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Pelagic fish communities are shaped by bottom-up and top-down processes, transport

by currents, and active swimming. However, the interaction of these processes remains

poorly understood. Here, we use a regional implementation of the APex ECOSystem

Model (APECOSM), a mechanistic model of the pelagic food web, to investigate these

processes in the California Current, a highly productive upwelling system characterized

by vigorous mesoscale circulation. The model is coupled with an eddy-resolving

representation of ocean currents and lower trophic levels, and is tuned to reproduce

observed fish biomass from fisheries independent trawls. Several emergent properties

of the model compare realistically with observations. First, the epipelagic community

accounts for one order of magnitude less biomass than the vertically migratory

community, and is composed by smaller species. Second, the abundance of small fish

decreases from the coast to the open ocean, while the abundance of large fish remains

relatively uniform. This in turn leads to flattening of biomass size-spectra away from the

coast for both communities. Third, the model reproduces a cross-shore succession of

small to large sizes moving offshore, consistent with observations of species occurrence.

These cross-shore variations emerge in the model from a combination of: (1) passive

offshore advection by the mean current, (2) active swimming toward coastal productive

regions to counterbalance this transport, and (3) mesoscale heterogeneity that reduces

the ability of organisms to return to coastal waters. Our results highlight the importance

of passive and active movement in structuring the pelagic food web, and suggest that

a representation of these processes can help to improve the realism in simulations with

marine ecosystem models.

Keywords: California Current, size spectrum, community composition, swimming, marine ecosystem model,

pelagic fish

1. INTRODUCTION

Marine ecosystems provide a variety of services to humans, including food provision by fisheries
(Reid, 2005; Beaumont et al., 2007; Barbier, 2017). These ecosystems are under increasing human
pressure (Duarte, 2014; Halpern et al., 2015), which could limit their ability to sustain fisheries
(Blanchard et al., 2017). Numerical models are essential tools to anticipate the evolution of marine
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ecosystems, integrating physical (Fox-Kemper et al., 2019),
biogeochemical (Bopp et al., 2013; Séférian et al., 2020), and
ecosystem components (Lotze et al., 2019). Ecosystem models
are particularly useful to parse key processes that structure the
marine biosphere, and to explore the potential future states
of the ocean under various emission (Fulton et al., 2015;
Blanchard et al., 2017; Shin et al., 2018; Coll et al., 2020;
Du Pontavice et al., 2020; Tittensor et al., 2021) and socio-
economic scenarios (Maury et al., 2017; Scherrer and Galbraith,
2020).

The dynamics of marine ecosystems reflect the interplay
of physical, biological, and ecological processes, as well as
direct human impacts through, e.g., fishing. Understanding these
processes is key to adequately represent and project the state of
fisheries. Amongst ecological processes, size-dependent trophic
interactions connect prey to predators (Estes et al., 2016) and are
modulated by the environment. Factors such as temperature and
food abundance affect metabolism, growth, and reproduction,
in turn altering the accumulation of biomass in the food web
(Free et al., 2019). Finally, oceanic currents and active swimming
redistribute organisms and biomass, with effects that vary by
species and size (Allen et al., 2018). While the influence of food
and temperature are generally accounted for when assessing the
impacts of climate change in marine ecosystem models, impacts
of changes in ocean currents andmovement have received far less
attention (Watson et al., 2015; Heneghan et al., 2021).

Currents advect prey away from regions where primary
production occurs (Popova et al., 2013; Messié and Chavez,
2017), and interactions between eddies and active swimming
can enhance dispersion of organisms (Lévy et al., 2018) but also
lead to aggregations of mobile predators (Potier et al., 2014),
potentially increasing energy transfer to higher trophic levels
(Woodson and Litvin, 2015). In coastal upwelling systems, ocean
currents transport pelagic lower trophic levels away from the
coast, driving a succession of planktonic communities from
phytoplankton-dominated nearshore to zooplankton-dominated
offshore (Keister et al., 2009; Messié and Chavez, 2017). The
ability of mobile organisms to swim against currents can
further modulate this transport (Drake et al., 2018). Currents
have been shown to influence the efficiency of biological
production in upwelling systems, especially in the California
Current where the offshore transport influences the coupling
between lower and upper trophic levels (Ware, 1992), ultimately
affecting fish production (Ruzicka et al., 2016). Inter-annual
variations of upwelling intensity and shifting water masses
also determine variations in habitat that drive biodiversity, for
example periodically favoring coastal organisms against pelagic
species with offshore or subtropical affinities (Santora et al.,
2021), and modulating the offshore expansion of the habitat of
top predators (Weise et al., 2006; Fiechter et al., 2016). These
variations ultimately influence the occurrence of commercially
exploited species, thus impacting the value of fisheries in the
region (Miller et al., 2017).

Here, we investigate how currents, including mesoscale
eddies, and dynamic water masses interact with ecological
processes to shape the distribution of higher trophic levels
in the California Current. The physical, biogeochemical, and

ecological processes occurring in the California Current have
been extensively studied (McClatchie, 2014; Koslow andDavison,
2016). A considerable amount of data have been collected in this
region, in particular with the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) (McClatchie, 2014), or the
Newport line (Huyer et al., 2007), which provide a wealth
of in-situ observations from hydrography to biology. These
observations facilitate the implementation and the validation of
physical-biogeochemical models that reproduce ocean currents
and primary production in the region, down to resolutions
of kilometers or less (Gruber et al., 2006; Capet et al., 2008;
Fiechter et al., 2018; Kessouri et al., 2020, 2021; Deutsch et al.,
2021). Combined acoustic-trawl surveys of coastal pelagic species
provide fisheries-independent observations of mid-trophic levels
for the recent decades (Zwolinski et al., 2014). Programs such
as the Long Term Ecological Research Program and other
scientific cruises add to this wealth of data, for instance sampling
deep mesopelagic layers (Davison et al., 2013). Individual-based
models for fish such as anchovy or sardines (Rose et al., 2015;
Politikos et al., 2018), food web, and end-to-end ecosystem
models (Field et al., 2006; Horne et al., 2010; Kaplan et al., 2012,
2019; Koehn et al., 2016) have been implemented in this region
and validated with these data. In addition, species distribution
models have been developed to predict the spatial occurrence of
krill (Cimino et al., 2020), and small and large pelagic fish (Brodie
et al., 2018; Muhling et al., 2020). However, while some of these
models provide detailed representations of the interaction with
ocean currents at the individual or species levels, the effect of
transport at the community level remains less studied.

Size controls biomass propagation through the food webs,
as indicated by the strong relationships between individual size
and new biomass production (Brown et al., 2004), predator-
prey interactions (Barnes et al., 2010; Reum et al., 2019),
and reproduction (Kooijman, 2010). Allometric relationships
are convenient approximations representing community-
level energy flows when detailed information about trophic
interactions is missing, and species-level parameterizations
impractical. This is particularly relevant to study pelagic
communities in a region as broad as the California Current
ecosystem. Size also relates to swimming speed, both across
species and for different life stages within a species (Faugeras and
Maury, 2007; Watson et al., 2015), simplifying the definition of
active fish movement as a size-dependent process and allowing
explicit representation of horizontal biomass movement.
Size-based marine ecosystem models build on these community-
level properties to represent food web dynamics assuming
that individual size is the fundamental structuring variable
(Andersen and Beyer, 2006; Maury and Poggiale, 2013; Guiet
et al., 2016b; Blanchard et al., 2017). Embedded within a realistic
representation of ocean currents, they are promising tools to
parse the relative influence of spatial transport, fish growth, and
mortality on biomass distribution (Lefort et al., 2015; Watson
et al., 2015; Le Mézo et al., 2016).

Here we implement a regional configuration of such a size-
based ecosystem model, the Apex Predators ECOSytem Model
for the California Current (APECOSM-CC), and use it to
investigate the interaction between movement and processes
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FIGURE 1 | Schematic of APECOSM. (A) Illustration of the 3D environmental forcing from simulations with the physical-biogeochemical model ROMS-BEC, including

temperature T and biomass of lower trophic levels (BLTL). (B) The 3D environmental forcing defines the habitat of distinct epipelagic and migratory communities. (C)

Environmental conditions influence individual metabolism at different sizes, modulating growth, feeding, reproduction, and mortality, thus driving the temporal evolution

of the biomass density size-spectrum, here shown for epipelagic fish (BEpi ). (D) The integrated biomass of different size ranges determines the spatial biomass

distribution, here shown for small (B
Epi

S
) and large (B

Epi
L ) fish. Neighboring cells (red squares) exchange biomass by passive transport and active swimming.

controlling biomass production in the region. We first discuss
model formulation and parameterization, observations from
fishery-independent surveys used to constrain the model, and the
procedure adopted to calibrate uncertain parameters. Then, we
compare simulations of the period 1997–2006 with observations
of the biomass density distribution in the California Current
and observations of the occurrence of species of different sizes.
Finally, we discuss how interactions with ocean dynamics and
transport contribute to structuring fish biomass distribution
in the California Current, by connecting communities from
productive coastal regions and offshore waters. This analysis
highlights the importance of horizontal transport for models of
pelagic ecosystems.

