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Abstract 15 

The use of detritivores under sea farms is a promising avenue to mitigate the benthic impacts 16 

of marine fish farms. Sea cucumbers are interesting candidates for integrated multi-trophic 17 

aquaculture (IMTA) due to their prevalence in the marine environment, their diversified diet 18 

and their economic value. Yet limited information is available regarding their capacities to be 19 

stocked and reared underneath aquaculture cages and the associated effects on their survival, 20 

growth rate and body composition. This study focused on Holothuria tubulosa, a 21 

Mediterranean sea cucumber species candidate for rearing in the vicinity to marine fish cages. 22 

We investigated its potential for co-culture on the seabed more or less influenced by marine 23 

fish cages. The farm’s waste footprint was predicted using a dispersion model 24 

(NewDEPOMOD) to estimate the farm’s influence along a transect where we also sampled 25 

sediment at four distances from the cages (0 m, 25 m, 100 m from the cages, plus a reference 26 
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site at 150 m). Organic composition of the sediment was analysed (TOC, TON, TOP, OM, stable 27 

isotope signature) and linked to the results from the dispersion model. Based on the model 28 

simulation, the maximum flux of matter reached almost 17 kg solids.m-2.year-1 below the 29 

cages, and gradually decreased with distance from the cages. An isotopic gradient was also 30 

found in the sediments according to the distance from the farm, with an enrichment in δN15 31 

and a depletion in δC13 with increasing proximity to the farm. In parallel we investigated the 32 

response of adult sea cucumbers placed at varying distances from the fish cages for a period 33 

of one month, measuring their proximate composition, isotopic concentration, and fatty acid 34 

and protein composition. We found that despite good survival, growth was null over the 35 

experiment. While the isotope signature of the sea cucumbers was significantly affected by 36 

distance from the cage, this did not follow the pattern found in sediment. There was a clear 37 

difference in fatty acid composition between sites, with sea cucumbers closer to the cages 38 

having lower levels of short-chain fatty acids. The protein content was also lower in sea 39 

cucumbers reared right below the cages. These results suggest that while adult H. tubulosa 40 

can survive the environmental conditions below marine aquaculture cages, they do not 41 

nutritionally benefit from fish waste over short periods in the stocking conditions we tested. 42 

Their use in IMTA requires further investigation to find optimal stocking conditions. 43 

Key words: detritivores, sea cucumber, integrated multi-trophic aquaculture, isotopes, fatty 44 

acids, organic footprint 45 

 46 

1. Introduction 47 

Detritivores have a crucial role in terrestrial ecosystem processes, as their presence avoids 48 

biotic detritus accumulation and facilitates nutrient cycling and further primary production 49 

(Schowalter, 2016). Their role is also central in marine ecosystems through their bioturbation 50 
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activities, as they can enhance microbial processes that play a major role in organic matter 51 

decomposition, mineralization and nutrient production (Göltenboth, 2006).  52 

Among marine detritivores, sea cucumbers (Echinodermata: Holothuroidea) are vital 53 

members of benthic communities and are present all over the world. They have multiple 54 

ecological roles including (a) sediment bioturbation, (b) remediating organic load (Costa et al., 55 

2014), (c) enhancing the productivity of benthic biota (e.g. seagrass, Costa et al., 2014, 56 

Wolkenhauer et al., 2010), (d) buffering against ocean acidification, (e) hosting more than 200 57 

symbionts, and (f) acting as food sources for many animals, including humans (Purcell et al., 58 

2016).  59 

Sea cucumbers can have high economic value (Purcell et al., 2018). They are mostly exploited 60 

for food, principally in Asia, with body integument the main targeted product, which is dried, 61 

boiled, salted or cooked (Conand, 1990). Other food by-products such as fermented intestines 62 

and dried gonads are marketed in Japan, Korea and China (Stutterd and Williams, 2003). In 63 

East Asia, sea cucumbers are also used as traditional medicine to treat a number of conditions 64 

(Pangestuti and Arifin, 2018; Xue et al., 2015), including arthritis and joint pain. Scientific 65 

studies confirming the presence of a range of bioactive compounds in sea cucumbers have 66 

more recently attracted the attention of the pharmaceutical sector (Kiew and Don, 2012). 67 

Their saponins have been found to have anti-inflammatory and anti-cancer properties 68 

(Pangestuti and Arifin, 2018), and other molecules have been described as having antibacterial 69 

(Santos et al., 2016) and antifungal properties (Hamel and Mercier, 1997). Sea cucumbers are 70 

also used in certain cosmetics, including liniment, soap and toothpaste. Depending on the 71 

species, the selling price can vary dramatically, with some reaching more than 1000 $.kg-1 (e.g. 72 

Apostichopus japonicus and Holothuria scabra, Conand, 2017), which has resulted in strong 73 
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fishing pressure to supply expanding international demand. It is estimated that 200 million 74 

sea cucumbers are extracted from marine ecosystems every year (Purcell et al., 2013; Tanzer 75 

et al., 2015) and provide an important source of income to many coastal fishermen, but are 76 

consequently threatened by overfishing (FAO, 2008). The development of sea cucumber 77 

aquaculture could provide a solution to meet commercial demand on one hand, while equally 78 

facilitating conservation by allowing the restocking of some species.  79 

In aquaculture systems, particulate wastes, including the faeces of fish and uneaten feed, 80 

settle in the vicinity of farms, potentially unbalancing the benthic environment once ecological 81 

carrying capacity is exceeded (Hargrave et al., 1997; 2008). This accumulation of organic 82 

matter is a major environmental stressor which can induce anoxic zones and increases 83 

pathogen pressure, therefore having an impact on the health of both farmed animals and the 84 

environment (Chopin et al., 2012; Dauda et al., 2019; Granada et al., 2016; Troell et al., 2009). 85 

