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Abstract

At-sea behaviour of seabirds have received significant attention in ecology over the last

decades as it is a key process in the ecology and fate of these populations. It is also, through

the position of top predator that these species often occupy, a relevant and integrative indi-

cator of the dynamics of the marine ecosystems they rely on. Seabird trajectories are

recorded through the deployment of GPS, and a variety of statistical approaches have been

tested to infer probable behaviours from these location data. Recently, deep learning tools

have shown promising results for the segmentation and classification of animal behaviour

from trajectory data. Yet, these approaches have not been widely used and investigation is

still needed to identify optimal network architecture and to demonstrate their generalization

properties. From a database of about 300 foraging trajectories derived from GPS data

deployed simultaneously with pressure sensors for the identification of dives, this work has

benchmarked deep neural network architectures trained in a supervised manner for the pre-

diction of dives from trajectory data. It first confirms that deep learning allows better dive pre-

diction than usual methods such as Hidden Markov Models. It also demonstrates the

generalization properties of the trained networks for inferring dives distribution for seabirds

from other colonies and ecosystems. In particular, convolutional networks trained on Peru-

vian boobies from a specific colony show great ability to predict dives of boobies from other

colonies and from distinct ecosystems. We further investigate accross-species generaliza-

tion using a transfer learning strategy known as ‘fine-tuning’. Starting from a convolutional

network pre-trained on Guanay cormorant data reduced by two the size of the dataset

needed to accurately predict dives in a tropical booby from Brazil. We believe that the net-

works trained in this study will provide relevant starting point for future fine-tuning works for

seabird trajectory segmentation.

Author summary

Over the last decades, the use of miniaturized electronic devices enabled the tracking of

many wide-ranging animal species. The deployment of GPS has notably informed on
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migratory, habitat and foraging strategies of numerous seabird species. A key challenge in

movement ecology is to identify specific behavioural patterns (e.g. travelling, resting, for-

aging) through the observed movement data. In this work, we address the inference of sea-

bird diving behaviour from GPS data using deep learning methods. We demonstrate the

performance of deep networks to accurately identify movement patterns from GPS data

over state-of-the-art tools, and we illustrate their great accross-species generalization

properties (i.e. the ability to generalize prediction from one seabird species to aother).

Our results further supports the relevance of deep learning schemes as ‘ready-to-use’ tools

which could be used by ecologists to segmentate animal trajectories on new (small) data-

sets, including when these datasets do not include groundtruthed labelled data for a super-

vised training.

Introduction

Marine top predators have received significant attention in marine ecology over the last

decades [1]. They are known to use vast areas for feeding, thus requiring specific adaptive for-

aging strategies in order to localize their preys, especially in the pelagic environments which

are highly variable [2]. They offer a unique perspective into ocean processes and dynamics,

given that they can amplify information on the structure of the seascape across multiple spa-

tio-temporal scales due to their relatively high mobility and longevity. Often considered as sen-

tinels of the environmental variability and bio-indicators for ecosystem structure and

dynamics, their study has been particularly contextualized into ecosystem-based management

and conservation issues [3, 4].

Numerous studies have focused on the variability of seabirds’ foraging strategies and in par-

ticular of dive distributions. Assessing consistency or shifts in foraging locations [5–7], and in

the resource spatial partitioning [8, 9] provide indeed crucial information for understanding

marine ecosystems. This has been particularly enabled by great technical advances in the mini-

aturization and autonomy of biologging devices [10, 11]. GPS loggers have been at the fore-

front of this breakthrough, and can now provide precise and accurate data on the foraging

trajectories of many free-ranging species, such as seabirds [12, 13]. Detailed information on

the diving behaviour has also been gained through the additional use of pressure sensors, such

as Time Depth Recorders (TDR) devices [14–16]. Yet, for historical, financial and ethical rea-

sons, the deployment of several sensors has not always been possible and a substantial amount

of tracking datasets consist in GPS tracks only. The development of tools dedicated to animal

trajectories segmentation (i.e. for dive identification) is therefore needed to extract more out

of historical seabird foraging trajectories [17].

Among existing approaches to dive identification from GPS tracks, many individual-based

studies aim to infer behavioral state directly by applying thresholds to various ecological met-

rics of movement data, such as speed, direction and tortuosity [18, 19]. A common example is

the so-called First-Passage Time method (hereafter, FPT), which is defined as the time taken

for an individual to cross a virtual circle of given radius [20–22]. Here foraging behaviour is

assumed to occur when birds fly at very low speeds [23]. Statistical methods have also been

used to predict diving behaviour with clustering schemes such as the Expectation Maximiza-

tion binary clustering technique [24, 25] or using hidden Markov models (hereafter, HMM)

typically with 2 or 3 distinct behavioural modes to explicit account for time-related priors [26–

29]. More occasionally, supervised machine learning approaches such as artificial neural
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networks, support vector machines and random forests have also been used [30, 31]. We may

refer the reader to [32] for a more detailed review of these methods.