2. MATERIALS AND METHODS

2.1. APECOSM in the California Current
The California Current is a highly productive eastern boundary
current supporting large krill and forage fish biomass (Koehn
et al., 2016; Santora et al., 2021). Species like sardines and
anchovies are especially known for their important economic
value in the region (McClatchie, 2014; Rose et al., 2015;
Politikos et al., 2018). Krill and forage fish provide a link
between primary producers in nutrient-rich, recently-upwelled
waters, and multiple predators (Santora et al., 2011). Some
are permanent residents of this ecosystem (i.e., pacific bluefin
tuna), others use the California Current periodically bymigrating
in and out of the region (i.e., albacore tuna, striped marlin),
underscoring the importance of this ecosystem at both regional
and basin scales (Block et al., 2011). In contrast to other
continental margin systems, the narrow continental shelf of the
California Current limits the size of the habitat of demersal
species compared to the size of the habitat of pelagic species. For
the latter, upwelling affects a large expanse of offshore waters,
up to hundreds of kilometers from the coast (Rykaczewski and
Checkley, 2008; Deutsch et al., 2021), supporting rich pelagic
communities dominated by surface-dwelling and mid-water

mesopelagic species (Davison et al., 2013). Here we focus on these
vastly distributed species.

2.1.1. Overview of APECOSM
APECOSM links individual bioenergetic to the three-
dimensional (3D) size-structured dynamics of biomass at
the species and community levels, based on size-dependent
elementary processes (Maury, 2010; Maury and Poggiale, 2013).
Here, it is tuned and used to simulate the biomass distribution
of ectotherms, mainly fish communities, from hatching eggs
(Lmin = 1 mm) to large vertebrate predators (Lmax = 2 m). We
focus on representing the two open-ocean pelagic communities:
a surface dwelling epipelagic community; a vertically migrating
community with large epipelagic predators and mesopelagic fish
(see Figure 1).

Temperature (T), biomass of lower trophic levels (BLTL),
dissolved oxygen concentration (O2), and photosynthetically
available radiation (PAR) determine the daytime and nighttime
preferred habitats of communities along the water column (see
Figures 1A,B). Thus, the epipelagic community remains near the
surface all the time and includes forage species such as sardines
and anchovies. The migratory community accounts for the
nighttime surface migration of mesopelagic fish that follow their
zooplankton prey at the surface. This migratory community also
contains large diving predators such as tuna, billfish, and sharks
that feed both on epipelagic and mesopelagic organisms (Glaser
et al., 2015).

The temperature and food concentration determine the
metabolism of individuals of each community (Figure 1C).
Size-dependent growth, maturation, and reproduction are
represented according to the Dynamic Energy Budget theory
(DEB) with parameters derived from DEB models for fish
(Kooijman and Lika, 2014). Small individuals feed on lower
trophic levels, BLTL, while larger individuals feed on smaller
prey. All rates vary with temperature following the Arrhenius
equation. By integrating individual-level responses for species
of different asymptotic size (Lm), APECOSM calculates the
biomass density distribution of each species, i.e., the biomass
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per unit volume per unit size (L). Summing biomass density
distributions for all species with Lm between 1 mm and 2 m
(here discretized by 6 species with Lm = 0.1, 0.3, 0.6, 0.9, 1.4,
and 2 m), the model simulates the community size-spectrum

(see Figure 1C showing the biomass density distribution B
Epi
sim

for the epipelagic group as example). Note that this specific
discretization is an approximation of the model equations to
account for biodiversity. All fish species of asymptotic size
between 1 cm and 2 m are represented, from forage fish
species to large sharks or tunas. Since larger individuals feed
on smaller ones, different communities interact via predation
when they co-occur in the water column. As shown in Figure 1B,
epipelagic and migratory fish co-occur during the night at
the surface. Accordingly, fish feed within their communities
separately during the day, and on both communities during
the night.

Integrating the community size-spectra enables the
calculation of the total biomass for different size ranges. Here, for
diagnostic purposes, we subdivide the size spectrum into small
(S, 0.03 < L < 0.3 m), medium (M, 0.3 < L < 0.9 m) and large
(L, 0.9 < L < 2 m) size classes. In the following, the biomass

density of small epipelagic organisms will be indicated by B
Epi
S ,

of medium epipelagic fish by B
Epi
M , etc. (see Figures 1C,D).

Environmental properties and feeding interactions ultimately
determine the biomass density distributions at each grid point
(Figure 1D). Beyond biomass density, the local computation
of biomass accumulation due to growing individuals or
recruitment, along with biomass losses due to mortality terms,
allows the identification of regional sources and sinks of biomass.

The model accounts for movement by explicitly resolving
passive advection by currents (with velocity EV), and active
swimming between neighboring grid cells (Figure 1D, the
red squares). Swimming is modeled as a size-dependent
advection-diffusion process that represents the migration of
fish toward more favorable habitats (Faugeras and Maury,
2007). Movement influences sources and sinks by spreading
biomass of passively advected organisms and aggregating actively
swimming predators.

2.1.2. Physical and Biogeochemical Forcing
We force APECOSM-CC with a realistic three-dimensional (3D)
ocean model simulation of the California Current based on
the Regional Oceanic Model System (ROMS, Shchepetkin and
McWilliams, 2005) coupled online with the Biogeochemical
Elemental Cycling model (BEC, Moore et al., 2004). This ROMS-
BEC simulation has been run for the period 1997-2007 at a
horizontal resolution of 4 km (i.e., mesoscale eddy-resolving)
that reproduces accurately the main patterns of physical and
biogeochemical variability in the region (Deutsch et al., 2021;
Renault et al., 2021). Daily ROMS-BEC outputs on a coarsened
grid (resolution of 16 km) are used to drive the food web
dynamics (daily) and biomass transport (72 steps per day) in
APECOSM-CC. Physical forcings consist of temperature (T)
and current velocities ( EV). Biogeochemical forcings consist of
dissolved oxygen (O2), PAR, and the biomass of lower trophic
levels BLTL that includes diatoms (BDiat), zoo-plankton (BZoo),

and particulate organic carbon (BPOC) computed from particle
flux FPOC divided by a representative sinking velocity of 20m/d.

2.1.3. Parameters and Uncertainty
APECOSM-CC models pelagic fish in the California Current
and relies on a total of 48 parameters and constants (see
Table 1 and Supplementary Information 1). Many of these
parameters are well-constrained by the literature, while other
remain to be specified. Among them, five parameters describe
predator-prey interactions, and six control coupling with
ROMS-BEC (see Table 1). We determine them by testing the
sensitivity of simulations on predetermined parameter ranges
and choosing the values that produce the best match to
observations (Section 3.1.2).

First, predator-prey interactions depend on the rates of
prey encounter and handling by predators. The half saturation
constant (CFONC) and schooling threshold (CRISTALCRIT) set
the intensity of these interactions. The half saturation constant
represents the limitation of biomass ingestion by encounter or
assimilation rates, and falls within the range [0.0625, 31.25] J/m3

(see Supplementary Information 2). The schooling threshold
determines the relative biomass density above which 50% of
prey become accessible to predation, the remaining 50% assumed
to be too dispersed to be effectively preyed upon (Maury,
2017). Based on the minimum and maximum biomass densities
of lower trophic levels (BLTL) we select it within the range
[0.15, 9880] J/m3 (see Supplementary Information 3).

Second, feeding follows a selectivity function that depends
on the predator-prey mass ratio (PPMR) and selectivity width
(σ ). In APECOSM-CC, both parameters are controlled by two
constants, k1 and k2, that we set to be within the range [1, 3],
leading to a predator-prey mass ratio within [245, 19260] for a
0.25 m long predator, and a selectivity width within [1.0, 1.7] (see
Supplementary Information 4 for details).

Third, the model accounts for predation mortality, aging,
and starvation. A density-dependent background mortality is
included to account for external sources of mortality (M),
including disease, predation by functional groups not explicitly
represented by the model, and fishing mortality. To determine
this background mortality, we assumed that if there were no
predation from the simulated spectrum, no aging, no starvation,
and no biomass production due to growth, the biomass of
the smallest individuals would disappear over a timescale
ranging from 1 week to 6 months. This loss corresponds to a
background mortality rate within the range of [0.0055, 196] d−1

(see Supplementary Information 5).
Finally, the size range of lower tropic levels provided by

ROMS-BEC influences the coupling with APECOSM-CC since
this size range controls the fraction of lower trophic level biomass
accessible to upper trophic levels. In other words, for the same
biomass density at low trophic levels, larger sizes of prey will be
accessible to larger predators, depending on their prey selectivity
range (see Supplementary Information 6), thus affecting energy
transfer up the food web. The prey size range is controlled by 6
configuration parameters that determine the smallest and largest

diatom cells, zooplankton organisms, and POC (LDiat,Zoo,POCmin ,
LDiat,Zoo,POCmax ). We allow slight variations of these minimum and
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TABLE 1 | Parameters in APECOSM-CC referenced in the main text.

