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A new divalent organoeuropium(II) fluoride and 
serendipitous discovery of an alkoxide complex 
from pentaphenylcyclopentadiene precursors†

Angus C. G. ShephardA, Aymeric DelonA,B, Rory P. KellyC, Zhifang GuoA, Sylviane ChevreuxB,D,  
Gilles LemercierB, Glen B. DeaconC, Galina A. DushenkoE, Florian JaroschikF,* and Peter C. JunkA,*

ABSTRACT 

From the redox-transmetallation protolysis (RTP) reaction of europium metal, Hg(C6F5)2 and 
pentaphenylcyclopentadiene, we isolated and crystallographically characterised small amounts of the 
first divalent europium fluoride half-sandwich complex [Eu(C5Ph5)(μ-F)(thf)2]2 (1). Subsequently, a 
rational synthesis of this complex from in situ formed [EuF2(thf)n] and [Eu(C5Ph5)2] was carried out. 
In addition, the new divalent Eu alkoxide complex [Eu(OC5Ph5*)2(thf)4] (2) (OC5Ph5* = 2,3,4,5,5 
pentaphenylcyclopenta-1,3-dienolate) was identified by X-ray diffraction analysis, in which an 
intriguing phenyl group migration in the cyclopentadiene ligand occurred. This complex was 
shown to be derived from small impurities of 1,2,3,4,5-pentaphenylcyclopenta-1,3-dienol 
(C5Ph5OH) in the C5Ph5H starting material and was then synthesised on a larger scale. Density 
functional theory calculations provided evidence for the facile phenyl group migration observed in 
the cyclopentadienolate ring.  

Keywords: 2,3,4,5,5-pentaphenylcyclopenta-1,3-dienolate, bis(pentafluorophenyl)mercury, C–F 
activation, DFT calculations, Europium metal, pentaphenylcyclopentadiene, redox transmetallation/ 
protolysis. 

Introduction 

Pentaphenylcyclopentadiene and related polyarylcyclopentadiene ligands have long 
been studied in transition metal chemistry,[1–4] whereas in f-element chemistry, they 
have drawn some attention only over the last 15 years.[5–13] The groups of Harder and 
ourselves have discovered two complementary synthetic pathways to divalent decaaryl 
lanthanoid complexes as shown in Scheme 1.[5–10] These highly bulky planar sandwich 
complexes display limited redox activity for Sm and Yb,[7,9] and in the case of europium, 
interesting luminescence properties have been observed.[6,10]

For the poorly soluble decaphenyleuropocene complex [Eu(C5Ph5)2], we have effected 
a redox-transmetallation protolysis (RTP) approach starting from europium metal and 
C5Ph5H and using either HgPh2 or Hg(C6F5)2 as a redox-transmetallating reagent 
(Scheme 1b).[10] Initially, in thf, a solvent-separated ion pair (SSIP) is formed, from 
which the sandwich complex was isolated by precipitation from toluene. As Hg(C6F5)2
often shows higher reactivity in RTP reactions than HgPh2,[14] the synthesis was 
performed by stirring at room temperature, whereas sonication was required with 
HgPh2. In this paper, we report the synthesis of the first divalent cyclopentadienyleur-
opium fluoride, and a complex of the 2,3,4,5,5-pentaphenylcyclopenta-1,3-dienolate 
ion. 
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Results and discussion 

During an RTP reaction of Eu with Hg(C6F5)2 and C5Ph5H, a 
small crop of bright yellow crystals formed from the thf 
solution, and had a colour which was in striking contrast 
to the bright orange sandwich complex [Eu(C5Ph5)2] 
(Scheme 2a). X-ray diffraction (XRD) analysis of this new 
compound revealed the formation of the first divalent euro-
pium fluoride half-sandwich complex [Eu(C5Ph5)(μ-F)(thf)2]2 
1 (Fig. 1). In the light of previous work on the synthesis of the 

divalent ytterbium fluoride complex [Yb(C5Ph4H)(µ-F) 
(thf)2]2,[15] we considered that the in situ formed C6F5H is 
the fluoride source. Indeed, repeating this reaction and mon-
itoring by 19F NMR spectroscopy revealed the formation of 
some p-C6F4H2, indicative of C–F activation of the C6F5H by 
europium metal (used in excess in these reactions). A higher 
yielding synthesis of the europium fluoride complex 1 was 
then carried out by treatment of the isolated sandwich 
complex [Eu(C5Ph5)2] with [EuF2(thf)n] (Scheme 2c), 
formed from the C–F activation of C6F5H with Eu metal in 
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Scheme 2. (a) Synthesis of [Eu(C5Ph5)(μ-F)(thf)2]2 (1) as a coproduct from the RTP reaction of Eu metal, Hg(C6F5)2 