Recently, deep learning methods have been suggested to be a potentially useful tool for

behavioural pattern segmentation [33]. Deep learning refers to a neural network with multiple

layers of processing units [34]. By decomposing the data through these multiple layers, deep

neural networks may learn complex features for representing the data with a high level of

abstraction at multiple scales. The trajectory of an animal being the result of complex processes

at multiple spatio-temporal scales [35], deep learning might be able to extract relevant repre-

sentations of trajectories for performing tasks such as classification, segmentation or simula-

tion. Deep learning has become the state-of-the-art framework for a wide range of problems in

text, speech, audio and image processing and applications in ecology have mainly addressed

image analysis and computer vision case-studies [36, 37]. Fewer studies have explored deep

learning for animal trajectory data. Recurrent neural networks have been used for movement

prediction [38, 39], and for the identification of representative movement patterns [40]. Very

recently, an attention network has also been proposed for comparative analysis of animal tra-

jectories [41]. Related to our study, a fully-connected network (hereafter, FCNet) has been

used to predict seabirds’ diving in European shags, common guillemots and razorbills [17].

With a very simple FCNet with 4 layers comprising hundreds of hidden nodes, this study dem-

onstrated the improved accuracy of this approach over commonly-used behavioural classifica-

tion methods. These promising results support new investigations to further explore the

potential of deep learning schemes for movement ecology studies.

In particular, a central challenge in deep learning is to make algorithms that will not only

perform well on the training data, but also on new datasets [42]. Generalization properties are

indeed crucial for deep networks to tackle a wide range of problems. For example, it would be

relevant to develop a neural network for the segmentation of behavioral patterns of certain

species and whose characteristics are transferable to the analysis of the behavior of another

species. Transfer learning refers to the fact of using knowledge that was gained from solving

one problem and applying it to a new but related problem. For this purpose, a solution known

as ‘fine-tuning’ consists in using a pre-trained model as the initialization of the training

scheme rather than training a new model from scratch [43].

As in [17], this work addresses the inference of seabird diving behaviour from GPS data

using Deep Learning methods. Besides, their FCNet architecture, we investigated Convolu-

tional Neural Networks and U-Networks [44], which are state-of-the-art architectures for time

series and image data processing and shall better account for the time structure of trajectory

data. As case-studies, we considered two tropical seabird genus with distinct diving behaviour

(Boobies vs Cormorants). The associated datasets comprised 297 foraging trips derived from

GPS data deployed simultaneously with pressure sensors for the identification of dives. Our

specific objectives were therefore (a) to confirm the performance of deep networks over state-

of-the-art tools for dives identification, (b) to demonstrate generalization properties of trained

network to predict dives of seabirds from other colonies and (c) to evaluate the benefits of a

transfer learning strategy known as ‘fine-tuning’ for accross-species generalization.

Materials and methods

Ethic statement

Tracking data were obtained from electronic devices attached to Peruvian boobies and Guanay

cormorants tagged at the Pescadores and Guañape Islands, Peru, from 2007 to 2013, and from

masked boobies tagged at the Fernando de Noronha archipelago, Brazil, from 2017 to 2019.

This work was conducted with the approval of the Peruvian federal agency, Programa de
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Desarrollo Productivo Agrario Rural, commonly known as “Agrorural”. Headquarters of

Agrorural are located at Av. Salaverry 1388, Lima, Peru, and of the Brazilian Ministry of Envi-

ronment—Instituto Chico Mendes de Conservação da Biodiversidade (Authorization No

52583-5).

Dataset

GPS and TDR devices were jointly fitted to breeding tropical seabirds both in Peru (92 Peru-

vian boobies, 106 Guanay cormorants) and Brazil (37 masked boobies). Peruvian boobies

(Sula Variegata) and Guanay cormorants (Leucocarbo Bougainvilli) were captured at Isla Pes-

cadores (11˚46’30.34”S, 77˚’51.22”W) every year in December from 2008 to 2013 and at Isla

Guanuape (8˚’18.92”S, 78˚’42.72”W) in December 2007, while masked boobies (Sula dactyla-
tra) were captured at Fernando de Noronha archipelago (3˚’9.71”S, 32˚’36.11”W) every year in

April from 2017 to 2019. The GPS were attached with Tesa tape on the tail feathers for boobies

and on the back feathers for cormorants for 1 to 2 days and the TDR were fixed on the bird’s

leg with a metal band. In total, GPS devices (Gipsy GPS, 25–30 g, Technosmart, Rome, Italy; i-

gotU GPS GT 600, 25–30 g, Mobile action Technology, NewTaipei City, Taiwan; MiniGPSlog

30 g, Earth and Ocean GPS, Kiel, Germany; Axy-trek 14g, Technosmart, Rome, Italy) and

time-depth recorders (TDRs, 3 g; resolution, 4 cm; G5 CEFAS Technology, Lowesoft, UK)

were fitted to 235 seabirds.