The organic footprint of an aquaculture farm can be evaluated through environmental 86 

sampling or modelled using particle dispersion models such as KK3D, AWATS, or DEPOMOD 87 

(Cromey et al., 2012; Dudley et al., 2000; Jusup et al., 2009; Riera et al., 2017). 88 

Aquaculture effluents also stimulate biological activity, with organisms of different trophic 89 

strategies aggregating in and around cage facilities to consume the waste (Ballester-Molto et 90 

al., 2017; Callier et al., 2013; 2018). Integrated multi-trophic aquaculture (IMTA), which co-91 

cultivates species from different trophic levels, has been put forward as a potential tool to 92 

mitigate aquaculture footprint (Chopin et al., 2012). Systems including detritivorous species 93 

such as sea cucumbers, capable of consuming aquaculture waste material (Nelson et al., 94 

2012), have been successfully combined with many species. For example, associations have 95 

been tested between sea cucumber and sea urchin (Holothuria tubulosa as extractive species 96 
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and Paracentrotus lividus as primary species, Grosso et al., 2021) or between sea cucumber 97 

and fish such as Sebastes melanops and Apostichopus japonicus (Park et al., 2015), 98 

Anoplopoma fimbria and Parastichopus californicus (Hannah et al., 2013), Sciaenops ocellatus 99 

and Isostichopus badionotus (Felaco et al., 2020), Dicentrarchus labrax and Holothuria forskali 100 

(MacDonald et al., 2013), and Dicentrarchus labrax or Sparus aurata and Holothuria tubulosa 101 

(Neofitou et al., 2019; Tolon et al., 2017a,b).  102 

The most common sea cucumber species in the Mediterranean are H. tubulosa, H. forskalii 103 

and H. poli (Ocana and Sanchez Tocino, 2005). Of these, the deposit feeder H. tubulosa 104 

(Gmelin, 1790) is the most widespread. Over the last decades, this species has been 105 

increasingly harvested in the Mediterranean due to growing consumer demand in Asia, with 106 

illegal fishing more and more frequently reported (Meloni and Esposito, 2018). Aquaculture 107 

research has demonstrated successful results for the artificial reproduction and larval rearing 108 

of H. tubulosa (Rakaj et al., 2017; Tolon et al., 2017b). However, little is known about their 109 

capacities to survive, and grow on fish effluents in proximity to aquaculture marine cages, and 110 

nothing is available on consequences on their body composition and consequently nutritional 111 

value. 112 

The aim of this study was to use biometric and biochemical measures to explore whether H. 113 

tubulosa can benefit from fish farm waste when stocked at sites under different levels of 114 

influence from marine aquaculture cages, identified using a deposition model. We 115 

hypothesized that (a) H. tubulosa placed underneath fish cages would assimilate waste from 116 

the farm, that (b) the distance to the farm would influence H. tubulosa isotopic composition 117 

proportionally to the organic matter content in the sediment; and that (c) specific fatty acids 118 

and higher protein content would be found in individuals in proximity to the farm. To test 119 
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these hypotheses, over a period of one month, we first identified sites more or less affected 120 

by fish cages using the dispersion model DEPOMOD, then stocked H. tubulosa on the seabed 121 

along a transect starting from the aquaculture cages and analysed isotopic values (δ15N and 122 

δ13C) in the sediment and in sea cucumbers as tracers of fish waste. Complementary analyses 123 

of protein content and fatty acid composition in sea cucumbers were performed to obtain 124 

information on H. tubulosa’s capacity to assimilate a new source of food in an IMTA context. 125 

2. Material and methods 126 

2.1 Study site and characteristics 127 

The study was conducted in the bay of Campomoro (Gulf of Valinco, southern Corsica, France), 128 

which since 1992 has hosted a marine fish farm producing 150 tonnes of organic sea bass and 129 

sea bream each year. The bay is around 1.2 km wide with a maximum depth of 65 m. The two 130 

species are reared in separate cages from a body weight of 5 g to a commercial size of 500 g. 131 

The farm had 32 square cages (6 x 6 x 9 m, WxLxH) and 2 round cages (16 x 17m, DxH). The 132 

fish were fed every day by hand with an organic commercial diet from Gouessant or Skretting. 133 

The farm’s biological data (feed composition, feed quantity, fish species, fish biomass) were 134 

provided by the farm.  135 

2.2 Modelling of farm waste deposition 136 

The organic footprint of the farm was modelled using NewDEPOMOD software (v1.3.1-137 

patch02, SAMS). NewDEPOMOD is a lagrangian particle dispersion model structured in four 138 

modules (i) grid generation, (ii) particle tracking, (iii) resuspension, and (iv) benthic fauna 139 

response (benthic impacts).  140 

The grid generation module allows to generate a grid domain based on bathymetry data and 141 

cage positions and dimensions. Bathymetry data at an initial resolution of 111m were 142 
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extracted from the SHOM database (SHOM, 2015) and interpolated using the kriging method 143 

in ArcGIS software (v.10.6.1) to obtain 10m x 10m resolution data. These bathymetry data 144 

were then imported in NewDEPOMOD to create a grid for the entire bay of Campomoro. Cages 145 

layout and positions were communicated by the farm and entered in NewDEPOMOD. 146 

The particle tracking module calculates particle waste emission using farm rearing data and 147 

describes their transport from the surface to the seabed based on current and particle settling 148 

velocities. Solid waste emissions for sea bream and sea bass stocks were calculated in the 149 

particle tracking module based on the stocking density and feeding ratios. Default waste 150 

composition (Percentage of carbon in faeces composition 30%, Percentage of carbon in feed 151 