and C5Ph5H, which is the source of C6F5H (b) Synthesis of [EuF2(thf)n] by C–F activation of C6F5H with Eu metal, and 
(c) Direct synthesis of [Eu(C5Ph5)(μ-F)(thf)2]2 (1) by treatment of [Eu(C5Ph5)2] with [EuF2(thf)n].    
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thf (Scheme 2b). NMR spectroscopic characterisation of this 
complex was excluded by the paramagnetic nature of Eu2+. 

Complex 1 (Fig. 1) crystallises in the orthorhombic space 
group Pbca as a symmetrical dimer. The two Eu atoms 
are seven-coordinate, ligated by one C5Ph5 ring, two thf 
molecules and two bridging fluoride ions. The Eu–F bond 
lengths (Eu(1)–F(1) = 2.406(2) Å, Eu(1)–F(1)# = 2.391(2) Å) 
are comparable with the Yb–F bond lengths of the pre-
viously reported [Yb(C5Ph4H)(µ-F)(thf)2]2 (Yb(1)–F(1) =  
2.2515(17) Å and Yb(1)–F(1)# = 2.2546(18) Å),[15] after 
consideration of the larger ionic radius of Eu2+,[16] alongside 
the increase in steric bulk from C5Ph4H− to C5Ph5

− (steric 
coordination numbers[17] 3.3 and 3.8 respectively[10]). The 
Eu–C and Eu–O bond lengths are longer than those in the 
samarium bromide half-sandwich complex [Sm(C5Ph5)- 
(µ-Br)(thf)2]2,[10] e.g. Eu–C(centroid) = 2.7023 Å vs Sm– 
C(centroid) = 2.636 Å) despite the larger ionic radius of 
Sm2+.[16] This might be explained by the shorter fluoride 
bridge in 1 leading to a more crowded environment around 
the metal centres as shown by the much shorter Eu–Eu 
distance (3.878 Å) than the longer bromide-bridged Sm–Sm 
distance (4.662 Å) in [Sm(C5Ph5)(µ-Br)(thf)2]2. 

From another RTP reaction of Eu, Hg(C6F5)2 and C5Ph5H, 
we observed the formation of yellow crystals after filtration 
and leaving the reaction mixture to stand at room tempera-
ture for several days. Single crystal XRD analysis revealed 
the formation of the new divalent Eu–alkoxide complex 
[Eu(OC5Ph5*)2(thf)4] 2 (OC5Ph5* = 2,3,4,5,5 pentaphenyl- 
cyclopenta-1,3-dienolate) (Fig. 2). Complex 2 crystallised 
in the monoclinic space group P21/c. The Eu atom is six- 
coordinate with a trigonal prismatic donor array, ligated 

by two phenyl-migrated 2,3,4,5,5 pentaphenylcyclopenta- 
1,3-dienolate moieties, and four thf molecules. A near 
linear O–Eu–O arrangement is observed (O(1)–Eu(1)–O 
(2) = 166.49(6)°). This coordination environment is rare, 
with very few examples reported in the literature.[18] 

Two noteworthy examples include [Eu{P(H)Mes*}2(thf)4] 
(Mes* = 2,4,6-tBu3C6H2), with P–Eu–P = 160.5(1)°,[19] 

and [Eu(pz)2(thf)4] (pz = 3,5-diphenylpyrazolate), with 
C–Eu–C = 152.815°.[20] The more common arrays for alk-
oxides/aryloxides are alkoxy bridged dimers where the alk-
oxide has low steric bulk and five coordinate monomers of 
variable arrangements (both cis and trans OR) with bulky 
aryloxides.[18] The Eu–O alkoxide bond lengths in 2 (Eu 
(1)–O(1) = 2.4096(16) Å and Eu(1)–O(2) = 2.3723(16) Å) 
are longer than those reported for Eu phenolate complexes 
such as [Eu(OPh(2,6-tBu)2(4-Me))2(thf)3] (Eu–O(phenolate) =  
2.315(6) Å and 2.322(5) Å).[21] Despite this difference, 
the O(phenolate)–Eu–O(phenolate) angle (151.2(3)°) is similar to 
that of 2. 