After recovery, each GPS track was split into foraging trips by selecting locations further

than a given distance to the colony and longer than a given time. Foraging trips were linearly

interpolated to the TDR sampling resolution (i.e. 1s) and the coverage ratio was computed as

in [17]. It is defined as the ratio between the number of recorded fixes and the number of fixes

that should have been recorded with a perfectly regular sampling in a fixed temporal window.

Amount of missing data is detailed in Table 1. True dives were defined by depth measured by

TDR higher than 2 meters. Each GPS position was thus associated with a boolean value detail-

ing the ‘dive’ status. This dataset consists therefore in a total of 297 foraging trips of seabirds

with doubled-deployment GPS and TDR (see Table 1).

Deep neural network architectures

In this work, we investigated deep neural networks. As baseline architecture, we considered

the fully-connected network (FCNet) proposed in [17]. Besides, as described in Fig 1 we con-

sidered a fully convolutional neural network (CNNet) and a U-shape network particularly

adapted to segmentation problems (UNet) [44]. We describe below these three architectures

and the associated supervised training procedure. We refer the reader to [37] for an introduc-

tion to deep neural networks dedicated to ecologists.

Table 1. Dataset overview. General statistics on the four linearly-interpolated datasets used in this study. (m ± s) is for respectively mean and standard deviation.

Species Colony Location Nb of trips Trip Duration (min) Dives (%) Dives Duration (s) Gaps (%) Resting (%)

Sula variegata Pescadores Island, Peru 132 64 ± 37 1.3% 2.5 ± 1.3 2.2% 4.4%

Leucocarbo bougainvilli Pescadores Island, Peru 79 143 ± 69 9.4% 12.9 ± 14.1 25.5% 36.6%

Sula variegata Guañape Island, Peru 22 162 ± 75 0.7% 3.3 ± 2.5 1.5% 6.6%

Sula dactylatra Fernando de Noronha, Brazil 64 491 ± 377 0.2% 2.2 ± 1.4 6.1% 33%

Dives refer to the proportion of positions labeled as ‘dive’ (TDR-derived depth higher than 2 meters).

Gaps consist in the proportion of missing fixes that have been linearly interpolated.

Resting has been defined as the proportion of time with speeds inferior to 1 m.s-1 associated to non-diving behaviour.

https://doi.org/10.1371/journal.pcbi.1009890.t001
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Fully-connected network (FCNet). The first architecture implemented was similar to the

fully-connected network presented by [17]. As input vector, we used the concatenation of step

speed, turning angle and coverage time series for over a 20-second window. This input vector

is fed to a layer of 100 nodes followed by 3 layers of 500 nodes. Each node applies a linear

transformation to the incoming data and a non-linear activation chosen as a Rectified Linear

Unit (ReLU − RELU(x) = max(0, x)). The last layer applied a softmax binary function so that

the output of the vector is a time series of values between 0 and 1, which can be interpreted as

binary classification probabilities. This architecture is a classical example of a so-called multi-

layer perceptron, with a rectified linear activation which is the default activation in deep learn-

ing architectures. Overall, this architecture involves 500k parameters.

Fully convolutional networks (CNNet). Convolutional networks exploit convolutional

layers and are the state-of-art architectures for a wide range of applications, especially for signal

and image processing tasks [46]. Thus, we investigated a basic neural network fully composed

Fig 1. Network architectures. CNNet refers to a fully convolutional neural network. UNet refers to a U-shape network. A channel refer to deep learning

terminology and describes a representation of the input data as output of some computation layer. Conv1d, MaxPool, and UpConv1d are abbreviations

for usual deep learning operations. Details can be found on pytorch’s documentation [45].

https://doi.org/10.1371/journal.pcbi.1009890.g001
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of convolutional layers. Similar to FCNet, its input vector is the concatenation of step speed,

turning angle and coverage time series over a 20-second window but its output is a vector of

diving probability of the same length. Overall, this architecture CNNet involves 5k parameters.

U-Network (UNet). As the considered problem can be seen as a segmentation task, a

U-Net architecture naturally arises as a state-of-the-art solution [44]. The key feature of this

architecture is to combine the information extracted by convolutional blocks applied at different

temporal scales. To achieve this multi-scale analysis, the U-Net applies pooling layer to coarsen

the time resolution and interpolation layers (UpConv1d layers) to increase the time resolution

as sketched in Fig 1. At each scale, we apply a specific convolution block. We concatenate its out-

put with the interpolated output of the coarser scale to a convolutional block, whose output is

interpolated to the finer resolution. Overall, we may notice that the output of the U-Net archi-

tecture is a time series with the same time resolution as the input time series. Similarly to FCNet

and CNNet, the last layer applies a sigmoid activation to transform the output into a time series

of diving probabilities. Overall, this architecture U-Net involves 20k parameters.