49%, Percentage of water in feed composition 9%) and feed digestibility (Percentage of feed 152 

absorbed by fish 85%, Default specific feeding rate - mass of feed in kg as a percentage of 153 

biomass in kg 0.7%) data of the software were used. A value of 3% unconsumed feed was 154 

assumed, based on previous studies (Cromey et al., 2002; 2012). Faeces settling velocities 155 

parameters were set as lognormal distribution with a mean of 0.7 cm.s-1 and 0.48 cm.s-1 and 156 

a distribution of 0.83 and 0.47 for seabass and seabream respectively (Magill et al., 2006). No 157 

information on the settling velocity of feed pellets was available, so the software’s default 158 

value was used: a uniform distribution at 9.5 cm.s-1. Current fields over the entire water 159 

column were measured at the farm from 24 September to 24 October 2019 using an acoustic 160 

current meter (3D-ADCP, WorkHorse Sentinel 600 kHz Teledyne®). The current meter was 161 

placed 2 m from the cages at the extreme offshore end of the farm and recorded current 162 

velocity and directions at a 5 minutes time step. Current velocity data was averaged at each 163 

time point over three water layers (0–3 m, 7–10 m and 17–20 m) representative of the surface, 164 

middle and bottom of the water column according to Hills et al. (2005) and used as forcing in 165 

the particle tracking module, therefore assuming to be the same over the entire grid. 166 
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Dominant currents were found to be mostly flowing south/southeast with a velocity generally 167 

below 10 cm.s-1. Default values were used for vertical (kz = 0.001 m2 s−1) and horizontal (kx = 168 

0.1 m2 s−1, ky = 0.1 m2 s−1) dispersion coefficients (Cromey et al., 2002; Gillibrand and Turrell, 169 

1997). 170 

The resuspension module is used to describe seabed processes including erosion, transport, 171 

deposition and consolidation of the particles on the seabed. NewDEPOMOD’s default 172 

resuspension parameters were used (Black et al., 2016).  173 

Waste emission and deposition were simulated with NewDEPOMOD over one month, from 24 174 

September to 24 October 2019. The software provided particulate waste deposition fluxes 175 

expressed in g solids.m-2.year-1 for each cell of the grid. The results were then transferred to 176 

ArcGIS to create the deposition graphs.  177 

2.3 Specimen collection 178 

In July 2020, 42 adult specimens of H. tubulosa naturally present in the study area were 179 

collected by scuba divers at a depth of 17 m near Posidonia oceanica meadows in the bay of 180 

Campomoro, outside the influence of the farm.  181 

Before biometric measurements, holothurians (171.4 ± 64.3 g, mean WW ± SD) were kept 182 

fasted overnight to ensure gut content evacuation, as recommended by Tolon et al. (2017a). 183 

They were then anesthetized for 30 minutes in a mixture of menthol and ethanol (5.6 g/L 184 

ethanol) diluted in aerated seawater (1 L per 50 L). The body length and diameter (at the 185 

largest part) were then measured with a precision of 0.1 mm and 0.01 mm respectively. Wet 186 

weight (WW, in g) was measured in a tank filled with clear seawater on a scale with a precision 187 

of 0.1 g. Six randomly chosen individuals were then euthanized on ice, opened, and the body 188 

wall stored at -20°C for further analyses. 189 
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2.4 Experimental design  190 

Four experimental sites to test the effect of aquaculture waste on sea cucumbers were 191 

identified along a transect: site “0” under the cages (20.4 m deep), site “25” at 25 m from the 192 

cages (21.3 m deep), site “100” at 98 m from the cages (23 m deep), and the “reference” site 193 

(19 m deep), located 250 m northwest of the cages, outside the influence of the farm. At each 194 

site, triplicate baskets with a triangular-prism shape and rigid 1-cm mesh (commonly called 195 

Australian oyster baskets) were fixed in the sediment. The baskets’ length, width and height 196 

were respectively 80 cm x 35 cm x 20 cm (effective sediment surface area of 0.28 m-2). At the 197 

beginning of July 2020, three individuals were placed in each basket.  198 

One month later, the baskets were brought to the surface, and the animals were anesthetized 199 

and weighed using the same protocol as at the start of the experiment. They were then 200 

euthanized on ice, opened, and the body wall was stored at -20°C until further analyses. In 201 

total, 33 animals out of the 36 originally placed in the baskets were recovered. The 3 lost 202 

animals (1 at site “reference”, and 2 at site “25 m”) may have died or escaped during the 203 

experiment. 204 

2.5 Environmental data  205 

The bottom water temperature (°C) near the experimental infrastructure was recorded at 30-206 

minute intervals by an NKE-STPS logger fixed to the infrastructure (from 6 July to 6 August 207 

2020). During the entire experiment, there was a stable water temperature of around 21.7 ± 208 

1.3°C. At the beginning and the end of the experiment, samples of superficial sediment (1–3 209 

cm) were collected by divers at each site using a corer (diameter 20 mm). Samples (3 cores 210 

per site, n = 23*) were kept in the dark and on ice before being frozen and processed within 211 



 10 

30 days (ISO, 2004). *One sediment sample (at the end of the experiment and from site 212 

“reference”) was partially spilled after being collected and was therefore discarded. 213 

2.6 Trophic biomarkers 214 

Dry weight (DW) was measured at a precision of 0.1 g after lyophilization for all samples 215 