The formation of 2 could either be explained by oxygen 
activation of the divalent europium sandwich complex or 
more likely by the presence of some impurities of 1,2,3,4,5- 
pentaphenylcyclopenta-1,3-dienol (C5Ph5OH), a precursor 
of C5Ph5H in the starting material. In order to gain further 
insights on the synthesis of this complex, an RTP reaction 
between Eu metal, Hg(C6F5)2 and C5Ph5OH was conducted 
in thf at room temperature (Scheme 3). The reaction went 
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Fig. 1. Oak Ridge thermal ellipsoid plot (ORTEP) diagram of com-
plex 1 showing atom-numbering scheme for relevant atoms. Thermal 
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omitted for clarity. #Generated by symmetry (symmetry operation 
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Eu(1)–O(1) 2.685(3), Eu(1)–O(2) 2.600(4).   
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readily to completion as indicated by 19F NMR spectroscopy 
and 2 was isolated in 40% yield. The compound was analysed 
by infrared spectroscopy (see Supplementary Material) and 
elemental analysis but, due to the paramagnetism of Eu2+, 
NMR spectroscopic studies could not be conducted. 

Quenching the reaction mixture with water provided the 
corresponding ketone, 2,2,3,4,5-pentaphenylcyclopent-3- 
enone 3, as shown by 1H and 13C NMR and IR spectroscopy 
in agreement with literature reports (Scheme 4).[22] This 
outcome further confirms the identity of 2, and the phenyl 
group migration during the RTP reaction. XRD characterisa-
tion was undertaken on 3, confirming the connectivity of the 
ketone (Scheme 4). 

In order to exclude that the phenyl ring migration had 
already occurred in the C5Ph5OH starting material, NMR 
spectroscopy and XRD characterisations were performed on 
the starting material, verifying the structure[23] and showing 
high stability of this ligand under ambient conditions (Fig. 3). 

The phenyl group migration in pentaphenylcyclopentadie-
nol has previously been studied and requires harsh reaction 
conditions, e.g. heating C5Ph5OH in tetraethylene glycol at 
150–210°C afforded the ketone 3 with an experimentally 
determined energy barrier of 34.7 kcal/mol.[22,24] On the 
other hand, reaction of tetraphenylcyclone with pentafluoro-
phenyllithium at −78°C followed by hydrolysis led to modest 
yield of both 2-pentafluorophenyl-2,3,4,5-tetraphenylcyclo- 
pent-3-ene-1-one (the migration product) and 1-pentafluoro- 
phenyl-2,3,4,5-tetraphenylcyclopenta-2,4-dienol.[25] In our 

case phenyl migration occurs at room temperature, and 
without oxidation of the alkoxide functionality. We therefore 
carried out some theoretical investigations on the phenyl 
group migration starting either from the neutral alcohol 
precursor A or the anionic alkoxide C to obtain some under-
standing of this process (Fig. 4). 

Density functional theory quantum chemical calculations 
were performed at the CAM-B3LYP/Def2TZVP level of theory 
using the Gaussian-09 program for the gas phase (see 
Supplementary Material for full information). Supplementary 
Fig. S1 shows the calculated geometric parameters of the 
structure A, which agree well with X-ray diffraction data. In 
compound A a 1,5-sigmatropic shift of a phenyl group around 
the five-membered ring through transition state TS1 occurs. 
This shift has an energy barrier of ΔEZPE

≠ = 35.0 kcal/mol 
and results in the formation of isomer B. Isomer A is slightly 
more stable than B by ΔEZPE 1.9 kcal/mol. In TS1, the dis-
tances between the migrating carbon atom of the phenyl 
group and nearest carbon atoms of the Cp ring are: 1.875 
and 1.889 Å. The calculated total charge (Mulliken herein-
after) on the migrating phenyl group is close to 0 (0.003 e), 
which is typical for sigmatropic shifts. In all the calculated 
structures hereinafter, phenyl groups at sp2-hybridised carbon 
atoms occupy the propeller conformation. The result is highly 
consistent with the experimental data.[22] 

In contrast, in the anion C, intramolecular migration 
of the phenyl group occurs much faster than in A through 
the transition state TS2 with an energy barrier of 
ΔEZPE