Network training and validation. Given a selected neural network architecture, the train-

ing procedure relies on a supervised learning scheme using a weighted binary cross entropy as

loss function. This function evaluates the performance of a prediction by comparing the dive

prediction (output of the model) with the true dives defined by TDR data. We consider a

weighted version of the binary cross entropy because of the unbalanced presence of dive and

no-dive behaviour in the studied trajectories (see Table 1). The objective is to penalize more

for mistakes on the smaller class (diving behaviour) than for false positive, thus ensuring for

convergence. In the reported experiments, the weight was empirically set to 5 for cormorants

datasets and 30 for boobies dataset.

The minimisation of the training loss exploits the Adam stochastic optimizer [47]. A fixed

learning rate of 0.001 was used for all training procedures. Networks were evaluated on train-

ing and validation datasets every epoch (defined as one pass through the entire train dataset).

We consider an early-stopping criterion such that the training procedure was stopped as soon

as the validation loss started increasing. Overall, given a trajectory the diving probability at a

given location was assessed by computing the mean probability of all predictions derived from

all 20 positions windows. These models were implemented, trained and tested with python

using pytorch library [45]. Our pytorch Code is available on our github repository: https://

github.com/AmedeeRoy/BirdDL.

Benchmarked methods

Two classical methods for dive prediction First-Passage Time (FPT), and Hidden Markov

Models (HMM) were evaluated for intercomparison purposes. FPT was computed following

[48], by selecting the radius that maximizes the variance of passage times. Time passage values

were converted into a probability of dives with min-max normalization. Regarding HMMs, we

applied the momentuHMM R package [28]. We implemented HMMs with 3 (resp. 4) beha-

vioural modes for boobies (resp. cormorants) associated to traveling, searching, diving and

resting behaviours. This approach represents trajectories as a sequence of steps and angles. It

models steps as random variables following a gamma marginal distribution and angle follow-

ing a von mises marginal distribution. We may point out that the HMMs directly provide as

outputs a likelihood value of the diving behaviour.

Evaluation scheme

We describe below the evaluation scheme we implemented to assess the performance of the

proposed neural network approaches. We first focus on the benchmarking of the performance
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of the considered approaches in terms of dive prediction accuracy for different data input. For

the proposed neural network architectures, we further analyze their generalization properties.

The methodological framework is exposed in Fig 2.

(a) Network training. We assessed the dive prediction performance of the 5 benchmarked

methods (FPT, HMM, FCNet, CNNet and UNet) considering trajectory data derived from the

two dataset from Pescadores Island (see Table 1). To test for the effect of temporal resolution,

the two datasets have been downsampled every 5, 15 and 30s. When downsampling, temporal

windows containing at least one dive were classified as dives. Each dataset were then splitted

into training, validation and test datasets with respective size of 50%, 30% and 20%. Deep net-

works were trained and selected based on the training and validation datasets. All approaches

were finally compared on the testing dataset. Overall, this led to the quantitative comparison

of the performance of 5 models on 6 datasets all listed in Table 2.

Fig 2. Evaluation scheme. (1) The datasets from Pescadores Island (see Table 1) have been used to train, validate and

test deep networks. UNet, CNNet and FCNet refer to the deep network architectures used in this study (see Fig 1). (2)

The trained networks have been directly used to predict dives on two other datasets without any additional training

(Datasets from Guañape Island and Fernando de Noronha). (3) The dataset from Brazil have been used to train,

validate and test deep networks. However, the deep networks previously obtained at step (1) have been used for weight

initialization. This is known as Fine-tuning.

https://doi.org/10.1371/journal.pcbi.1009890.g002
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As evaluation metrics for dive prediction, we evaluated the receiver operating characteris-

tics curve (ROC) which describes the performance of a binary classifier. It consists in plotting

the true positive rate (i.e. true predicted dives) against the false positive rate (i.e. false predicted

dives). We obtain this curve by varying the probability threshold defining dive/no dive behav-

iours. Moreover, we evaluate the area under the curve (AUC) as well as the binary cross

entropy (BCE) for the test datasets. Regarding the AUC, it was estimated by integrating the

ROC curve along the x axis using the composite trapezoidal rule. For neural network

approaches, we also analyzed the value of the training loss for the training and test datasets.

(b) Generalization performance of pre-trained networks. In this section, we evaluated the

generalization performance through the application of models trained on Pescadores dataset

to data that have not been used during the training process. In particular, we evaluate previ-

ously fitted deep networks performance on the two datasets from Guañape Island and from

Fernando de Noronha Archipelago, composed of Peruvian boobies and masked boobies tra-

jectories, respectively. In this experiment, we compared the dive prediction performance of

FPT and HMM methods to the best FCNet, CNNet and UNet models. Beyond AUC and BCE

performance metrics, we also evaluated the relevance of the estimated maps of dive distribu-

tions. The later were computed using a weighted Kernel Density Estimator (KDE) using dive

probabilities as weighing factor. As groundtruth, we considered the map of dive distributions

estimated from true dive locations defined by TDR data. Kernel densities were estimated using

a 0.01×0.01˚ grid and a bandwith of 0.25˚. From these maps, we evaluated an means square

error (MSE) as an integrated performance metrics for the different approaches [49].