(animals, sediment and fish feed). Lyophilized sea cucumbers (n = 33), sediment (n = 23) and 216 

feed (n = 4) were homogenized into powder using a grinder. Powdered samples were 217 

combusted in an Integra CN Analyzer and the resultant gases were introduced into a 218 

continuous-flow isotope ratio mass spectrometer (SERCON Integra CN) to determine C and N 219 

amounts as well as their isotope ratios, according to the procedure described in Raimbault et 220 

al. (2008). The stable isotope (SI) data was expressed as the relative difference between 221 

samples and standard reference materials as follows: 222 

  δX (‰) = � �	
��
�
�	�
��
��

− 1� ×103  223 

where X is 13C or 15N, and R is the ratio of heavy to light isotope (13C/12C or 15N/14N). 15N/14N 224 

gives clues about the animal food source and trophic level, upward movement tending to 225 

concentrate δ15N isotopes by 3–4‰ at each stage in the food chain.   226 

The particulate phosphorus was determined by wet oxidation using potassium 227 

persulfate (Raimbault et al., 1999). Carbon (TOC), nitrogen (TON) and phosphorus (TOP) levels 228 

were reported in %.  229 

To further explore sea cucumber biochemical composition, crude protein content was 230 

determined according to the Kjeldahl method (N × 6.25) (Association of Official Analytical 231 

Chemists, 2000).  232 

After extraction by acid transmethylation, fatty acid (FA) composition was analysed using gas 233 

chromatography (Varian CP 8400 GC equipped with a splitless injector and a flame-ionization 234 



 11 

detector and using hydrogen as the mobile phase: see Mathieu-Resuge et al., 2020 for details). 235 

Results (mean values ± SD) were reported in % of total protein or FAs and/or in mg.g-1 of 236 

sample dry weight (DW). 237 

2.7 Statistical analysis  238 

The results were expressed as mean ± standard deviation. One-way analysis of variance 239 

(ANOVA) was carried out with a parametric Fisher test (F) to determine the differences (in the 240 

weight, isotopes, protein and lipids of sea cucumbers and in the organic contents of the 241 

sediment) between all conditions (distance from farm: 0 m, 25 m, 100 m and reference site).  242 

A linear model was fitted to explain stable isotope values using the site as an explanatory 243 

factorial variable. For sediment values, the sampling time (initial: beginning of experiment; 244 

final: end of experiment) and the interaction with the site was also added to the model. Non-245 

significant interactions were removed. Post hoc tests were computed using least-squares 246 

means (using the “lsmeans” package in R) to compare differences between sites.  247 

3. Results 248 

3.1 Organic footprint: deposition simulations and particulate matter signature 249 

NewDEPOMOD simulations 250 

The deposition of organic matter was estimated to be very localized around the cages, with 251 

the deposition of 1000 g of solids.m-2.year-1 occurring at a geographical limit less than 20 m 252 

away from the cages (Fig. 1). Right below the cages, deposition was estimated to reach a 253 

maximum of 16 862 g.m-2.year-1. 254 

For the four sites used in the experiment, simulations from NewDEPOMOD estimated a 255 

deposition of 6233.5, 882.8, 96.1 and 3.7 g.m-2.year-1 for sites “0”, “25”, “100” and “reference” 256 

respectively. 257 
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The analysis of the organic contents (TON, TOP, TOC) of the sediment confirmed the gradient 258 

simulated by NewDEPOMOD (Fig. 2). All varied significantly according to the distance from the 259 

cages – TON (F-value=14.906, df=3, p-value=0.002), TOP (F-value=25.358, df=3, p-260 

value<0.001) and TOC (F-value=5.430, df=3, p-value=0.03) – with the highest values below the 261 

cages (0 m), indicating a farm footprint concentrated between 0 and 25 m from the cages. The 262 

correlation on a log-scale between TOP and NewDEPOMOD results was significant (p-263 

value<0.001) with a R2 of 0.99 (Supplementary Fig. 1). 264 

3.2 Stable isotope (SI) signatures  265 

The δ13C and δ15N values obtained for the samples of fish feed were −23.0 ± 0.2‰ and 7.9 ± 266 

0.5‰ respectively (Fig. 3). The SI composition of sediment showed that δN15 varied 267 

significantly according to the sampling date (F-value=44.2, df=1, p-value<0.001) and the site 268 

(F-value=57.3, df=3, p-value<0.001, Fig 3B). No effect of sampling date or site was observed 269 

for δ13C. No interaction between sampling date and site was found for δ13C and δ15N, so all 270 

samples were illustrated on the same graph to show general trends (Fig. 3A and B). An isotopic 271 

gradient was found in sediments according to the distance from the farm, indicating an 272 

enrichment in δ15N with increasing proximity to the farm (Fig. 3A). Of the 4 sites, site “0” had 273 

the highest mean δ15N value (5.2‰ at final sampling). The correlation (log-based) between 274 

sediment δ15N and NewDEPOMOD results was significant (p-value=0.017) with a R2 0.97 of 275 

(Supplementary Fig. 2). 276 

Concerning the SI signature of H. tubulosa, δ15N was significantly different between sites (F-277 

value=4, df=4, p-value=0.009) with the “reference” site being significantly higher than site “0” 278 

(Fig. 4B). Stable C isotope ratios (δ13C) were not significantly different between sites (Fig. 4A).  279 

3.3 Weight, fatty acid profiles and proximate composition of H. tubulosa 280 
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At the start of the experiment, the weight of the 36 living individuals was 171.4 ± 64.3 g (mean 281 

WW ± SD). The 6 euthanized individuals weighed 131.5 ± 60.1g (mean WW ± SD) and their dry 282 

body wall 12.0 ± 3.3 g (mean DW± SD). At the end of the experiment, animals weighed 158.76 283 

± 95.39g (mean WW ± SD) and their dry body wall 14.47 ± 5.80 g (mean DW± SD). No 284 

significant difference between sites was observed for the final body wall weight and dry 285 

weight (Fig. 5a and b). 286 

A significant difference between sites (F-value= 4.201, df=3, p= 0.0364) was observed for 287 

protein content (Fig. 6), with higher values for the “reference” site (60.95 ± 1.06%) compared 288 

to site “0” (57.09 ± 3.32%). 289 

Regarding the fatty acid profile (Table 1), the total fat content varied between 0.56 and 1.29 290 