Category Parameter Name Unit Value Range

Size range and

discretization

[Lmin,Lmax ] Minimum/Maximum size of higher trophic levels m [10−3,2] −

[Lmmin,Lmmax ] Minimum/Maximum species size m [10−3,2] −

nbins Number of size bins − 50 −

nspec Number of species − 6 −

δtFW Food we dynamic time step day 1

δtADV Advection/diffusion time step day 0.139

Prey-predator

interactions

CFONC Half saturation constant J/m3 1.03 [0.0625, 31.25]

CRISTALCRIT Schooling intercept (J/m3 ) 133 [0.15, 9880]

k1 Factor 1 for predator/prey selectivity − 1.16 [1, 3]

k2 Factor 2 for predator/prey selectivity − 2.05 [1, 3]

Mortality M External mortality rate d−1 0.0078 [0.0055, 196]

Low trophic levels

coupling

LDiatmin Minimum size of diatoms m 5.2 10−6 [5 10−6, 2 10−5]

LDiatmax Maximum size of diatoms m 1.4 10−4 [5 10−5, 2 10−4]

LZoomin Minimum size of meso-zooplankton m 1.6 10−4 [5 10−5, 2 10−4]

LZoomax Maximum size of meso-zooplankton m 1.1 10−2 [5 10−3, 2 10−2]

LPOCmin Minimum size of POC m 1.7 10−4 [5 10−4, 2 10−3]

LPOCmax Maximum size of POC m 1.4 10−2 [5 10−3, 2 10−2]

Transport ADV Advection of swimming individual for 1m organisms m/day 45. 103 −

See Supplementary Information 1 for full list.

maximum sizes around default values, 10 − 100µm for the
diatoms, 100 − 10, 000µm for the zoo-plankton, and 1, 000 −

10, 000µm for particles (see Table 1).

2.2. Pelagic Fish in the California Current
2.2.1. Surface- and Mid-Water Trawls
To tune and evaluate APECOSM-CC, we used data from
∼1, 700 fisheries independent trawls collected by several
surveys extending from the epipelagic to the mesopelagic
zones: Coastal Pelagic Species (CPS) surveys conducted by
the NOAA Southwest Fisheries Science Center (SWFSC); R/V
Melville cruise P0810 of the California Current Ecosystem
LTER program (CCELTER); R/V New Horizon survey for
the Scripps Environmental Accumulation of Plastic Expedition
(SEAPLEX); and the R/V McArthur II survey Oregon California
and Washington Line-transect and Ecosystem (ORCAWALE)
conducted by SWFSC.

The Surface-Water (SW) CPS surveys (Zwolinski et al., 2014)
provide 1, 556 distinct trawl-based biomass estimates fromMarch
to October between 2003 and 2016 (Figure 2A, data available
at ERDDAP, 2019). Most of these surveys consist of nighttime
surface trawls, targeting fish aggregations with Nordic 264
trawls, covering most of the California Current, with higher
occurrence nearshore (Figure 2B). We use the surface-water
trawls to estimate the observed biomass density distribution

of epipelagic species B
Epi

obs
in the size range [0.03, 2.]m (see

Supplementary Information 7 for the conversion of trawls into

biomass densities). Surface-water trawls also provide species
composition for each trawl. Combining the weight per species
sampled (ws) and the species asymptotic sizes (Lms) from
Fishbase (Froese and Pauly, 2016), we estimate the mean
asymptotic fish length for each trawl (Lmobs =

∑
Lmsws/

∑
ws).

We compute Lm
Epi

obs for pelagic species with a depth range

shallower than 150 m (based on Fishbase); Lm
Meso+Mig

obs for
vertically migrating species, i.e., migratory pelagic fish with a
depth range deeper than 150 m, and mesopelagic fish (see
Section 3.2.1). Finally, for a fraction of the surface-water trawls
the length of each individual (L) is also measured. We use
these to determine the abundance of individuals of different
size in logarithmically equal bins and compare this distribution,
the size spectrum, with simulations (see Section 3.2.2 and
Supplementary Information 7 for more details).

In addition, Mid-Water (MW) trawls from the SEAPLEX,

ORCAWALE, and CCELTER cruises from August to November

in 2008 and 2009, are used to estimate the biomass density
distribution in deep waters (Figure 2A, data provided in Davison

et al., 2013). These trawls are conducted during the day and

at night, down to different depths, with Isaacs-Kid trawls

(IKMT, Orca-Wale, 95 trawls) or Matsuda-Oozeki-Hu trawls
(MOHT, Seaplex, and CCE, 55 trawls) and target centimeter-
size forage and mesopelagic fish. The trawls cover the entire
California Current, from coastal to offshore waters (Figure 2B).
We use the mid-water trawls to estimate the observed biomass
density distribution of vertically migrating species B

Mig

obs
in the
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FIGURE 2 | Trawl data in the California Current. (A) Total number of fisheries independent trawls per month. (B) Spatial distribution of fisheries independent trawls

(blue, surface trawls; orange, mid-water trawls) and focus region for fish biomass time-series reconstruction (red).

size range [0.0017, 0.1] m (see Davison et al., 2013 for the
biomass estimates).

To complement the trawl observations, we use the biomass
reconstruction by Koslow and Davison (2016) of the spawning
stock biomass for epipelagic and mesopelagic planktivores
from 1951 to 2011 in the Southern California Current (see
region in Figure 2B). We use these reconstructions to obtain
estimates of the average, minimum, and maximum ratio of
epipelagic to migratory mesopelagic biomass over this period,

resulting in B
Mig

obs
/B

Epi

obs
= 7.53, max(B

Mig

obs
/B

Epi

obs
) = 20.7, and

min(B
Mig

obs
/B

Epi

obs
)= 2.38, respectively.

2.2.2. Species Occurrence and Asymptotic Lengths
Occurrence data obtained from the Ocean Biodiversity
Information System database (OBIS, 2020) are used to inform
the spatial distribution of species of increasing size in the
California Current. We compiled spatial occurrence along
with life-stage and species identity for surface epipelagic fish,
vertically migrating predators, and mesopelagic fish, respectively,

accounting for n
Epi

obs
= 4, 088, n

Mig

obs
= 10, 279 and nMeso

obs
= 11, 638

occurrences each. From the species identity, we associated each
occurrence to the species asymptotic size (Lm, using Fishbase,
Froese and Pauly, 2016) and determined the proportion of small
(0.04 < Lm < 0.4 m), medium (0.4 < Lm < 0.9 m), and
large (0.9 < Lm < 2 m) species as a function of the distance d
from the coast, calculated along regular bins of width dx = 33
km. This cross-shelf probability of occurrence of species of
increasing asymptotic size provides an observational estimate of
the distribution of different sizes classes in the California Current
(see Section 3.3.1 and Supplementary Information 8).

2.3. Simulation and Analysis
2.3.1. Implementation and Uncertainty
To constrain the 11 undeterminedmodel parameters that control
predator-prey interactions, background mortality, and coupling

of APECOSM with ROMS-BEC, we develop a calibration
procedure on a simplified one-dimensional (1D) configuration
of the domain, here referred to as APECOSM-1D. The model
reduces spatial variability to 15 independent 1D stations
representative of 15 eco-regions in the California Current (see
Figure 3A and Supplementary Information 9). At each station,
we drive APECOSM-1D with environmental forcings based on
simulated year 2001 from ROMS-BEC, averaged over the eco-
region (Figure 3B). Each station is spun-up for 100 years to
reach a stable seasonal cycle, and is then analyzed. The model
timestep for predatory interactions, growth, and mortality is 1
day, averaging daytime and nighttime conditions. This simplified

configuration disregards the role of horizontal movement, but
reducing computational cost allows multiple simulations to
select parameter combinations producing plausible regional
variations of biomass density. We run 5, 000 replicates of this

APECOSM-1D configuration applying a Monte Carlo approach,

each with a distinct combinations of the 11 undetermined
parameters randomly chosen from prior uniform distributions
(see Figure 3C and Table 1 for the bounds of the distributions).

This calibration further allows estimation of the sensitivity of the
model to these undetermined parameters.