(c) Network fine-tuning. We evaluated the benefits of fine-tuning for predicting dives of

the 15s-resampled Brazilian dataset (Table 1) based on the deep networks fitted on the dataset

from Pescadores. The Brazilian dataset was therefore split into training, validation and test

datasets with respective size of 50%, 30% and 20%. We then trained models from scratch and

using fine-tuning for the three studied network architectures and following the learning proce-

dure presented before. We also evaluate the impact of the training dataset size by randomly

selecting respectively 1, 5, 15 and 30 foraging trips for the training step. All models were finally

compared to HMM and FPT methods on the testing dataset and using the AUC evaluation

metric.

Results

We detail below the numerical experiments performed in this study to assess the relevance of

the proposed neural network approaches to predict dive behaviour of boobies and cormorants

from trajectory data.

(a) Network training. On the Pescadores Island dataset used for network training, we

reported a contrasted performance of the different methods, with AUC going from 0.61 to

0.96 (see Table 2), which corresponds in the best cases to correct prediction rates of diving and

non-diving behaviour of approximately 95% and of 60% in the worst cases (see Fig 3). Overall,

all methods performed better at predicting the dives of boobies than those of cormorants. The

UNet obtained systematically the best prediction performance with averaged AUC of 0.93

(resp. 0.90) for boobies and cormorants respectively. The CNNet also achieved very good pre-

dictions, consistently performing at least as well as state-of-the-art tools with averaged AUC of

0.9 (resp. 0.85). The lowest performance was reported for the FPT approach, which never pre-

dicted dives with AUC higher than 0.73. The HMM obtained relatively good performance on

the boobies dataset with AUC indices around 0.85, yet it did not get AUC higher than 0.76 on

the cormorants dataset. It also obtained the highest BCE, approximately 2 to 10 times higher

than the UNet. Regarding the FCNet, the AUC index ranged from 0.65 to 0.89, showing a
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much greater variability than for CNNet and UNet architectures. The best neural network pre-

dictions for Pescadores dataset are illustrated in Fig 4. Interestingly, deep networks were rela-

tively sensitive to the sampling resolution, whereas it did not affect much the performance of

the FPT and HMM approaches. For both species, the higher the resolution, the better the per-

formance for UNets, CNNets and FCNets. For instance, we reported a mean AUC of 0.92 for a

5s resolution vs. 0.81 for a 30s resolution. This was particularly true for the CNNet and mostly

for the FCNet which did not performed better than HMM on the 30s-resoluted datasets,

whereas they were able to outperform state-of-the-art approaches on the 5s-resoluted datasets.

(b) Generalization performance of pre-trained networks. Overall, all networks trained

with data from Pescadores reported a AUC performance higher than 0.78 (resp. 0.56) when

Table 2. Deep networks training. Performance metrics for all trained deep networks on the trajectories of Pescadores along with benchmarked methods used for

comparison.

Dataset Resolution Model AUC BCE F-score Train Loss Validation Loss Reference Name

SV (Pescadores) 5s FPT 0.62 0.70 0.55 - - -

HMM 0.86 1.07 0.69 - - -

FCNet 0.89 0.38 0.81 0.61 0.61 SV_FCNet_5s

CNNet 0.94 0.29 0.88 0.48 0.49 SV_CNNet_5s

UNet 0.96 0.23 0.91 0.48 0.45 SV_UNet_5s

15s FPT 0.71 0.79 0.66 - - -

HMM 0.87 2.39 0.84 - - -

FCNet 0.82 0.81 0.80 1.35 1.16 SV_FCNet_15s

CNNet 0.91 0.58 0.85 0.89 0.86 SV_CNNet_15s

UNet 0.93 0.57 0.86 0.87 0.79 SV_UNet_15s

30s FPT 0.73 0.97 0.70 - - -

HMM 0.84 1.22 0.68 - - -

FCNet 0.82 1.10 0.79 1.69 1.74 SV_FCNet_30s

CNNet 0.85 0.98 0.80 1.55 1.47 SV_CNNet_30s

UNet 0.91 0.73 0.86 1.12 1.10 SV_UNet_30s

LB (Pescadores) 5s FPT 0.61 1.59 0.57 - - -

HMM 0.78 1.42 0.72 - - -

FCNet 0.87 0.40 0.79 0.55 0.67 LB_FCNet_5s

CNNet 0.92 0.30 0.84 0.48 0.57 LB_CNNet_5s

UNet 0.93 0.28 0.85 0.46 0.54 LB_UNet_5s

15s FPT 0.58 1.73 0.62 - - -

HMM 0.76 3.35 0.72 - - -

FCNet 0.67 0.77 0.75 0.85 0.94 LB_FCNet_15s

CNNet 0.89 0.43 0.85 0.60 0.73 LB_CNNet_15s

UNet 0.90 0.37 0.83 0.52 0.76 LB_UNet_15s

30s FPT 0.56 1.81 0.62 - - -

HMM 0.75 2.90 0.74 - - -

FCNet 0.65 0.92 0.75 0.96 1.10 LB_FCNet_30s

CNNet 0.74 0.74 0.76 0.86 1.01 LB_CNNet_30s

UNet 0.88 0.37 0.83 0.97 1.05 LB_UNet_30s

AUC means the Area Under the ROC curve. BCE is for binary cross entropy computed on the testing trajectories. Train and Validation Loss correspond to the loss