µg.mg-1, representing 0.13% of the total composition of the animal. We identified 33 fatty 291 

acids (FAs) in H. tubulosa samples, with high variability between replicates (Fig. 7). The PCA 292 

performed on FA profiles showed that sites differed on the second axis (Fig. 7B). The FAs 293 

contributing the most to this difference were the shortest FAs measured (Fig. 7C, 15:0, iso15:0, 294 

16:0, etc.). These are usually also saturated FAs (SFAs) and this translated to the total SFAs 295 

increasing with the distance from the cages (Table 1).  296 

Table 1 shows the major classes of FA in the composition of samples, with palmitic acid (16:0), 297 

stearic acid (18:0), dimethyl acetal DMA 18:0 (1,1-Dimethoxyoctadecane) and arachidonic acid 298 

ARA (20:4n-6) being the most commonly found in the animals.  299 

Most FAs in H. tubulosa samples were SFAs, representing from 42.4–50.8% of the total. A total 300 

of ten monounsaturated fatty acids (MUFAs) were identified: 16:1n-7, 17:1n-x, 18:1n-7, 301 

18:1n-9, 20:1n-7, 20:1n-9, 20:1n-11, 22:1n-7, 22:1n-9 and 24:1n-9. The major MUFA was 302 

20:1n-11, with values that varied between 3.4% and 6.1%. Eight polyunsaturated fatty acids 303 

(PUFAs) were measured, three belonging to the omega 3 category (16:4n-3, 18:4n-3, 20:5n-3) 304 
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and four others to the omega 6 category (16:2n-6, 18:2n-6, 20:2n-6, 20:4n-6). The major PUFA 305 

was arachidonic acid (ARA 20:4n-6) with a maximal value of 13.7%. The sum of highly 306 

unsaturated fatty acids (HUFAs; fatty acids with ≥ 20 carbon chain length and two double 307 

bonds, i.e. 20:2n-6, 20:4n-6 and 20:5n-3) varied between 14.4% at 0 m, 11.3% at 25 m, 12.5% 308 

at 50 m and 13.1% at 150 m.  309 

Finally, the sea cucumber FA composition also presented micro-organism markers (Table 2), 310 

with a gradient that increased from the farm (17.3%, at site “0”) to the reference site (22.4%), 311 

but that was lower at all sites than the proportion found in wild individuals (30.8%). 312 

 313 

4. Discussion 314 

Localized aquaculture footprint  315 

The deposition simulation and the sediment samplings were performed at two separated 316 

seasons, but a good relationship was observed between estimated fluxes and sediment 317 

element composition, especially for total organic phosphorus and δ15N values. This link partly 318 

validates the modelling outputs. The organic footprint of the fish farm, both through the 319 

NewDEPOMOD simulation and through sediment analyses, was found to be very localized, 320 

with aquaculture waste settling in the immediate vicinity of the cages (less than 25 m), with a 321 

deposition of 1 kg solids.m-2.year-1 within a geographical limit of less than 20 m from the cages. 322 

These deposition fluxes are within the low range of values demonstrated to have ecological 323 

impacts in temperate environments (i.e. 0.1 to 10 kg solids m-2.year-1, reviewed by Keeley et 324 

al. 2013). An extent of influence of <25 m is consistent with previous studies on the impact of 325 

fish farming (Callier et al., 2013; Kutti et al., 2007; Mazolla et al., 2000).  326 
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Increased δ15N signature of the sediment around cages was expected since fish feed and waste 327 

generally have enriched levels of 15N (Mazzola and Sarà, 2001) as feed contains fish meal and 328 

fish oil. This was confirmed by the feed’s SI signature (7.9 ± 0.5‰ δ15N). Fish feed is also 329 

composed of terrestrial material (e.g. wheat, soja) and generally has lower levels of 13C (here 330 

confirmed by the δ13C value of −23.0 ± 0.2‰) than other marine sources of organic ma^er. 331 

Therefore δ13C can be used as an effective tracer of fish waste (Callier et al., 2013). In this 332 

study, we confirmed SI to be an effective way to trace farm deposition (Vizzini and Mazzola, 333 

2004; White et al., 2017), as it showed an isotopic gradient in sediment enrichment in δ15N 334 

with increasing proximity to the farm (5.2 ± 0.0‰ at final sampling of site “0” compared to 2.6 335 

± 0.1‰ at the reference site).  336 

Survival of H. tubulosa below fish cages 337 

A prerequisite of the study was to choose an optimal period for rearing H. tubulosa, at a 338 

temperature known to be a critical determinant of growth (Hannah et al., 2013). This was the 339 

case for the experiment, during which the water temperature was stable in a favourable range 340 

of 21.7 ± 1.3°C. We found that H. tubulosa survival was high (91.3%), with only 3 animals 341 

missing at the end of the period (2 at site “25” and 1 at site “reference”). These were assumed 342 

to have escaped or potentially been eaten by a predator (Pagurus bernhardus was found in 343 

great quantities in the corresponding baskets). This survival rate suggests the feasibility of 344 

associating H. tubulosa as an extractive species in IMTA under fish cages in a Mediterranean 345 

context. Nevertheless, we did not observe any weight differences between sites and sampling 346 

times. Multiple reasons can explain these negative results. First, the use of adults reduces 347 

growth potential, and therefore capacities to observe weight differences over one month. 348 

Indeed, although H. tubulosa is known to grow much further than the initial weight of our 349 
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specimen (e.g. ultimate weight of 620 g reported in Aydın, 2019), investment in reproduction 350 

and higher somatic maintenance in adults necessarily lower growth compared to juveniles. 351 