By comparing the ensemble of APECOSM-1D simulations
to observations, we identified 6 best plausible parameter sets
(see Section 3.1.1). With these we run six replicates of the 3D
APECOSM-CCmodel forced with dynamic output from ROMS-
BEC. Fish, especially large predators such as tuna, billfish, and
shark species, often travel large distances as part of migration
patterns (Block et al., 2011). In the model, large predators
could periodically move inside and outside of the simulation
domain. To account for this biomass transport, our California
Current configuration is “nested” within a “parent” APECOSM
simulation for the Pacific Ocean. This simulation was run for
a repeated climatological annual cycle, at 64 km resolution,
forced by a Pacific ROMS-BEC configuration with similar
parameterization as the configuration of the California Current

Frontiers in Marine Science | www.frontiersin.org 6 February 2022 | Volume 9 | Article 785282

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Guiet et al. Movement and Fish Communities Structure

FIGURE 3 | Schematic of the optimization approach. (A) Eco-regions of the California Current used as independent stations for model tuning. (B) Illustration of

averaged vertical profiles used to force the model in each station, here station #7. (C) Illustration of the Monte Carlo procedure, whereby each eco-region is reduced

to a single grid cell in APECOSM-1D, 5, 000 replicates of this 1D configuration are run, and optimal parameter sets are selected by comparison with observations. (D)

Illustration of the parent Pacific and nested California Current 3D dynamical simulations. (E) Selection of the best regional 3D dynamical simulation from six optimal

simulations with different parameter sets.

(see Figure 3D), following established approaches (Lemarié et al.,
2012; Deutsch et al., 2021). Daily fish biomass predictions
from the parent APECOSM are nudged at the boundaries of
the regional configuration for incoming biomass fluxes, while
outgoing biomass fluxes leave the domain. A two-dimensional
boundary radiation scheme is used to estimate these fluxes
(Marchesiello et al., 2001). These nested simulations are span-
up with repeated 2001 annual forcing for 100 years and resolve
spatial transport with a timestep of 20 min for numerical
stability (72 steps per day).

To analyze the role of transport in structuring marine
ecosystems, we keep the 3D simulation that best reproduces
biomass densities in eco-regions (see Figure 3E), and then force
it with dynamic outputs from ROMS-BEC on two inter-annual
cycles of 10 years (1997 to 2006). We analyze the last 8 years
from weekly outputs. To account for the uncertainty introduced
by undetermined model parameters in this simulation, we run 10
replicates with slight parameter variations, ±10% for food web
parameters, and×3 or×1/3 for movement parameters.

2.3.2. Diagnostic Features of Fish Communities
At each grid cell, APECOSM calculates the biomass density

ξ
Epi,Mig
L,Lm per size class L, per species asymptotic size Lm, for

the epipelagic and migratory communities. For comparison
with observation and analysis, we sum biomass over various

combinations: B
Epi,Mig
S,M,L the biomass of small, medium, and

large fish; B
Epi,Mig
SW and B

Epi,Mig
MW the biomass over size ranges,

respectively matching surface- and mid-water trawls selectivities;
BEpi,Mig the total biomass density per community (see Table 2

for the equations). To address the cross-shore structuring of the
California Current (Ruzicka et al., 2016; Messié and Chavez,
2017), we also characterize the relative distribution of small,
medium, and large fish groups by analyzing biomass along a
cross-shore section. This cross-shore distribution is estimated by

averaging the biomass density B
Epi,Mig
S,M,L in regular spatial distance

bins i (dxi = 33 km) from the coast to the open ocean.
Furthermore, for sensitivity analysis the “spread” of the biomass
distribution in the region is summarized by the distance from
coast (d50%S,M,L) within which 50% of the total biomass in the region

(B
Epi,Mig
S,M,L ) occurs (see Table 2).
The size of the largest individuals sustained in each

community is an emergent property of the model (Guiet
et al., 2016a). We compute the maximum length reached in

each numerical cell, L
Epi,Mig
cut , for the epipelagic and migratory

communities, as the size at which the community-level biomass
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TABLE 2 | Metrics for the analysis of ecosystem features.

Metric Description Definition Unit

B
Epi,Mig
SW

Biomass for surface water (SW) trawl selectivity
∫ 2
0.03 ξ̃

Epi,Mig
L,Lm dL g/m2

B
Epi,Mig
MW Biomass for mesopelagic water (MW) trawl selectivity

∫ 0.1
0.0017 ξ̃

Epi,Mig
L,Lm dL g/m2

B
Epi,Mig
S

Biomass of small size fish
∫ 0.3
0.03 ξ̃

Epi,Mig
L,Lm dL g/m2

B
Epi,Mig
M Biomass of medium size fish

∫ 0.9
0.3 ξ̃

Epi,Mig
L,Lm dL g/m2

B
Epi,Mig
L Biomass of large size fish

∫ 2
0.9 ξ̃

Epi,Mig
L,Lm dL g/m2

BEpi,Mig Total fish biomass
∫ 2
0.001 ξ̃

Epi,Mig
L,Lm dL g/m2

B
Epi,Mig
S,M,L Total fish biomass in the CC domain

∫
CC

B
Epi,Mig
S,M,L dS g

d50%
S,M,L Distance from coast within which 50% of B

Epi,Mig
S,M,L occurs – km

L
Epi,Mig
cut Size of largest individuals per community Size class Li where ξ̃

Epi,Mig
Li

/ξ̃
Epi,Mig
Li+1

> 3 m

λEpi,Mig Slope of the community spectrum Slope of the distribution ξ̃
Epi,Mig
L over [0.02, Lcut ] −

1
Epi,Mig
META Source/Sink of biomass due to metabolism (G−M)

Epi,Mig
S,M,L g/m2/d

1
Epi,Mig
CURR

Source/Sink of biomass due to passive transport by currents ∇F
Epi,Mig
Phys S,M,L g/m2/d

1
Epi,Mig
SWIM

Source/Sink of biomass due to active transport by swimming ∇F
Epi,Mig
Swim S,M,L g/m2/d

density distribution ξ̃
Epi,Mig
L “breaks,” i.e., the size above which

biomass rapidly drops (see Table 2). Because the community-
level biomass size spectrum roughly follows a power law, we use
the power law slope λEpi,Mig between the minimum (L = 2 cm)
and maximum size (Lcut) as a metric of the relative abundance of
small and large individuals.

Finally, the model allows analyzing the mechanisms that
lead to local biomass accumulation or reduction and how
these relate to spatial transport. We extract net sources
and sinks of biomass in each grid cell, as driven by the

following processes: local growth and mortality (1
Epi,Mig
META );

transport by currents (1
Epi,Mig
CURR ); transport by swimming

(1
Epi,Mig
SWIM ) (see Table 2 and Supplementary Information 10

for the growth G, mortality M, and biomass fluxes
FPhys,Swim). Their cross-shore distribution is estimated like for
the biomass.

3. RESULTS

3.1. Biomass Distribution in the California
Current
3.1.1. Selection of a Best Simulation
The 5,000 simulations with APECOSM-1D lead to a
variation of several orders of magnitude for epipelagic

(B
Epi
MW) and migratory (B

Mig
MW) biomass, once averaged over

the 15 eco-regions (see Figure 4B). Only 16% reproduce
the observed biomass density from mid-water trawls,

B
Mig
MW = 17g/m2, ±1 order of magnitude (horizontal lines

Figure 4B). The ±1 order of magnitude range corresponds
to the observed variation between the less productive
offshore trawls and the trawls in the coastal upwelling
(see observations Figure 5). It allows the selection of
parameter sets over- or under-estimating the migratory
biomass density that might be corrected once explicit spatial
transport is included. A smaller fraction (3%) also capture
the observed ratio of mesopelagic to epipelagic biomass,

namely 2.38 < B
Mig
MW/B

Epi
MW < 20.7 (oblique lines Figure 4B,

see Supplementary Information 11 for the sensitivity
of APECOSM-1D).

Out of these 152 simulations (shown in red in Figure 4B),
an even smaller fraction captures the biomass variation
between different eco-regions separately simulated by
the 15 independent 1D stations. Figure 4C shows the
Pearson correlation of annual mean simulated biomass
densities in each of the 15 stations compared to mean
observations for the epipelagic (compared with surface-
water trawls) and migratory communities (compared
with mid-water trawls) in the matching eco-regions (see
Supplementary Information 9). Analysis of these correlations
shows that different parameter sets can properly capture
variations in epipelagic (red markers in Figure 4C, p < 0.05),
migratory (yellow markers, p < 0.05), or both communities
(purple marker) at statistically significant levels. We select 6
sets of parameters with higher coefficient of determination
for both the epipelagic and migratory biomass densities
(R2SW/MW > 0.35) for fully dynamical simulations with
APECOSM-CC (see Supplementary Information 11 for
the parameters).

For these 3D simulations forced with dynamic ROMS-BEC
output on a 16 km grid and that represent spatial active
and passive transport, three out of six simulations maintain
a realistic ratio between epipelagic and migratory biomass.
We keep the simulation that best reproduces the regional
biomass density gradients observed between eco-regions in the
California Current (triangle marker in Figure 4; see Table 1

for best parameters; see Supplementary Information 12 for 6
APECOSM-CC simulations).