computed after model training on respectively training and validation datasets. SV is for Peruvian boobies (Sula variegata), LB is for Guanay cormorants (Leucocarbo
bougainvilli)

https://doi.org/10.1371/journal.pcbi.1009890.t002
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applied to Guañape (resp. Fernando de Noronha) dataset (Fig 5). AUC performance averaged

0.85 when using deep networks trained with the boobies dataset and 0.72 with cormorants

data (see Table 3). On both datasets, the best models were UNet and CNNet models trained

from boobies data with respectively AUC scores of 0.98 and 0.87. In particular, they outper-

formed the HMM that were specifically fitted to Guañape and Fernando de Noronha data. By

contrast, the FCNet used by [17] that obtained better results than HMM on the Pescadores

dataset (AUC of 0.89 vs 0.86 for HMM) did not predict better than HMM when used at

Guañape (e.g. AUC of 0.89 vs 0.92 for HMM). The MSE for the estimated dive distribution

maps stressed the greater relevance of UNet predictions with a MSE value 1.6 times smaller

than the one derived from CNNet estimations and 1.9 times smaller than the one derived from

HMM estimations (Table 3). As illustrated in Fig 6, only the Unet did not overestimate the

number of dives in the vicinity of the colony as well as an other foraging area southward from

the colony.

(c) Network fine-tuning. In this section, we evaluated the benefits of a fine-tuning strategy

for the prediction of masked boobies dives. As expected, all deep networks initialized using

previous models converged more quickly than deep networks trained from scratch. In particu-

lar, a dataset of 15 foraging trips (i.e. around 30k GPS positions) was enough for convolutional

networks to obtain AUC of 0.9 using fine-tuning, whereas deep networks trained from scratch

needed twice as many trips for the same predictive performance (Fig 7). The improvement

issued from a fine-tuning was notably important for small-to-medium datasets (5-10 foraging

trips, i.e. 10k to 20k GPS positions), and for the CNNet. It decreased as the size of the dataset

increased. From our experiments, at least 5 trips were necessary to fine-tune a relevant net-

work compared with the HMM baseline (see for instance bottom-center in Fig 7). The best

neural network predictions for the Brazilian dataset are illustrated in Fig 4.

Fig 3. Performance of deep networks on pescadores dataset. ROC curves obtained from the prediction of 5

algorithms, First-Time Passage (FPT), Hidden Markov Models (HMM), Fully-Connected Network (FCNet), Fully-

Convolutional Network (CNNet) and U-Network (UNet) on 2 distinct test datasets resampled at 3 different

resolutions (5, 15 and 30s) derived from two seabirds species breeding in Pescadores Island from 2008 to 2013. SV

stands for Peruvian boobies (Sula variegata), and LB stands for Guanay cormorants (Leucocarbo bougainvilli).

https://doi.org/10.1371/journal.pcbi.1009890.g003
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Discussion

This study aimed at predicting seabirds dives from GPS data only using deep neural networks

trained in a supervised manner based on TDR data to define the groundtruthed dives. In line

with [17], this study further supports the relevance of deep learning approach over classical

methods for dive predictions. Using convolutional architectures rather fully-connected ones,

we reported even better results with higher stability to the different data inputs, as well as bet-

ter generalization abilities.

Peruvian boobies and Guanay cormorants tracked in Peru breed in a highly productive

upwelling system, the Humboldt Current System (HCS) and feed on the same preys, i.e. Peru-

vian anchovies [50]. However, they are known to have distinct foraging strategies: boobies are

plunge divers reaching in average about 2 m depth and spending most of the time in fly, while

cormorants dive deeper and longer on average, reach up to 30 m depth, and spend up to 40%

of the time resting on the water surface [51] (Table 1). By contrast masked boobies breeding at

Fernando de Noronha are plunge divers similarly to Peruvian boobies, yet they forage mainly

in oligotrophic waters [52] and feed mainly on flying fish and flying squids [53, 54]. Their for-

aging strategies then differ from Peruvian boobies as they perform longest trips and spend

more time resting at sea surface (Table 1). We demonstrated that for these three species, our

best deep network models were able to accurately predict around 95% of dives and

Fig 4. Maps of predicted dives for all ‘test’ datasets. Red points represent true dive derived from TDR data. Blue

points represent diving probabilities at each location with radius increasing for higher probabilities. These probabilities

are the outputs of the best deep networks for each dataset: Peruvian boobies from Pescadores (top left), and from