Consequently, the use of juveniles (although difficult to find in nature) or an increase in the 352 

duration of the study would have probably helped getting significant growth, and maybe 353 

differences between sites. For example, Costa et al. (2014) were able to get a significant 354 

growth (0.89 ± 0.29% d− 1) with juveniles of H. tubulosa (between 23.7 and 24.1 g) kept twice 355 

as long (60 days), but in laboratory conditions. In open-water, but with another species (H. 356 

poli), a recent study also observed significant growth, but low survival, of juveniles over 1 year 357 

(Cutajar et al. 2022). Sea cucumbers are stress-sensitive with physiological responses 358 

observed in response to environmental changes (Jobson et al., 2021; Hou et al., 2019; Kamyab 359 

et al., 2017). Performing a longer experiment allows the sea cucumbers to recover from 360 

environmental stress applied and acclimate to the new conditions. We should also 361 

acknowledge here the difficulty of getting a reliable wet weight measurement in these species. 362 

Along with the random water ejection of alive sea cucumbers, the duration of the fasting 363 

period prior measurement is crucial. Here, we applied an overnight fasting period as 364 

recommended by Tolon et al., 2017a. Nevertheless, a parallel study (Sadoul et al., to be 365 

submitted) showed that the fasting period is temperature-dependent and that 48 hours 366 

fasting period ensures complete emptying of the gastrointestinal tract. 367 

Consequently, further experiments, with longer periods of (i) starvation before biometrics and 368 

(ii) experimentation, would be needed to demonstrate that cucumbers can grow under such 369 

IMTA conditions. 370 

Stocking density is also known to be a critical determinant of sea cucumber growth (Aydin, 371 

2019; Costa et al., 2014). Wild sea cucumbers can be found at densities below 1 individual.m-372 
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2 (Aydin, 2019). When kept in captivity, densities higher than 15 ind.m-2 lead to weight loss 373 

and potentially death, as found with H. tubulosa in a prolonged time experiment (Tolon et al., 374 

2017b). Similar results were found after keeping Cucumaria frondosa several years 375 

downstream from a land-based salmon farm: in that study, individuals lost half of their wet 376 

weight (Sun et al., 2020). In our study, for statistical reasons, each basket contained 3 377 

individuals, equivalent to a density of 11 ind (or 1700 g).m-2. This density is in the upper range 378 

of what H. tubulosa can withstand according to Tolon et al. (2017b), who recommended 6 ind 379 

(of 40 g) m-2.  380 

Further experiments are needed to better understand the relationship between growth, 381 

density and H. tubulosa welfare in an IMTA context. 382 

Assimilation of organic fish effluents 383 

We used a double trophic biomarker approach to verify H. tubulosa’s ability to assimilate 384 

organic fish waste. Stable isotopes have previously been used as trophic markers to 385 

investigate sea cucumber ecology (Costa et al., 2014; Slater and Carton, 2010). Coupling 386 

biomarkers with fatty acids allows a refined understanding of trophic relationships, especially 387 

in polyculture systems (Feng et al., 2014; Mathieu-Resuge et al., 2020). Associating these 388 

methods showed differences in sea cucumber composition according to distance from the 389 

farm, suggesting differences in food assimilation.  390 

Several studies on other sea cucumber species co-cultivated in IMTA – A. japonicus (Park et al. 391 

2015), C. frondosa (Sun et al., 2020), A. mollis (Slater and Carton, 2007) – have used SI 392 

signatures to indicate assimilation of aquaculture waste. We expected a shift in sea cucumber 393 

SI signature towards the SI sediment signature, and towards the SI fish feed signature for 394 

individuals stocked in the vicinity of fish cages. Based on the trophic enrichment factor (TEF) 395 
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previously measured for H. tubulosa (Costa et al., 2014), we were expecting a negligible shift 396 

in δ13C (0.2±0.2 ‰) but a significant enrichment in δ15N (2.7±0.3 ‰) compared to the 397 

sediment. While we did not observe any difference between sea cucumber δ13C according to 398 

distance from the farm, surprisingly the δ15N decreased for animals closer to the farm (value 399 

deviating from the fish feed δ15N of 7.9 ± 0.5‰). The H. tubulosa isotopic pattern was overall 400 

the opposite of the sediment isotopic pattern, suggesting that individuals did not assimilate 401 

the sediment, and associated organic waste from the farm. It is probable that instead they 402 

assimilate lower trophic food, such as bacteria or diatoms growing in the sediment in the 403 

vicinity of sea cages, as previously observed in an IMTA context by Hochard et al. (2016).  404 

One explanation of such a pattern can be related to sediment characteristics. Organic matter 405 

content and sources (sedimentary, plant or animal material) along with granulometry of 406 

sediment are known to play a specific role in sea cucumber feeding behaviour and thus in the 407 

ingestion process (Boncagni et al., 2019; Grosso et al., 2021; Mezzali and Soualili, 2013; Ricart 408 

et al., 2015; Tolon et al., 2015). According to Boncagni et al. (2019) H. tubulosa selectively 409 

assimilates food with a preference demonstrated for seagrass detritus in an environment with 410 

multiple food sources.   411 

In parallel, Mezali and Soualili (2013) demonstrated H. tubulosa’s preference for ingestion of 412 

medium sediment fractions (200 to 600 μm). Moreover, mineral and microorganism (benthic 413 

microalgae and bacteria) concentrations in the sediment may also play a role in sea cucumber 414 

feeding (Hair et al., 2016). Additional studies exploring the sediment characteristics 415 

(composition and granulometry) below the cages in more detail would confirm H. tubulosa’s 416 

ability to grow by assimilating fish waste in an IMTA context. The different potential food 417 

sources’ contributions (fish waste versus natural resources of the sediment) to the diet of sea 418 
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cucumbers would also have been of interest following previously published methods 419 