≠ = 14.0 kcal/mol resulting in the formation of isomer 
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D (Fig. 4). In the anionic structure of TS2, the distances 
between the migrating carbon atom of the phenyl group 
and nearest carbon atoms of the Cp ring are longer than in 
TS1: 2.046 and 2.121 Å (Fig. S2). The calculated total charge 
on the migrating phenyl group is negative (−0.247 e). The 
value of the calculated energy barrier in C indicates the 
possibility of rearrangement during the reaction at room 
temperature almost instantaneously. Isomeric anion D is sig-
nificantly more stable than C at ΔEZPE 23.5 kcal/mol. Such a 
difference in energies for C and D, as well as a rather low 
migration barrier for the phenyl group in comparison with 
the previously known ones,[26] is most likely associated with 
the delocalisation of the negative charge between the oxygen 
atom and the cyclopentadiene ring in TS2 and D. This is 
indicated by the alignment of the corresponding bonds of 
the five-membered ring, a decrease in the length of the C–O 
bond in TS2 and D, and a lower value of the negative charge 
on the oxygen atom in TS2 (−0.476 e) and in D (−0.436 e) 
compared to C (−0.626 e). 

Isomer B then further transforms to the final ketone 
product 3, which is more stable than isomer A by ΔEZPE 
4.4 kcal/mol, via migration of a hydrogen. The migration of 

a hydrogen atom in B through transition state TS3 (Fig. S3) 
by intramolecular 1,3-sigmatropic shift (which is forbidden 
by the Woodward–Hoffmann rules) requires overcoming a 
very high energy barrier ΔEZPE

≠ = 66.72 kcal/mol accord-
ing to the calculations. This barrier value indicates the 
impracticability of the B→TS3→3 reaction mechanism. An 
alternative mechanism could be the intermolecular transfer 
of hydrogen with the participation of a solvent or, for exam-
ple, water, which may be contained in the solvent as an 
impurity. Since the A→B→3 conversion was carried out in 
tetraethylene glycol, to simplify the calculations, the complex 
B × MeOH (B with one methanol molecule) was considered. 
For the methanol complexes B × MeOH and 3 × MeOH (3 
with one methanol molecule) calculations were performed at 
CAM-B3LYP/Def2SVP level. In complex B × MeOH, the 
hydrogen atom H1 (at the oxygen bound with the Cp ring) 
migrates to the methanol oxygen atom, whereas the methanol 
hydrogen atom H2 migrates to the Cp carbon atom 
through the formation of the six-membered transition 
state TS4 (Fig. S4). As a result, the complex 3 × MeOH is 
formed. Calculated energy barrier for the proccess 
B × MeOH→TS4→3 × MeOH is ΔEZPE

≠ = 28.6 kcal/mol. 
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Сomplex 3 × MeOH is more stable than B × MeOH by ΔEZPE 
4.1 kcal/mol. In TS4, the distances between the migrating 
hydrogen atoms and the oxygen at the Cp ring and the Cp 
carbon atoms are: 1.489 and 1.555 Å respectively. The 
charges on the migrating hydrogen atoms in TS4 are positive 
0.244 e (H1) and 0.253 e (H2). The calculated energy barrier 
value for intermolecular mechanism of the hydrogen migra-
tions indicates that the rate determining stage of the A→B→3 
conversion is the 1,5-shift of a phenyl group A→B and agrees 
with experimental data. 

Conclusions 

The first divalent organoeuropium(II) fluoride, [Eu(C5Ph5) 
(μ-F)(thf)2]2 1, was prepared initially in low yield by an RTP 
reaction between Eu metal, Hg(C6F5)2 and C5Ph5H, and then 
deliberately by reaction of in situ generated [EuF2(thf)n], 
from C–F activation of C6F5H by Eu metal, with [Eu 
(C5Ph5)2]. The complex is a symmetrical seven coordinate 
dimer with two bridging fluoride ions. The alkoxide complex, 
[Eu(OC5Ph5*)2(thf)4] 2, was serendipitously isolated after a 
similar RTP reaction, and then deliberately prepared by an 
RTP reaction between Eu metal, Hg(C6F5)2, and C5Ph5OH 
in thf. The complex has a six coordinate europium atom 
with transoid alkoxide ligands and equatorial thf donors. 
The alkoxide C5Ph5O− was isomerised into C5Ph5O*− 

as shown by hydrolysis of 2 into the ketone, 2,2,3,4,5- 
pentaphenylcyclopent-3-enone 3. 