3.1.2. Observed vs. Simulated Biomass Distribution
Observation show an increase in biomass density in both
the surface (SW) and mid-water (MW) layers when moving
from less productive offshore waters (Figures 5A,B, red
diamonds in eco-regions #3, 4, 6, 7, 10) to more productive
coastal waters (#8, 11, 12, 13, 14, 15). Furthermore, seasonal
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FIGURE 4 | Summary of the ensemble of simulations with APECOSM-1D. (A) Schematic of the steps used to identify the optimal parameter sets. (B) Average

migratory biomass density (B
Mig
MW ) as a function of average epipelagic biomass density (B

Epi
MW ). (C) Coefficient of determination of the correlation between observed and

simulated B
Epi

SW
, B

Mig
MW , in the 15 eco-regions, for the best ensembles shown in red in (B). In (B), the dotted horizontal lines show the acceptable range for migratory

biomass densities. The solid diagonal lines show the limits of acceptable migratory to epipelagic biomass ratio based on observations (between 2.38 and 20.7). In (C),

the red and yellow dots corresponds to ensembles for which epipelagic and mesopelagic biomass respectively correlate significantly with observations (p < 0.05)

(note that there is only one red dot). Blue dots are ensembles for which there is no statistically significant correlation between simulations and observation. The purple

triangle corresponds to the final best set of parameters selected for the 3D APECOSM-CC dynamic simulations.

eco-regions at higher latitudes (#6, 8, 11, 12, 14) hold
comparatively higher biomass densities than more equatorward
eco-regions (#7, 13, 15).

The spatial distribution of simulated biomass density

corresponding to mid-water trawls (B
Epi+Mig
MW ), when averaged

from August to November to match the months of the
observations (cf Figure 2A), reproduces observed patterns (R2 =
0.76 for the correlation between model and observations, see
Figure 5A). However, the model underestimates observations
(green squares Figure 5A), with modeled biomass densities on
average 29% lower than mid-water trawls. Spatially, the biomass
density of vertically migrating fish BMig is higher on the shelf
and in the core of the upwelling, and much smaller offshore
(Figure 5C).

For surface-water trawls, when averaged from March to
August to match observation (cf Figure 2A), regional variations
of simulated biomass densities for epipelagic fish are poorly
captured (R2 = 0.07). This weak correlation mostly originates

from a strong underestimate of the biomass density B
Epi
SW in

the coastal regions (#11, 12, 14 Figure 5B). Away from the
coast, regional averages match more closely the surface-water
trawls. Similar to migratory biomass, epipelagic biomass also
accumulates along the coast, but is higher toward the southern

limb of the upwelling and the Southern California Bight
(Figure 5D).

Overall, dynamic simulation leads to a coherent
distribution of migratory biomass, and a more irregular
distribution of pelagic biomass. In the southern California
Current (red box in Figure 2), the average ratio of
pelagic to migratory biomass is well within the range of

observations, i.e., B
Mig
MW/B

Epi
MW = 10.68.

3.1.3. Sensitivity to Parameters Uncertainty
Aparameter sensitivity analysis with the best simulation indicates
that the predation parameters k1,2 exert the strongest controls

on biomass accumulation BEpi+Mig (Figure 6). Larger predator-
prey mass ratio (k1 − 10% or k2 + 10%) increase biomass
accumulation in the domain. This accumulation benefits the
migratory community, such that BEpi/BMig decreases. The

latter also reaches smaller size L
Mig
cut . Thus, the biomass of

larger individuals decreases to the benefit of smaller ones (see

variations of B
Epi,Mig
S,M,L ). Opposite responses are observed for

smaller predators-prey mass ratios (k1 + 10% or k2 − 10%).
The cross-shore biomass distribution is slightly impacted by
variations of the predation parameters (see changes in d50%S,M,L).
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FIGURE 5 | Biomass distribution in the California Current. (A) Simulated (light green) and observed (red) biomass densities BEpi+Mig per eco-regions for the mid water

(MW) trawls. (B) Simulated (dark green) and observed (red) biomass densities BEpi per eco-regions for the surface water (SW) trawls. (C) Spatial distribution of the

annual mean biomass density for the migratory community BMig binned in 1x = 96km grid cells. (D) Spatial distribution of the annual mean biomass density for the

epipelagic community BMig, binned in 1x = 96 km grid cells. The simulation results in (A,B) are determined from the average of years 1999–2006. Eco-regions are

ranked from low to high primary production. In the box-plot the central mark indicates the median, the bottom, and top edges of the box indicate the 25th and 75th

percentiles, respectively, while the whiskers extend to the most extreme data points that are not considered to be outliers. The square marker is the averaged biomass

density per eco-region, and the diamond the averaged observed biomass density per eco-region.

FIGURE 6 | Sensitivity of APECOSM-CC to food-web parameters. We test

variations around ±10% for the food-web parameters, ×/ 3 for the

parameters controlling movement. The sensitivity is expressed as % variation

compared to the reference simulation with the best parameter set.

A decrease of prey searching rate, obtained by increasing the
half saturation constant CFONC, and the increase of mortality M,
both decrease biomass accumulation, while benefiting epipelagic

fish, such that BEpi/BMig increases. While the effects translate
to variations of the relative abundance of small, medium and

large fish (see B
Epi,Mig
S,M,L ), they have almost no impacts on the

spatial biomass distribution (see d50%S,M,L). Opposite responses are
observed for increasing searching rate CFONC and decreasingM.

Finally, a faster swimming speed (ADV) allows increasingly
large migratory fish to expand their distribution offshore, while
epipelagic fish tend to cluster nearshore (see changes in d50%S,M,L in
Figure 6). This drives an accumulation of biomass that benefits

epipelagic species, such that BEpi/BMig increases, while the

maximum size of migratory species L
Mig
cut decreases.

Sensitivity tests shown in Figure 6 reveal that most features
of a fully dynamical simulation are similarly or less impacted
than the amplitude of variation applied to a single parameter,
suggesting non-linear, compensatory effects in the model. Except
for the predator-prey selectivity parameters k1,2, most variations
are within the ± 10% or 1/3 to 3 × range. Thus, fully dynamical
simulations and the following analysis are robust to small
parameter variations.
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FIGURE 7 | Species size distributions. (A) Observed average species size per

trawl Lm
Epi

obs (blue) and simulated maximum size per grid cell (gray) for the

epipelagic community L
Epi
cut. (B) Observed average species size per trawl Lm

Mig

obs

(purple) and simulated maximum size per grid cell (gray) for the migratory

community L
Mig
cut .

3.2. Emergent Features of Fish
Communities
3.2.1. Community Maximum Sizes
The average fish size from trawl observations (Lmobs) is
different for epipelagic and migratory species (Figure 7 and
Supplementary Information 7). Epipelagic species are mostly
smaller, with asymptotic sizes between 0.165 and 3.3 m, and a
mean of 0.4 m (Figure 7A in blue, note that distributions are
displayed on a logarithmic scale). Migratory species exhibit a
larger range, from 0.077 to 4 m, with two modes, the first around
0.2 m when migratory mesopelagic fish dominate the trawls,
and the second around 1 m when large predators are captured
(Figure 7B in purple).

In APECOSM-CC, the environment determines the
maximum size of the species sustained in each grid-cell for

each community. The maximum size per community (L
Epi,Mig
cut )

simulated in each grid cell of the domain matches observed
size differences. Epipelagic species are smaller, with a mean
maximum size of 0.62 m (Figure 7A in gray). Migratory species
reach larger sizes, up to 1.3 m at most locations (Figure 7B in
gray). The sensitivity analysis shown in Figure 6 indicates that
this maximum size is sensitive to the predator-prey selectivity
range (k1,2), as well as parameters controlling swimming (ADV).

3.2.2. Size-Spectra Slopes
In the simulations, the biomass density distribution closely
follows a power law (see the average size spectra in Figure 8A).
Regional variations in the power law slope (λ) reveal variations of
the biomass of large individuals relative to small ones. Note that
here slopes are expressed as a function of fish weight or volume,
derived from size following V = (δL)3, with δ a shape factor (see
Supplementary Information 1).

For the epipelagic community, λEpi is steeper close to the
shore, and shallower offshore (see Figure 8B). As the slope
becomes less steep, the biomass of small fish decreases compared
to the biomass of large individuals (see simulated spectra

FIGURE 8 | Biomass size spectra. (A) Envelop for the simulated normalized

biomass size-spectra (dotted line) and observed biomass size-spectra (solid

line), in a coastal (light blue) and an offshore (dark blue) cell. (B) Slopes λEpi of

the local average size-spectra for the epipelagic community. (C) Slopes λMig of

the local average size-spectra for the migratory community. In (A), the black

line shows the expected theoretical slope of λ = −1. In (B,C), the light/dark

blue dots indicate the cells where coastal/offshore biomass spectra (A) come

from.

Figure 8A). This relative decrease of small fish biomass in coastal
relative to offshore waters agrees with observations, where fewer
small individuals are found in surface trawls moving from the
coast to the open ocean (solid lines in Figure 8A). Note that
observed size spectra break for sizes smaller than V = 10−4 m3.
In this range, a systematic decrease in biomass abundance can be
in part attributed to a decreasing selectivity of sampling gear to
small individual sizes.

For the migratory community, simulated spectral slopes show
a similar trend (see Figure 8C), with generally shallower values.
Thus, larger predators are relatively more abundant among
vertically migrating fish species, as supported by the larger sizes
reached by this community (see Figure 7).