(Boncagni et al., 2019; Parnell and Jackson, 2013; Ricart et al., 2015). 420 

Finally, we worked with wild specimens collected in the studied bay to avoid any risk of 421 

introducing pathogens or undesirable organisms. Only large specimens could be found, which 422 

is not ideal because they were probably all already investing energy in reproduction rather 423 

than growth. Consequently, the isotope measures performed in the body wall probably might 424 

lack the capacities to detect diet switches. Measures in the gonads might have provided 425 

different results. This problem could be overcome by using juveniles, as has been 426 

demonstrated in an IMTA with P. californicus (Hannah et al., 2013), where small animals (<100 427 

g WW) presented high potential to assimilate organic components (grew of 27–56%) while 428 

large ones (>100 g) decreased in size by 10–33% over a year. That difference may be due to 429 

greater competition for food and space for the latter, or different feeding preferences, with 430 

small individuals preferring fine particulate material (Yingst, 1982).  431 

Farm effect on biochemical markers of interest  432 

Holothurians are nutritionally interesting because of their low fat and high protein content, as 433 

well as they contain amino acids and trace elements essential for human health (Chen, 2003). 434 

Regarding H. tubulosa’s biochemical profile, we confirmed this, finding a protein content of 435 

57.1±3.3%, similar than the 60.9±0.3% found by Bilgin and Tanrikulu (2018). Fat content was 436 

also low, at 0.13% of the total composition (between 0.56 and 1.29 µg/mg), lower than the 437 

value of 0.76% found by Bilgin and Tanrikulu (2018) for H. tubulosa and the value of 0.1–0.9% 438 

found for Parastichopus spp. (Chang Lee et al., 1989), and much lower than the fat content of 439 

H. forskali (4.8±2.3%, Santos et al., 2016). 440 
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We identified 33 fatty acids in H. tubulosa samples, which is in the same order of magnitude 441 

as other species such as H. forskali (37 FAs identified in David et al., 2020). The major Fas 442 

identified in H. tubulosa individuals were SFAs (42.4–50.8%), stearic acid (18:0) and 443 

arachidonic acid (20:4n-6) – these were the most commonly found in all samples. Of the SFAs, 444 

FA 18:1n9, known to be a tracer of fish feed (Irisarri et al., 2015), was identified. Fish feed 445 

increasingly contains plant oils (Sun et al., 2020), which have lower levels of omega-3 PUFAs 446 

and higher levels of omega-6 PUFAs (Menoyo et al., 2007). H. tubulosa individuals were rich 447 

in PUFAs (18%), which are significant for human nutrition. The highest values obtained were 448 

for stearic acid C18:0 (25–30%), arachidonic acid C20:4 omega-6 polyunsaturated FA (5–11%) 449 

(said to be essential because it is necessary but not synthesized by the human body), palmitic 450 

acid C16:0 (6–13%), and eicosapentaenoic acid C 20:5 omega-9 (3–6%). The PUFA content 451 

(18%) was lower than other studies on H. tubulosa (36% in Bilgin and Tanrikulu, 2018) or H. 452 

forskali (43% in Santos et al., 2016) but similar for FAs of nutritional interest such as 453 

arachidonic and eicosapentaenoic acids (19% and 9.1% respectively for H. tubulosa in Bilgin 454 

and Tanrikulu, 2018; 20% and 10% respectively for H. forskali in Santos et al., 2016). These 455 

discrepancies could be due to the sampling season, which took place in the reproduction 456 

period for our study, and in the winter, the period of fat storage, for Santos et al. (2016).  457 

We measured between 11.3% and 14.4% of HUFAs, which are known to be vital for their role 458 

in membrane properties and immune response (Twining et al., 2016). Other studies have 459 

found HUFA values of 23.2–36.6% in H. forskali tissues (David et al., 2020) and 21.8% in the 460 

foregut of H. leucospilota (Mfilinge and Tsuchiya, 2016). 461 

We observed a difference between the four sampling sites in terms of FA content in sea 462 

cucumbers, with more FAs observed with increasing distance from the farm. This increase is 463 
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mostly explained by higher quantities of saturated, branched-chain and shorter fatty acids 464 

(below 17C). Many of these FAs were microbial markers (Salvo et al., 2015). Consequently, in 465 

contrast to the δ15N isotope results, this suggests that sea cucumbers near sea cages ingested 466 

less micro-organisms. 467 

5. Conclusion 468 

This study found that H. tubulosa sea cucumbers can survive in the vicinity of fish cages in a 469 

Mediterranean context. However, individuals overall showed decreased protein and lipid 470 

content and a reduced isotopic signature when stocked closer to fish cages. This suggests 471 

reduced food assimilation during the period of the experiment. Thus, the findings could 472 

neither demonstrate that nutrients in aquaculture waste meet the nutritional needs of H. 473 

tubulosa nor confirm the possibility of developing H. tubulosa aquaculture up to commercial 474 

size under such conditions. It would be valuable to carry out further experiments to test the 475 

cross effects of sediment characteristics on sea cucumber growth in order to test whether, in 476 

an IMTA context, fish waste could provide another food source suitable to sustain H. tubulosa 477 

survival, growth and reproduction. As seasonal changes in adult physiology influence somatic 478 

growth by reducing available energy due to gamete production, we recommend working with 479 

juveniles in further research on the association of sea cucumbers in IMTA in order to observe 480 

growth in such systems. A priority should be to determine their feeding preferences (i.e. 481 

sediment granulometry and composition) and behavioural responses regarding the effect of 482 

different stocking densities and captivity on H. tubulosa welfare. 483 

 484 
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Fig. 1. Deposition of particulate waste from the fish farm (expressed in g of solids.m-2.year-1) simulated 

by NewDEPOMOD (from 24 September to 24 October 2019) for sites “0”, “25”, “100” and the reference 

site. The cages are represented by black circles and squares. Results were transferred to ArcGIS to 

create the graph. Black squares represent the 32 squared rearing cages of the farm and circles the 2 

round rearing cages. 