Experimental 

General remarks 

All manipulations were performed under nitrogen, using 
standard Schlenk techniques. Thf was distilled from sodium 
benzophenone before use. Pentafluorobenzene was commer-
cially available, and used without further purification. Bis 
(pentafluorophenyl)mercury,[27] bis(pentaphenylcyclopenta-
dienyl)europium[10] and 1,2,3,4,5-pentaphenylcyclopenta- 
1,3-dienol[23] were prepared by the literature methods. 
Infrared spectra (4000–400 cm−1) were obtained as Nujol 
mulls between NaCl plates, or as neat powders by attenuated 
total reflectance (ATR) with a Nicolet-Nexus FT-IR spectrom-
eter. 1H and 13C-NMR spectra were recorded on a 
Bruker 400 MHz spectrometer. The chemical shifts were 
referenced to residual solvent peaks. Elemental analyses 
were obtained from the Chemical Analysis Facility, 
Macquarie University in Sydney. XRD data and refinement 
details are given in Table S1. CCDC 2126375–2126378 for 
compound 1–3 and C5Ph5OH respectively, contain the sup-
plementary crystallographic data for this paper. These data 
can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ 
request/cif. 

[(Eu(C5Ph5)(μ-F)(thf)2)2] (1) 

Method 1 
Thf (10 mL) was added to a Schlenk flask charged with 

freshly filed europium metal (0.39 g, 2.6 mmol), Hg(C6F5)2 
(0.19 g, 0.36 mmol) and C5Ph5H (0.32 g, 0.72 mmol) and 
the suspension was sonicated at 40°C for 3 days giving a 
dark golden yellow solution. The solution was filtered and 
concentrated under vacuum. Overnight, a few yellow single 
crystals of [Eu(C5Ph5)(μ-F)(thf)2]2 deposited that were suit-
able for X-ray crystallography. No other characterisation 
could be obtained. 

Method 2 
A Schlenk flask was charged with Eu metal (0.300 g, 

2.0 mmol), C6F5H (1.1 mL, 10 mmol), anhydrous thf (4 mL) 
and a piece of iodine for metal activation, which was then 
stirred for 5 days. The suspension was allowed to settle, and 
the supernatant solution removed by filter cannula, and the 
solid dried under reduced pressure, leaving unreacted Eu 
and EuF2(thf)n. A solution of [Eu(C5Ph5)2] (0.042 g, 
0.047 mmol) in anhydrous thf (5 mL) was transferred into 
the EuF2(thf)n (excess) and the resulting suspension was 
stirred overnight, yielding a bright yellow solution. The 
suspension was allowed to settle, and the resulting solution 
isolated by filter cannula. The solvent was then removed under 
reduced pressure, yielding 1 as a pale brown solid (0.033 g, 
46%). Anal. calc. for C86H82F2O4Eu2 (1521.5 g/mol): C, 67.89; 
H, 5.43. Found C, 67.85; H, 4.75%. IR (Nujol, cm−1): 1594m, 
1500m, 1261w, 1155w, 1071w, 1029m, 908w, 802m, 769m, 
737w, 697m. 

[Eu(OC5Ph5*)2(thf)4] (2) 

Method 1 
Thf (10 mL) was added to a Schlenk flask charged with 

freshly filed europium metal (0.39 g, 2.6 mmol), Hg(C6F5)2 
(0.19 g, 0.36 mmol) and C5Ph5H (0.32 g, 0.72 mmol) (contam-
inated with a small amount of C5Ph5OH) and the suspension 
was sonicated at 40°C for 3 days giving a dark golden yellow 
solution. The solution was filtered and concentrated under 
vacuum. After several days, a few yellow single crystals of 
[Eu(OC5Ph5*)2(thf)4] deposited that were suitable for X-ray 
crystallography (yield < 5%). No other characterisation 
could be obtained. 