3.3. Cross-Shore Biomass Distributions
3.3.1. A Cross-Shore Size Succession
Biomass size-spectra indicate a cross-shore variation of the

relative abundance of larger and smaller fish in the California

Current (Figure 8). Figures 9A,B highlights this variation for

small, medium, and large individuals along an average cross-
shore section. For the epipelagic community, only small (0.03 <

L < 0.3 m) and medium-size (0.3 < L < 0.9 m) fish survive
in the domain (see species size distribution in Figure 7A). Most
small fish are found near the coast (Figure 9A, d50%S = 229 km),
while medium-size fish are spread farther offshore (d50%M = 357
km). For the migratory community, in addition to small- and
medium-size individuals, large predators (0.9 < L < 2 m)
survive. A similar pattern of increasingly spread-out biomass
from small to large fish is also observed for this community
(Figure 9B, d50%S = 200 km, d50%M = 294 km, d50%L = 425 km).

This cross-shore spread is comparable with the observed
species distribution from the OBIS database (Figure 9C, when
all sample are considered, see Supplementary Information 8

for additional details). While small species (0.04 < Lm <

0.4 m) cluster nearshore, medium (0.4 < Lm < 0.9 m),
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FIGURE 9 | Biomass density along a cross-shore section, for small (blue), medium (red), and large size (yellow) fish. (A) Relative distribution of simulated epipelagic

biomass distribution B
Epi
sim. (B) Relative distribution of simulated migratory biomass distribution B

Mig
sim . (C) Observed relative distribution from OBIS species occurrence

data.

and large (0.9m < Lm) species are more homogeneously
distributed. Simulations and observations cannot be directly
compared, because the OBIS database reports presence but not
abundance. However, these patterns suggests higher occurrence
of small fish in coastal water, while large fish tend to occupy the
entire ecosystem.

Sensitivity tests suggest that the biomass spread for distinct
size groups is mostly sensitive to the swimming parameter
(ADV), and the predator-prey selectivity parameters (k1,2;
Figure 6). For ADV , an increased swimming capability leads to
offshore spread of migratory species, and vice versa. For k1,2,
smaller predator-prey size ratios lead to a relative increase of
biomass near the coast.

3.3.2. Drivers of Cross-Shore Succession
The best APECOSM-CC simulation is tuned to reproduce
observed biomass densities. These densities are controlled by
three main processes: (1) net or surplus production, modulated
by environmental conditions; (2) current-driven redistribution
from source to sink regions; (3) active swimming toward
favorable conditions, i.e., from sink to source regions.

Figures 10A–C shows the difference between production
and respiration (1META) for the epipelagic and migratory
communities. Positive surplus production is observed
in productive nearshore waters for smaller individuals
in both communities (primary production shown in
Supplementary Information 13). Moving offshore, surplus
production rapidly decreases from positive to negative
values, becoming a sink of biomass when mortality exceeds
new production (Figures 10A,B). Medium- and large-size
species feeding on small fish tend to accumulate new biomass
further offshore. This cross-shore gradient in production is
slightly stronger for the epipelagic community. The enhanced
production nearshore and dissipation offshore are consistent
throughout the CC region, except along the southern coast where
production nearly equals mortality, leading to limited surplus
production (Figure 10C).

Currents act to redistribute biomass by advecting newly-
produced biomass away from the coast, and accumulating it
in a band between 300 and 800 km, as revealed by 1CURR

(see Figures 10D–F). Most of this redistribution affects smaller
individuals with limited swimming abilities, in both epipelagic
and mesopelagic communities. As individuals grow larger,
this transport is increasingly independent of the cross-shore
distribution, and increasingly variable, suggesting an increasing
interaction with mesoscale eddies, rather than continuous
advection by the mean current (Figures 10D,E). Since the bulk
of biomass is found in smaller individuals, surplus biomass
generated along the coast is on average advected offshore where
it is mostly dissipated (see Figures 10C,F).

In the model, swimming tends to counteract the effect
of currents. Small forage fish in both communities swim
on average toward the productive upwelling region, driving
biomass accumulation along a band within 400 km of the
coast (see 1SWIM , Figures 10G,H). Swimming maintains the
biomass of medium-sized migratory organisms along a similar
coastal band (red line Figure 10H), while larger migratory
fish (yellow line Figure 10H) and medium-sized epipelagic fish
(red line Figure 10G) tend to swim off-shore. To some extent,
active movement against the mean current compensates the
background transport offshore (compare the amplitude of passive
advection 1CURR and active swimming 1SWIM , Figures 10F,I).
However, active swimming also interacts with highly variable
oceanic currents, such as eddies, fronts, and filaments, diverting
biomass from the coast to local features (as suggested by the
increased patchiness in Figure 10I).

In summary, while most new production is coastal, as
individuals grow larger their main food source shifts offshore
because of the transport by the mean surface current. Moreover,
larger and larger individuals are increasingly attracted by
local circulation features that divert them away from the
most productive coastal regions. We argue that both effects
contribute to explaining the cross-shore biomass distribution
discussed in Section 3.3.1.

4. DISCUSSION

4.1. Simulated Biomass Distribution
Our simulations reproduce observed relationships between
fish biomass, and primary productivity, with higher biomass
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FIGURE 10 | Biomass accumulation and dissipation along a cross-shore section, for small (blue), medium (red), and large (yellow) fish, reflecting food-web dynamics

and spatial transport processes. (A–C) Surplus production for pelagic and migratory communities 1META. (D–F) Accumulation and dissipation due to passive

advection by currents for pelagic and migratory communities 1CURR. (G–I) Accumulation and dissipation due to active swimming for pelagic and migratory

communities 1SWIM. The maps show averages binned in 1x = 96km grid cells to smooth spatial variability caused by mesoscale eddies.

in high latitude and upwelling waters, and lower biomass
in offshore oligotrophic waters. The migratory community
dominated by small mesopelagic fish determines most of
these gradients (Figure 5A), as in Davison et al. (2013).
Surface biomass densities are more homogeneously distributed
over the domain, although with variations consistent with
observations (Figure 5B). However, the model underestimates
the large biomass densities in the coastal eco-regions of the
northern corner of the domain by up to a factor 10. This
underestimation might be partly explained by the strong
southern coastal current coming from the north boundary of
the domain. This current could advect coastal fish biomass
from outside the simulation domain, from the Gulf of Alaska,
allowing more accumulation than is currently possible when
nudging the boundaries from a coarse 64 km resolution
parent simulation.

Observations of surface fish biomass density are also
substantially more variable than model simulations. Surface-
water trawl surveys are designed to monitor epipelagic forage
fish stocks (Zwolinski et al., 2012), and therefore target
biomass aggregations. These aggregations, which are shaped
by fronts and other mesoscale features (Woodson and Litvin,
2015; McGillicuddy, 2016), are not resolved down to the

level of schools by the model, which cannot resolve the
scale (hundreds of meters to kilometers) at which many of
these abundant forage species are preferentially found (Maury,
2017). Thus, the model should be considered a representation
of smoother, large-scale average conditions. On the contrary,
mid-water trawls sample a more diffuse and homogeneous
deep-scattering layer, as shown by the spatial persistence
of deep scattering layers in acoustic transects (Wall et al.,
2016; Proud et al., 2018). This homogeneity might reduce
spatial variability and explain the better match between model
and observations.

The biomass density for migrating mesopelagic fish (2.8 gm−2

on average) is also underestimated by the model compared to the
mid-water trawls, but matches other large-scale estimates for the
region (e.g., 3.6 gm−2 in Lam and Pauly, 2005) and other regional
estimates (e.g., 7.6 gm−2 in Field et al., 2006). Mesopelagic fish
observations are associated with uncertainties, including trawl
net avoidance and limited selectivity (Kaartvedt et al., 2012).
Some of these uncertainties are accounted for in the mid-water
trawls data that we use in this study (Davison et al., 2013). While
additional fine-tuning of the model could help resolving this
mismatch (see Figure 6), we kept the optimal parameters for the
final simulation to avoid generating other mismatches.
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Finally, while the model underestimates mid-water trawl

biomass, the ratio of pelagic to migratory biomass (B
Mig
MW/B

Epi
MW =

10.68) agrees with reconstructions for the California Current
(Koslow and Davison, 2016), and other global estimates (Irigoien
et al., 2014). Furthermore, the model epipelagic biomass roughly
matches observations, if we acknowledge the higher variability
and patchiness of surface-water trawl data.

4.2. Parameter Selection
Although mechanistic models often rely on fewer undetermined
parameters than empirical models, some of these parameters
remain poorly constrained. For instance, no single set of
parameters defines the encounter between predators and prey
for all species in epipelagic and mesopelagic communities.
Additionally, there are no firmly established estimates of the
fraction of individuals that die from disease or pollution.
Therefore, we conducted a sensitivity analysis to evaluate the
importance of 11 of these relevant parameters for the model and
their effect on fish biomass distribution.