Guañape Island (bottom left), Guanay cormorants from Pescadores Island (top right), and masked boobies from

Fernando de Noronha archipelago (bottom right). SV stands for Peruvian boobies (Sula variegata), LB for Guanay

cormorants (Leucocarbo bougainvilli) and SD for masked boobies (Sula dactylatra). Bathymetry is shown in grey and is

extracted from GEBCO gridded dataset (https://www.gebco.net/). Land-sea mask is extracted from GSHHG data

(https://www.soest.hawaii.edu/pwessel/gshhg/).

https://doi.org/10.1371/journal.pcbi.1009890.g004

PLOS COMPUTATIONAL BIOLOGY Deep inference of seabird dives

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009890 March 11, 2022 11 / 18

https://www.gebco.net/
https://www.soest.hawaii.edu/pwessel/gshhg/
https://doi.org/10.1371/journal.pcbi.1009890.g004
https://doi.org/10.1371/journal.pcbi.1009890


Fig 5. Performance of tested deep networks. ROC curves obtained from the prediction of 5 algorithms, First-Time

Passage (FPT), Hidden Markov Models (HMM), Fully-Connected Network (FCNet), Fully-Convolutional Network

(CNNet) and U-Network (UNet) on 2 distinct test datasets. SV stands for Peruvian boobies (Sula variegata), and LB

stands for Guanay cormorants (Leucocarbo bougainvilli). The deep networks used in this figure have been trained on

the dataset from Pescadores (see Fig 3 and Table 2). They have been used for dive prediction of Peruvian boobies in

Guañape (left column) and for masked boobies in Fernando de Noronha (right column).

https://doi.org/10.1371/journal.pcbi.1009890.g005

Table 3. Deep network testing. The deep networks fitted on the dataset from Pescadores have been used for dive prediction in Guañape and in Fernando de Noronha.

Deep networks are described by their reference name (see Table 2).

Dataset Resolution Model AUC BCE F-score MSE

SV (Guañape) 5s FPT 0.65 0.57 0.43 10.9

HMM 0.92 2.46 0.88 7.7

SV_FCNet_5s 0.89 0.31 0.80 7.7

SV_CNNet_5s 0.97 0.20 0.91 6.5

SV_UNet_5s 0.98 0.10 0.91 4.0

LB_FCNet_5s 0.78 0.09 0.05 13.8

LB_CNNet_5s 0.87 0.07 0.07 7.8

LB_UNet_5s 0.87 0.08 0.09 14.5

SD (FdN) 15s FPT 0.50 0.75 0.22 7.5

HMM 0.84 1.86 0.81 3.4

SV_FCNet_15s 0.63 1.17 0.71 4.8

SV_CNNet_15s 0.87 0.59 0.83 3.8

SV_UNet_15s 0.73 0.58 0.55 5.8

LB_FCNet_15s 0.56 0.61 0.48 6.5

LB_CNNet_15s 0.62 0.27 0.08 12.9

LB_UNet_15s 0.63 0.18 0.08 13.2

AUC is for area under the roc curve. BCE is the binary cross entropy. MSE corresponds to the mean square error of the diving distribution maps estimated with kernel

density estimations and plotted in Fig 5 to the correct diving distribution. SV is for Peruvian boobies (Sula variegata)

https://doi.org/10.1371/journal.pcbi.1009890.t003
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outperformed HMM that predicted around 85% of dives. In particular, the proposed U-shape

deep network (UNet) demonstrated a greater robustness to different data inputs, as it obtained

the best results whatever the sampling resolution (Table 3).

Additionally, UNet also resulted in better seabird dive distribution maps (Fig 6). Recently

numerous studies used seabirds dive as a proxy for prey distribution, and such distribution are

usually computed by applying KDE on dive predictions derived from HMMs [55–57]. Here,

we show that the error in the estimation of dive distributions maps can be divided by two

when using deep learning tools rather than HMM tools. In our specific study, HMMs over-

estimated the frequency of dives at specific locations (including the vicinity of the colony).

Sulids and cormorants spend time bathing near their breeding territories involving vigorous

Fig 6. Maps of dive distributions of Peruvian boobies from Guañape Island. —These density maps were obtained

through Kernel Density Estimation. The top left map has been computed from true dives derived from TDR data. The

five other maps are estimations of this map, using all points of the trajectories with weights associated to diving

probabilities estimated by the studied approaches: First-Passage Time (FPT), Hidden Markov Model (HMM), Fully

Connected Network used by [17] FCNet (top right), fully-Convolutional Network (CNNet), and the U-Network

(UNet). Dive map mean square error (MSE) between estimated and reference distribution are in Table 3. Land-sea

mask is extracted from GSHHG data (https://www.soest.hawaii.edu/pwessel/gshhg/).

https://doi.org/10.1371/journal.pcbi.1009890.g006

Fig 7. Fine-tuning. AUC indices of trained deep network function of dataset size.

