test_vertices =sym.Min(test_vertices ,

31 test .subs (x1 ,vert[i][0]).subs (x2 ,vert [i][1]))

32 print("The minimum of expression test on vertices is ", test_vertices )

Program 2. Simple principal P2 toric fibrations

Program 2 computes the condition when all the data are given the fixed values
(c, p1, p2, n, s, t) = (12, 1, 2, 3, 18, 1). Changing the values on the right-hand side of Line
5 allows to check the sufficient condition for arbitrary fixed values. If one wants one or
several of the above quantities to be treated as variables, for example c, p1 and p2, it
suffices to remove these and the corresponding values on the right in Line 5 and add the
line

6 c, p1 , p2 = sym.symbols(’c,p1 ,p2’)

Since the program will now compute values of test as symbolic expressions, it will no
longer be able to determine the minimum. One should thus replace Lines 28–32 for
example by

28 print(sym. separatevars (test .subs (x1 ,vert [2][0]) .subs (x2 ,vert [2][1])))

to get the expressions from appendix B, to be used in the proof of Proposition 4.1.
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Similarly, it is very easy to modify the program to consider another Fano toric surface
as fiber (Recall that there are five smooth Fano toric surfaces: P1 × P1 and the blowups
of P2 at up to three fixed points under the torus action). It suffices to modify Lines 10–18
according to the desired polytope. For example, if one wants to work with fiber the first
Hirzebruch surface (i.e. the blowup of P2 at one point), then it suffices to replace Lines
10–18 with

10 # list of vertices of the polytope

11 vert = [[-t,-t], [t,-t], [t,0], [-t,2t]]

12 # Donaldson -Futaki invariant with weights (v,w0)

13 def DF0(f):

14 interior =sym.integrate (sym.integrate (f, (x2 , -t, t-x1)), (x1 , -t, t))

15 facet1=sym.integrate (f.subs (x2 ,-t), (x1 , -t, t))

16 facet2=sym.integrate (f.subs (x2 ,t-x1), (x1 , -t, t))

17 facet3=sym.integrate (f.subs (x1 ,-t), (x2 , -t, 2t))

18 facet4=sym.integrate (f.subs (x1 ,t), (x2 , -t, 0))

19 return(interior +facet1+facet2+facet3+facet4)
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Appendix B. Complement of proof of Proposition 4.1

P (c, p1, p2) :=12250c10 + 24500c9p1 − 39690c8p21 + 18060c7p31 − 22470c6p41 − 31752c5p51

− 53376c4p61 + 22740c3p71 − 57024c2p81 + 1312p110− 49000c9p2

+ 34650c7p21p2 + 286860c6p31p2 + 152460c5p41p2 + 360972c4p51p2

− 59520c3p61p2 + 230112c2p71p2 + 18288cp81p2 − 464p91p2 − 127890c8p22

− 212310c7p1p
2
2 − 615510c6p21p

2
2 − 373212c5p31p

2
2 − 921924c4p41p

2
2

− 425376c2p61p
2
2 − 160632cp71p

2
2 − 19296p81p

2
2 + 141540c7p32 + 657300c6p1p

3
2

+ 603288c5p21p
3
2 + 1408632c4p31p

3
2 + 390936c3p41p

3
2 + 571536c2p51p

3
2

+ 349440cp61p
3
2 + 41376p71p

3
2 − 328650c6p42 − 531720c5p1p

4
2 − 1421136c4p21p

4
2

− 806100c3p31p
4
2 − 829080c2p41p

4
2 − 497592cp51p

4
2 − 22416p61p

4
2 + 212688c5p52

− 43812c3p51p
2
2 + 860184c4p1p

5
2 + 849456c3p21p

5
2 + 906192c2p31p

5
2

+ 485712cp41p
5
2 − 7488p51p

5
2 − 286728c4p62 − 527016c3p1p

6
2 − 725760c2p21p

6
2

− 329952cp31p
6
2 + 127890c8p1p2 + 7352cp91 + 22656p41p

6
2 + 150576c3p72

+ 363168c2p1p
7
2 + 156096cp21p

7
2 − 25728p31p

7
2 − 90792c2p82 − 46368cp1p

8
2

+ 16992p21p
8
2 + 10304cp92 − 7040p1p

9
2 + 1408p120 + 132300c7p21 + 105840c6p31

− 11340c5p41 + 125496c4p51 + 151200c3p61 − 79056c2p71 + 60048cp81

− 12096p91 − 396900c7p1p2 − 449820c6p21p2 − 260820c5p31p2 − 374220c4p41p2

− 420336c3p51p2 + 358992c2p61p2 − 364176cp71p2 + 17712p81p2 + 396900c7p22

+ 714420c6p1p
2
2 + 601020c5p21p

2
2 + 378756c4p31p

2
2 + 743904c3p41p

2
2

− 557280c2p51p
2
2 + 734832cp61p

2
2 + 84240p71p

2
2 − 476280c6p32 − 680400c5p1p

3
2

− 282744c4p21p
3
2 − 728784c3p31p

3
2 + 99792c2p41p

3
2 − 1073520cp51p

3
2

− 287280p61p
3
2 + 340200c5p42 + 45360c4p1p

4
2 + 568512c3p21p

4
2 + 829440c2p31p

4
2

+ 1551312cp41p
4
2 − 244944c3p1p

5
2 − 241056c2p72 − 736128cp1p

7
2 − 18144c4p52

+ 415152p51p
4
2 − 279072p21p

7
2 + 184032cp82 + 139968p1p

8
2 − 31104p92

− 1175472c2p21p
5
2 − 1732752cp31p

5
2 − 358992p41p

5
2 + 81648c3p62

+ 843696c2p1p
6
2 + 1436400cp21p

6
2 + 323568p31p

6
2
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Q(c, p1, p2) :=6125c9 + 2205c7p21 + 210c6p31 + 14175c5p41 − 7812c4p51 + 24c3p61

+ 9072c2p71 − 5004cp81 + 688p91 − 2205c7p1p2 − 315c6p21p2 − 28350c5p31p2

− 31752c2p61p2 + 20016cp71p2 − 3096p81p2 + 2205c7p22 − 315c6p1p
2
2 + 42525c5p21p

2
2

− 7812c4p31p
2
2 + 4356c3p41p

2
2 + 40824c2p51p

2
2 − 40320cp61p

2
2 + 4464p71p

2
2

+ 210c6p32 − 28350c5p1p
3
2 − 7812c4p21p

3
2 − 8592c3p31p

3
2 − 22680c2p41p

3
2

+ 50904cp51p
3
2 − 1176p61p

3
2 + 19530c4p41p2 − 72c3p51p2

+ 14175c5p42 + 19530c4p1p
4
2 + 4356c3p21p

4
2 − 22680c2p31p

4
2 − 56196cp41p

4
2

− 1224p51p
4
2 − 7812c4p52 − 72c3p1p

5
2 + 40824c2p21p

5
2 + 50904cp31p

5
2 − 1224p41p

5
2

+ 24c3p62 − 31752c2p1p
6
2 − 40320cp21p

6
2 − 1176p31p

6
2 + 9072c2p72 + 20016cp1p

7
2

+ 4464p21p
7
2 − 5004cp82 − 3096p1p

8
2 + 688p92
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