For predator-prey interactions, the optimal value for CFONC

(see Table 1) indicates a specific volume clearance rate of
30.34 106 per day (see Supplementary Information 2). We were
not able to find measures for adult fish to confirm this number,
but it is within the range measured from fish larvae and other
lower trophic level organisms (Kiørboe, 2011). The parameter
CRISTALCRIT controls the intensity of feeding interactions, but
is harder to compare to the literature. Tuning of this parameter
mostly affects the relative biomass of epipelagic and migratory
communities (see Figure 6).

Parameters that determine the shape of the prey size selectivity
(k1,2) influence the predator-prey mass ratio PPMR and the
ability of predators to feed on a wider range of prey sizes (σ ).
Here, the best values for k1,2 (Table 1), correspond to a PPMR =

4861, and a selectivity width of approximately one order of
magnitude (σ = 1.13, see also Supplementary Information 4).
The estimated PPMR and the variability of the selectivity are well
within the range of expected values (Barnes et al., 2010; Reum
et al., 2019). Consistently with theories that suggest that PPMR
and σ have a strong effect on trophic efficiency (Brown et al.,
2004; Eddy et al., 2020), these parameters most affect the model
solution, with longer food-webs (small PPMR) leading to more
biomass accumulation (see Figure 6). Moreover, both parameters
influence the maximum sizes reached by communities (refer to

the impact of k1,2 on L
Mig
cut in Figure 6).

The external mortality includes mortality terms not explicitly
accounted for in the model, such as disease, pollution, or fishing.
It influences the total biomass accumulation, and the relative
biomass of different size groups (Figure 6). In particular, external
mortality triggers a trophic cascade: as mortality increases, the
biomass of larger individuals drops, favoring accumulation of
small individuals (see effect ofMDISEASE Figure 6). The optimum
mortality value selected by calibration (see Table 1) represents
a daily mortality at any size class L of 0.0078 d−1 when at
maximum schooling density. In other words, in the absence of
any other mortality, the time-scale for the biomass to be lost at
high biomass density is 4 months. This mortality represents an

upper bound since it depends on the biomass density (Maury
and Poggiale, 2013). More abundant size classes or regions will be
exposed to external mortalities at a higher rate than more diffuse
size classes or regions, assuming lower disease transmission
or lower fishing pressure on dispersed resources. Note that
this external mortality term can be considered a closure term
that allows reproducing realistic biomass density distributions
by representing non-resolved processes that remove biomass,
for example fishing. The dynamic of fishing includes complex
interactions between available catches and socio-economical
drivers (Maury et al., 2017; Scherrer and Galbraith, 2020). Their
representation is beyond the scope of the current analysis.

Beyond parameterization of processes, the numerical
discretization of the size dimensions influences the results
of the simulations. Because of computational limitations, we
discretized biodiversity with 6 asymptotic sizes, favoring a more
refined representation of larger species by selecting Lm from
10 cm upward. In the smallest size classes, this discretization
contributes to the deviation of the biomass distribution from a
linearly decreasing biomass spectrum (see Figure 8A). In our
analysis, we focus on individuals larger than 3 cm to minimize
the effects of the coarse discretization of small size classes.

Finally, the physiology modeled by the DEB model represents
ectotherm organisms, especially fish, since the parameterization
is based on fish DEB models (Kooijman and Lika, 2014). We
assume that this formulation is applicable to other temperature-
dependent organisms that grow from small eggs to larger
organisms, e.g., invertebrates such as krill and squids. Still, other
important predators in the California Current are not explicitly
represented, especially mammals and seabirds (Santora et al.,
2021). Their explicit representation would require a separate
formulation of the DEB physiological model, for example to
include homeotherm physiology. However, their effect on pelagic
communities is implicitly included through the background
mortality, a biomass loss term necessary for the model to
reproduce observed biomass distributions.

4.3. Forcing With ROMS-BEC
The complexity of the lower trophic level models, in particular
their resolution of different functional types and size classes, is a
sensitive component for simulation of biomass at upper trophic
levels (Kearney et al., 2021).

The biogeochemical model BEC provides a simplistic
representation of such size diversity with a basic size structure
(two phytoplankton groups and one zooplankton group).
To couple APECOSM-CC with ROMS-BEC, we tested
multiple possible sizes ranges for the lower trophic levels
when calibrating the model. The coupling appears weakly
sensitive to the size range of diatoms and particulate organic
carbon, and only the size range of zooplankton was identified
as significant (see Supplementary Information 11). The
spatial distribution of these lower trophic levels might be
more important, because it determines gradients in suitable
habitats. For example, the cross-shore biomass distribution

for small fish (B
Epi,Mig
S in Figures 9A,B) closely matches the

distribution of their food (Supplementary Information 13).
Note that compared to observations from the MAREDAT
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database (Moriarty and O’Brien, 2013), ROMS-BEC
simulations underestimate zooplankton biomass nearshore,
and overestimate it offshore (see Kessouri et al., 2020 and
Supplementary Information 13). We suggest that this bias in
lower trophic levels is partly responsible for an excessive spread
of fish biomass offshore in our simulations.

The limited diversity of functional types in BEC might
also impact the biomass transfer to upper trophic levels
and simulated biomass distributions. For instance, cold and
warm ocean conditions favor euphausiids and gelatinous
zooplankton respectively in the California Current, leading to
changes in mid-trophic level organisms (Brodeur et al., 2019).
Further developments will be required to account for these
effects properly.

4.4. Emergent Features
On quantities averaged over 10 years of simulation, themodel can
capture a series of emergent properties of the observed biomass
distribution in the California Current.

First, simulations show higher biomass of small migratory
mesopelagic fish (see Figure 4A), consistent with observations
(Davison et al., 2013; Irigoien et al., 2014; Koslow and Davison,
2016). Since in the model surface epipelagic and deep-diving
migratory communities share the same parameterizations, this
property emerges from differences in their habitat. We suggest
that differences in temperature, and the resulting metabolic rates,
are behind these patterns. Surface epipelagic fish experience
comparatively warmer conditions throughout the day, while
migratory organisms experience colder waters during the day
when they reside in the mesopelagic zone. The analysis of
the sensitivity of biomass size-spectrum models to warming
shows that a faster increase of metabolism and respiration with
warming, relative to the increase of biomass assimilation, leads
to decreasing community level biomass in warmer conditions
(Guiet et al., 2016a). Inversely in cooler habitats, biomass
accumulates. The difference in the temperatures experienced by
organisms at different depths might favor biomass accumulation
in cooler deep-sea waters. Note that the resident mesopelagic
community that does not migrate is not modeled here, unlike
in other applications of APECOSM (Maury, 2010). When this
resident mesopelagic community is included in the simulations,
the model fails to represent realistic coexistence with the
vertically migrating mesopelagic fish and migrating predators
(i.e., simulated biomasses for both communities are unrealistic).
Current modeling assumptions might explain this mismatch. For
instance, the model does not allow ontogenetic transitions from
epipelagic to deep mesopelagic habitats, which can characterize
mesopelagic species (Lourenço et al., 2017). Another possibility
is that we parameterize predator-prey interactions in the same
way across the three communities (i.e., prey selectivity or
searching rates), ignoring potential differences in feeding habits
between migrating and resident mesopelagic fish (Bernal et al.,
2015; Drazen and Sutton, 2017). In observations, the resident
mesopelagic biomass accounts for a relatively small fraction of
the total mesopelagic biomass, which is dominated by diel vertical
migrators (Koslow and Davison, 2016). Yet, resident organisms
could affect small migrating prey (e.g., by feeding on them),

and might contribute to the feeding strategy of large migrating
predators. The inclusion of this community will be explored in
future studies.

Second, epipelagic fish tend to be smaller than migratory
fish (see Figure 7). While observed and simulated representative
sizes are not perfectly comparable, the model reproduces a
clear size difference between surface and migratory communities
that agrees with observations. We suggest that the higher
migratory biomass and lower metabolism in deep waters allow
the development of more trophic levels in the migrating
community, ultimately supporting larger species and individuals
(Guiet et al., 2016a). Note that the maximum size reached by

migratory predators (L
Mig
cut = 1.5m) is below the maximum

size allowed by the model (2 m), while observations show the

occurrence of larger species (max(Lm
Mig

obs
) > 2 m), such as

swordfish or white sharks. Many large deep-diving predators
develop thermoregulation apparatuses (Legendre and Davesne,
2020; Braun et al., 2021) that might increase feeding efficiency
and assimilation in deep waters (Fritsches et al., 2005). These
adaptations may contribute to the increased asymptotic size of
migratory species, but are absent in the model. Moreover, in the
model, large pelagic predators completing diel migrations spend
half of the day at depth, half of the day at the surface. This pattern
is applied to all migratory predators; however, some species
adopt different behaviors, e.g., sub-daily vertical migrations with
sporadic deep dives (Braun et al., 2021). Fine-tuning or new
parameterizations could also help reduce this bias (see Figure 6).