https://doi.org/10.1371/journal.pcbi.1009890.g007
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splashing and beating the water with the wings [53]. Such behaviours associated to low speed

might be erroneously classified as diving behaviour by state-of-the-art tools which could

explain the observed bias. This might also explain why HMM are better at predicting boobies’

than cormorants’ dives because these birds spend more time resting at the surface, which cor-

responds to low speed patterns without being dives (see Table 1). We may also stress that Cor-

morants trajectories are characterized by relatively long gaps in the regularly sampled

sequence of locations, since these devices do not receive a satellite signal while submerged [26,

58]. This may in turn make more complex the analysis of Cormorants trajectories. In this

respect, UNet showed a greater ability to discriminate the resting/bathing behaviours from

dives, and a greater robustness to the presence of linearly-interpolated segments. Whereas

HMM are mostly driven by fine-scale features (w.r.t. the considered time resolution), UNets

exploit a multi-scale analysis of trajectory data and can extract relevant multi-scale information

to retrieve dive. Future work could investigate further the key features extracted by UNets. As

shown in Fig 3, the performance of the deep networks was closely related to the temporal reso-

lution of the sampled dataset. Whereas HMM did not succeed in exploiting higher-resolution

data, UNets led to better performance when the resolution increased. This supports a greater

ability of UNets both to deal with potential aliasing effects as well as to exploit fine-scale fea-

tures. With technological advances in sensor technology, ecologists are able to collect larger

amount of data than ever before. We might expect GPS with lower consumption and higher

resolution in the future. Such an expected trend would make more critical the exploitation of

the proposed deep learning approaches to make the most of the collected high-resolution ani-

mal trajectories [13, 59, 60].

When considering neural network approaches, training models which may apply beyond

the considered training framework is a key feature, generally referred to as the generalization

performance of the trained neural networks. Beyond the evaluation of dive prediction perfor-

mance on a trajectory dataset, which is independent from the training dataset, the question

whether a model trained on a given dataset, e.g. for a given species, colony and time period,

may apply to other species, colonies and/or time periods, naturally arises as a key question.

Numerous studies in the deep learning literature [61, 62] have highlighted that some neural

architectures show relevant generalization properties whereas others may not. Here, we evalu-

ated the generalization performance of the three benchmarked deep networks.

Thus we demonstrate the ability of deep networks trained at a colony for one species to also

apply to an another colony (of the same ecosystem) for the same species. In our example, Peru-

vian boobies from Guañape Island did have different foraging strategies from their counter-

parts from Pescadores island, with trips two times longer and dives slightly longer (see

Table 1). However, the UNet reached similar dive prediction performance when applied to

Guañape data. This suggests that dive patterns are highly similar between Peruvian boobies

from both colonies. We also show the great ability of the CNNet to generalize dive prediction

to a seabird of same genus but from a totally distinct ecosystem. When applied to masked boo-

bies trajectories from a Brazilian colony the CNNet trained from Peruvian boobies data

obtained an AUC of 0.87 despite the important difference in foraging strategies (Table 3). The

same model trained on masked boobies data reached an AUC of 0.93 (Fig 7), suggesting that

diving characteristics are slightly different. Masked boobies from the Brazilian colony feed

indeed on different preys, and spend way more time resting at the surface (Table 1). As deep

networks trained on cormorants unsurprisingly led to less accurate prediction when used to

predict boobies dives, we suggest that the CNNet may capture genus-specific features. These

results then support the relevance of deep learning schemes as ‘ready-to-use’ tools which could

be used by ecologists to predict seabirds dives on new (small) datasets, including when these

datasets do not include groundtruthed dive data for a supervised training. To make easier such
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applications, we share online the different models we trained on the considered datasets

(https://github.com/AmedeeRoy/BirdDL/models).

Beyond such a direct application, trained models are also of key interest to explore transfer

learning strategies, which refer to the ability of exploiting some previously trained models to

address a new task or dataset rather than training a new model from scratch. We illustrated

how fine-tuned CNNet and UNet models could outperform HMM with smaller training data-

sets. For instance, the fine-tuned CNNet for the prediction of masked boobies’ dive was able to

converge and outperform HMM with a dataset twice as small as the dataset required to reach

same performance without fine-tuning (Fig 7). Such a result was even possible by initializing

neural networks with the model trained with cormorant data. This further supports the ability

of deep networks to generalize their prediction from deep diving seabirds (e.g. cormorants) to

plunge divers (e.g. boobies). Fine-tuning is thus particularly relevant when the training dataset

may not be sufficiently large to train a model from scratch. While the need of large dataset is

often presented as a drawback for supervized techniques, we demonstrated that relatively

small datasets (5-10 foraging trips, i.e. 10k to 20k GPS data) may be enough to fine-tune deep

networks and outperform state-of-the-art approach to data segmentation. Thus, we expect that

our models will be of interest for future work on seabird trajectory segmentation, as they could

be used as initializations for fine-tuning procedures.
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