Method 2 
A Schlenk flask was charged with C5Ph5OH (0.230 g, 

0.5 mmol), Hg(C6F5)2 (0.133 g, 0.25 mmol) and Eu metal fil-
ings (0.152 g, 1.0 mmol). Anhydrous thf (5 mL) and a drop of 
Hg metal (to form a reactive europium-mercury amalgam) 
were added, and the reaction mixture stirred overnight (18 h) 
at room temperature. The resulting suspension was allowed to 
settle before isolating the supernatant solution by a filtration 
cannula. The resultant dark yellow filtrate was dried under 
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reduced pressure and washed with anhydrous hexane 
(2 × 5 mL) yielding a dark orange powder 2 (0.135 g, 
40%). Anal. calc. for C86H82O6Eu (1363.53 g/mol): C, 
75.75; H, 6.06. Found C, 75.71; H, 6.07%. IR (Nujol, cm−1): 
3050m, 3024m, 1945w, 1878w, 1804w, 1593s, 1521s, 1486s, 
1459s, 1440s, 1378s, 1342m, 1322w, 1305w, 1278w, 
1260m, 1157w, 1069w, 1028s, 916m, 878m, 812w, 750s, 
739m, 721w, 699s, 637s, 618w, 549m. 

Hydrolysis of 2 to afford 2,2,3,4,5- 
pentaphenylcyclopent-3-enone (3) 

An aliquot (~1 mL) of the reaction mixture of 2 was taken 
and added directly into distilled water and stirred for 5 min. 
The organic material was extracted with dichloromethane 
(2 × 5 mL), and combined before washing with brine, and 
then stirring over MgSO4. The resulting solution was filtered 
and solvent removed under reduced pressure, yielding 3 as a 
pale-yellow powder. Crystals of 3 were grown from the slow 
evaporation of a 1:1 thf:EtOH solution. 1H-NMR (400 MHz, 
CDCl3, 25°C): δ = 7.63 (m, 2H, ArH), 7.51 (m, 11H, ArH), 
7.32 (m, 10H, ArH), 7.09 (m, 2H, ArH), 5.22 (s, 1H, C(Ph)H 
ppm. 13C-NMR (101 MHz, CDCl3, 25°C): δ 211.45 (s), 
142.74 (s), 139.56 (s), 139.40 (s), 138.48 (s), 135.32 (s), 
135.16 (s), 134.30 (s), 129.63 (s), 129.24 (s), 128.29 (s), 
128.00 (s), 127.56 (s), 127.30 (s), 127.01 (s), 126.89 (s), 
126.72 (s), 126.34 (s), 126.29 (s), 126.12 (s), 72.43 (s), 
59.89 (s). IR (ATR, cm−1): 3056w, 3026w, 2961m, 1748s, 
1598m, 1574w, 1493s, 1442m, 1410w, 1259s, 1181m, 
1093s, 1072s, 1028s, 797s, 741s, 693s, 626m, 551s, 504m. 
MS (APCI) m/z: calc. for C35H26O (462.2 + 1). Found 463 
(M+ + 1). Spectroscopic data were in agreement with those 
reported.[22] 

Crystal and refinement data 

Single crystals of 1 were covered with viscous hydrocarbon 
oil and were mounted on loops. Data were obtained at 123 K 
on a Bruker X8 APEX II CCD diffractometer equipped with 
graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). 
For complex 2, a single crystal covered with oil based cryo-
protectant was mounted on a cryoloop. The single crystal 
XRD measurement was carried out at 100 K on a Bruker D8 
Venture equipped with a fine-focus sealed tube with a 
Triumph graphite monochromator displaying Mo Kα1 wave-
length (λ = 0.7103 Å) and a PHOTON100 CMOS detector. 
Data were collected using Bruker Apex2 software. Single 
crystals of C5Ph5OH were coated with viscous hydrocarbon 
oil and mounted on glass loops, and data were collected on a 
Rigaku SynergyS diffractometer. The SynergyS operated 
using microsource Cu-Kα radiation (λ = 1.54178 Å) at 
123 K. Data processing was conducted using CrysAlisPro.55 
software suite.[28] Single crystals of 3 were mounted on loops. 
Data were obtained at 190 K on an Oxford Diffraction Gemini 
Ultra S diffractometer, using Cu-Kα radiation (λ = 1.54184 Å). 
The structures were solved using SHELXS7 and refined by 

full-matrix least-squares on all F2 data using SHELX2014[29] 

in conjunction with the X-Seed graphical user interface.[30] 

All hydrogen atoms were placed in calculated positions using 
the riding model. Data collection and refinement details are 
collated in Table S1. 

Supplementary material 

Supplementary material containing IR and NMR spectra, 
crystallographic data and computational results is available 
online. 
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