Third, an ubiquitous feature of marine ecosystems is the
regularity of the biomass density distribution, which follows
a power-law as a function of individuals size, at least within
selected size ranges (Brown et al., 2004; Hatton et al., 2021). For
the biomass density as a function of the individual structural
volume (V = (δL)3), the slope of this power-law is empirically
and theoretically shown to be close to λ ≈ −1 (Brown et al.,
2004; Rossberg, 2012; Sprules and Barth, 2015). APECOSM-

CC reproduces this emergent slope, with λEpi+Mig = −0.94,
and regional variations and inter-community differences (see
Figure 8). Simulated variations around this mean value are large,
since slopes as steep as −1.57 for the epipelagic community in
the core of the upwelling, and as shallow as −0.71 offshore for
the migratory community are simulated. The model suggests
comparatively more small individuals nearshore, and fewer
offshore. We argue that this shift is due to biomass redistribution
between source and sink regions. Note that fishing has been
shown to impact the slope of fish size spectra (Shin and Cury,
2004), an effect not explicitly included in our simulations.

4.5. Cross-Shore Biomass Spread
The model reveals an increase in the cross-shore biomass
spread for individuals of increasing size (see Figures 9A,B). The
pattern is comparable to observations from the OBIS database
(Figure 9C), showing that smaller species are sampled more
frequently along the coast, while larger species are sampled more
uniformly across the region. Importantly, this cross-shore pattern
extends to higher trophic levels a succession already documented
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for phytoplankton and zooplankton (Keister et al., 2009; Messié
and Chavez, 2017).

This cross-shore distribution emerges in the model from
surplus biomass production for small organisms near the coast,
where lower trophic levels are more abundant. This excess
production, likely trapped in the surface Ekman layer and
mesoscale features, is then advected offshore, as observed
for zooplankton in the California Current (Keister et al.,
2009). Small fish biomass accumulates while being transported
offshore, in turn feeding increasingly large predators. This cross-
shore transport matches other modeling studies that link fish
production to the level of retention modulated by upwelling
intensity (Steele and Ruzicka, 2011; Ruzicka et al., 2016).
Unlike zooplankton, fish can swim toward more favorable
conditions at speeds faster than mean ocean currents, and can
actively contribute to this retention. Active swimming could thus
generate offshore hotspots where the passively advected lower
trophic levels would overlap with their predators, for example,
in regions where passively advected euphausids accumulate
(Santora et al., 2021). Thus, we would expect all organisms
to remain in the core of the productive upwelling region, or
more precisely to remain where passively advected organisms
accumulate. However, in the model, intense mesoscale currents
and eddies lead to patchy biomass distributions, with organisms
clustering around mesoscale eddies seeded with coastal biomass.
Increasingly large predators are attracted by these high-biomass
“oases,” limiting their ability to migrate toward the productive
coastal regions (Figures 10G,H). Increased biomass aggregations
along eddies and fronts might further affect the productivity for
the higher trophic levels (Woodson and Litvin, 2015).

These cross-shore patterns depend on parameters that control
predator-prey interactions. Shorter food-webs (i.e., larger PPMR)
lead to enhanced coupling with lower trophic levels, and a
biomass distribution that increases more rapidly toward the coast

(see BEpi+Nig and d50% for various values of k1,2, Figure 6). We
suggest that with a larger PPMR, the distribution of primary
consumers matches more closely the higher primary production
near the coast, so that secondary consumers will also cluster
onshore following their prey. Note that in our simulations
the biomass of smaller mid-trophic levels is distributed more
broadly offshore than suggested by the OBIS database. As
shown by Figure 9, small organisms dominate within 400
km from the coast (blue lines in Figures 9A,B) while in
observation they dominate within 100 km from the coast
(blue line in Figure 9C). This bias can be partly attributed
to biases in lower trophic level biomass in ROMS-BEC (see
comparison with MAREDAT data, Moriarty and O’Brien, 2013,
in Supplementary Information 13).

Interannual variations of upwelling intensity influence the
coupling between low trophic levels and productivity (Ware,
1992; Ruzicka et al., 2016; Messié and Chavez, 2017), modulating
the migration patterns of top predators between nearshore and
offshore waters (Fiechter et al., 2016). Our analysis focuses
on averaged quantities from 1997 to 2006 to reveal the cross-
shore biomass spread in this highly dynamic ecosystem. Further
analysis should investigate this interannual dynamic and how

upwelling intensity influences the distribution of forage fish and
large predators. We leave this to future work.

4.6. Ecological Relevance
A variety of modeling approaches has been applied to study
fish communities in the California Current System, from species
distribution models (Fiechter et al., 2016; Brodie et al., 2018)
to end-to-end ecosystem models (Field et al., 2006; Horne
et al., 2010; Kaplan et al., 2019). This study presents a trait-
based model that disregards species identity and simultaneously
resolves bottom-up propagation of biomass through the
ecosystem, ultimately controlled by primary production, top-
down predation, and redistribution of organisms shaped
by currents and active swimming. Reproducing emergent
properties, it complements previous modeling efforts and
provides new ecological insights into the dynamics of this
pelagic ecosystem.

In the California Current, upwelling intensity influences fish
productivity directly, by controlling nutrient supply and primary
production. It also exerts a control on surface circulation and
water retention, and thus nutrient recycling and accumulation
of lower trophic level biomass (Steele and Ruzicka, 2011;
Ruzicka et al., 2016). Our analysis supports the idea that cross-
shore currents decouple productive coastal upwelling waters
from offshore fish aggregations (Figure 10). By representing
the swimming ability of small to medium-sized species, our
study also suggests a biologically mediated retention that might
counteract this decoupling and enhance productivity, consistent
with the generation of hotspots where multiple trophic levels
overlap (Santora et al., 2021). However, our analysis also suggests
a dispersive role of mesoscale eddies that might prevent large
predators from co-occurring in these hotspots.

Predicting the productivity and presence of species of
economic or ecological value is a central goal of many marine
ecosystem modeling efforts for this region (Politikos et al.,
2018; Cimino et al., 2020; Muhling et al., 2020), especially to
understand where species will occur at different life stages, for
instance, and to design marine protected areas (Gilman et al.,
2019). By linking top-predators to primary production and ocean
dynamics, our model shows how large predators in offshore
waters depend on biomass redistribution (Figure 10C) and
mesoscale dynamics. Mesoscale eddies affect predator biomass
either because of enhanced surface prey abundance or easier
access to mesopelagic prey. Large predators may also be able to
move between high-productivity eddies, potentially increasing
their chances of survival in the low-productivity offshore region.
Further analysis is required to unravel how mesoscale variability
influences biomass distribution, creating bridges, or barriers
to migration (Sato et al., 2018), and enhancing or attenuating
biomass production (Woodson and Litvin, 2015).

Finally, note that in our simulations large pelagic predators
(larger than 0.9 m) are found in the vertically migrating
community that exploits both pelagic and mesopelagic prey. This
highlights an essential role for the mesopelagic community in
sustaining large predators.
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5. CONCLUDING REMARKS

In this paper, we test the influence of movement on the structure
of fish communities in an ecosystem where currents have been
shown to shape the biomass distribution, the California Current.
We implement APECOSM-CC, a mechanistic model of the
fish biomass flow in pelagic communities of the California
Current. We also process a diverse set of observations from this
densely sampled ecosystem, to describe the main characteristics
of the epipelagic fish biomass distribution, including important
forage species for the region, and the distribution of vertically
migrating species, especially the abundant lanternfish. These
provide a series of observational constrains to optimize uncertain
parameters and evaluate the model. The model is calibrated to
reproduce spatial patterns and magnitude of bulk fish biomass
for epipelagic and mesopelagic migratory communities, but it
also reproduces a series of emergent properties suggested by
observations. These include: (1) larger and more abundant
migrating predators relative to epipelagic fish; and (2) a cross-
shore succession in the size of fish, with smaller individuals
clustered along the coast, and larger individuals increasingly
spread offshore.

Our study is the first to couple a mechanistic, size-structured
food web model to a dynamically evolving representation of
ocean currents that resolves mesoscale eddies. In the very
dynamical California Current it indicates three essential effects
of transport and movement: (1) the importance of the surface
mean current in advecting small individuals offshore, setting
the cross-shore size structure of fish communities; (2) the role
of active swimming in counterbalancing this transport; and
(3) the importance of eddies in limiting the effectiveness of
swimming and contributing to amore homogeneous distribution
of predators across the domain.

Because of its mechanistic formulation and realistic forcing,
APECOSM-CC represents an ideal tool to continue investigating
fundamental ecological processes that regulate marine fish
communities in a dynamical environment, their interactions
with fine-scale ocean currents, and the effects of environmental
variability, from natural fluctuations, to climate change, fishing,
and other human activities. Such mechanistic approach is
particularly relevant in the California Current where novel
environmental conditions might shift pelagic communities to
unprecedented states (Muhling et al., 2020).
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