 



 

Fig. 2. Total organic nitrogen (TON), phosphorus (TOP) and carbon (TOC), expressed in %, in the final 

sampled sediment, at different distances from the fish cages (0, 25, 100 m and reference). Letters 

indicate significant differences between groups (F test, α = 5%).  
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Fig. 3. Stable isotope values (δ13C, δ15N) of the fish feed and sediments sampled at four distances from 

the fish cages: 0, 25, 100 m and reference (ref). A: Biplot of δ13C and δ15N (‰) of the fish feed and 

sediments sampled at four distances from the fish cages: 0, 25, 100 m and reference. B: δ15N values 

(‰) of the fish feed and sediments sampled at four distances from the fish cages: 0, 25, 100 m and 

reference. C: δ13C values (‰) of the fish feed and sediments sampled at four distances from the fish 

cages: 0, 25, 100 m and reference. Letters indicate significant differences between measurements 

performed on the sediment samples. 
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Fig. 4. Mean (±SD) stable isotope values (δ13C, δ15N) of H. tubulosa kept for a month at four distances 

from the fish cages: 0, 25, 100 m and reference (ref), with ‘initial’ referring to the wild sea cucumber 

fished at the reference site. A: Biplot of δ13C and δ15N (‰) of the sea cucumbers kept at four distances 

from the fish cages: 0, 25, 100 m and reference. B: δ15N values (‰) of the sea cucumbers kept at four 

distances from the fish cages: 0, 25, 100 m and reference. C: δ13C values of the sea cucumbers kept at 

four distances from the fish cages: 0, 25, 100 m and reference. Letters indicate significant differences 

between samples. 
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Fig. 5. H. tubulosa body weight (mean and SD, in g) after 1 month of exposure at four distances from 

the farm. A: body wet weight at initial (white box plot) and final sampling (grey box plot), B:  body 

dry weight after 1 month of exposure at four distances from the fish cages (0 m, 25 m, 100 m and 

Reference). 
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Fig. 6. H. tubulosa protein content (in % of dry sample) at four distances from the fish cages (0 m, 25 

m, 100 m and reference). Letters indicate significant differences between groups (F test, α = 5%) 
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Figure 7. (A) PCA on fatty acid profiles of the sea cucumbers at the 4 distances from the fish cages. (B) 

Coordinates on the second dimension for each site. (C) Fatty acids contributing the most to the 

variability on the second dimension of the PCA. 

 



Table 1. Major fatty acids analysed in H. tubulosa samples (mean ± SD, in µg.mg-1 of dry weight) from 

the four sites (and baseline wild samples), with the total saturated FAs (SFAs), monounsaturated FAs 

(MUFAs), polyunsaturated FAs (PUFAs), and dimethyl acetal (DMA). 

 

SAMPLES 0  25  100 REF BASELINE 

NB OF SAMPLES 3 3 3 3 3 

14:0 0.01±0.00 0.02±0.01 0.02±0.1 0.03±0.0 0.03 ±0.01 

16:0 0.05±0.01 0.06±0.03 0.06±0.02 0.08±0.0 0.12 ±0.05 

17:0 0.01±0.00 0.01±0.00 0.01±0.0 0.2±0.0 0.01±0.00 

ISO 17:0 0.01±0.00 0.01±0.01 0.01±0.0 0.01±0.0 0.01±0.00 

18:0 0.10±0.03 0.11±0.02 0.12±0.02 0.13±0.01 0.12±0.01 

20:1N-11 0.05±0.02 0.04±0.03 0.05±0.03 0.06±0.04 0.03±0.02 

20:4N-6 0.09±0.04 0.07±0.07 0.09±0.05 0.11±0.08 0.05±0.03 

18:0DMA 0.13±0.04 0.13±0.03 0.16±0.03 0.14±0.02 0.12±0.03 

TOT. SFAS 0.35±0.10 0.39±0.06 0.42±0.08 0.46±0.03 0.46±0.07 

TOT. MUFAS 0.15±0.05 0.13±0.08 0.16±0.09 0.17±0.12 0.14±0.06 

TOT. PUFAS 0.16±0.07 0.13±0.10 0.16±0.09 0.19±0.13 0.11±0.05 

TOT. DMAS 0.14±0.04 0.14±0.03 0.17±0.03 0.15±0.02 0.13±0.03 

TOTAL FAS 0.84±0.26 0.83±0.20 0.94±0.30 1.02±0.30 0.91±0.17 

 

 



Table 2. Bacterial fatty acids, diatom and zooplankton markers analysed in H. tubulosa samples 

(mean ± SD, in % of Total Fatty Acids) at initial sampling for wild animals and final sampling for the 

experimental sites (0, 25, 100 and reference according to distances to the cages in m). 

SAMPLES 0 25 100 REF INITIAL 

BACTERIAL FAS: 15:0, 16:0, 17:0, 

16:1N-7, 17:1N-X, 18:1N-7 

13.4±1.1 17.9±9.3 15.2±1.7 18.5±1.8 28.2±8.8 

DIATOM MARKER 20:5N-3 2.8±0.6 2.3±1.8 2.7±1.2 2.7±2.4 2.0±0.9 

ZOOPLANKTON MARKERS: 20:1N-

9, 22:1N-9 

1.1±0.2 1.1±0.9 1.3±0.6 1.1±0.9 0.6±0.3 

 




