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ARTICLE

The predictive ability of the 313 variant–based polygenic risk
score for contralateral breast cancer risk prediction in women
of European ancestry with a heterozygous BRCA1 or BRCA2
pathogenic variant
Inge M. M. Lakeman et al.#

PURPOSE: To evaluate the association between a previously published 313 variant–based breast cancer (BC) polygenic risk score
(PRS313) and contralateral breast cancer (CBC) risk, in BRCA1 and BRCA2 pathogenic variant heterozygotes.
METHODS: We included women of European ancestry with a prevalent first primary invasive BC (BRCA1= 6,591 with 1,402
prevalent CBC cases; BRCA2= 4,208 with 647 prevalent CBC cases) from the Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA), a large international retrospective series. Cox regression analysis was performed to assess the association between overall
and ER-specific PRS313 and CBC risk.
RESULTS: For BRCA1 heterozygotes the estrogen receptor (ER)-negative PRS313 showed the largest association with CBC risk, hazard
ratio (HR) per SD= 1.12, 95% confidence interval (CI) (1.06–1.18), C-index= 0.53; for BRCA2 heterozygotes, this was the ER-positive
PRS313, HR= 1.15, 95% CI (1.07–1.25), C-index = 0.57. Adjusting for family history, age at diagnosis, treatment, or pathological
characteristics for the first BC did not change association effect sizes. For women developing first BC < age 40 years, the cumulative
PRS313 5th and 95th percentile 10-year CBC risks were 22% and 32% for BRCA1 and 13% and 23% for BRCA2 heterozygotes,
respectively.
CONCLUSION: The PRS313 can be used to refine individual CBC risks for BRCA1/2 heterozygotes of European ancestry, however the
PRS313 needs to be considered in the context of a multifactorial risk model to evaluate whether it might influence clinical decision-
making.

Genetics in Medicine (2021) 23:1726–1737; https://doi.org/10.1038/s41436-021-01198-7

INTRODUCTION
Heterozygotes of germline pathogenic variants in BRCA1 or BRCA2
(henceforth BRCA1/2 heterozygotes) have a higher risk of
developing contralateral breast cancer than nonheterozygotes.1

The estimated cumulative 10-year contralateral breast cancer risk
varies across studies between 18.5% and 34.2% for BRCA1
heterozygotes and between 10.8% and 29.2% for BRCA2 hetero-
zygotes,1–6 compared to 4–6% in the population.7,8 Whether or
not to undergo a risk-reducing contralateral mastectomy, which is
an invasive intervention and associated with side effects such as
postoperative surgical complications, inability to breast feed in the
future, and psychosocial burden,9 is an important and difficult
decision for BRCA1/2 heterozygotes who have been just con-
fronted with their first breast cancer diagnosis. Precise individua-
lized risk estimates could facilitate decision making for
these women.
Two important factors influencing contralateral breast cancer

risk in BRCA1/2 heterozygotes are the age at diagnosis of the first
breast tumor and a family history of breast cancer.2,4,5,10 The effect
of family history on contralateral breast cancer risk suggests a role
for other genetic factors. In the last decade, more than 180
common low risk variants have been associated with breast
cancer risk in genome-wide association studies (GWAS).11–13

Individually, these variants are associated with small increases in
risk, but when combined as polygenic risk scores (PRS) they may

improve disease-related risk stratification for women of European
and Asian ancestry in the population.14–16 A limited number of
studies have shown that variants associated with the risk of a first
primary breast cancer are also associated with the risk of
contralateral breast cancer.17–19 Furthermore, the PRS derived
from the general population has also been shown to be associated
with breast cancer risk in BRCA1/2 heterozygotes.20–24

The most predictive, well validated PRS for breast cancer in the
general population is based on 313 breast cancer–associated
variants (PRS313); it showed an association with breast cancer in
ten prospective studies with an odds ratio (OR) per standard
deviation (SD) of 1.61 and an area under the receiver–operator
characteristic curve of 0.630.14 Among BRCA2 heterozygotes, this
same PRS313 was also associated with breast cancer risk, hazard
ratio (HR) per SD= 1.31, 95% confidence interval (CI) (1.27–1.36).24

Among BRCA1 heterozygotes, the largest association with breast
cancer risk was found using the estrogen receptor (ER)-negative
PRS313 (which uses the same variants but with weights adapted to
provide better prediction for ER-negative disease), HR= 1.29, 95%
CI (1.25–1.33).24 Although these effect sizes were smaller than
those for the general population, the 313 variant–based PRS could
have a substantial impact on the high absolute risks24 associated
with BRCA1/2 pathogenic variants.25 Whether variants associated
with breast cancer are associated with contralateral breast cancer
risk for BRCA1/2 heterozygotes as well, individually or combined in
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a PRS, has not been investigated previously. If so, the PRS may be
useful to guide choices for risk management, especially regarding
invasive risk-reducing contralateral mastectomy. In this study, we
investigated whether the 313 variant–based PRS for breast cancer
is associated with contralateral breast cancer risk among women
of European ancestry with pathogenic variants in BRCA1/2 and
explored the implications for contralateral breast cancer risk
prediction for these women.

MATERIALS AND METHODS
Study participants
We used retrospective cohort data from heterozygotes participating in the
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).26 Briefly,
CIMBA participants are heterozygotes of pathogenic variants in BRCA1 or
BRCA2 who are 18 years or older at the time of inclusion and have
phenotypic data available.26 CIMBA includes 81 individual studies of which
the majority of the participants were ascertained through cancer genetics
clinics.26 Although studies in CIMBA include individuals of non-European
ancestry, our analyses were, due to power considerations (small numbers
available for analyses and expected lower estimates for the PRS313 in Asian
ancestry based on results of women in the general breast cancer
population19), restricted to women of European ancestry with available
array genotyping data (31,195 women of 67 studies).
Women were eligible for this retrospective analysis if they developed an

invasive primary breast tumor without metastatic disease at least 1 year
before the baseline age. Women without information about metastatic
disease were assumed to have no metastatic disease (n= 9,242 of whom
2,140 had a known negative lymph node status). Baseline age was defined
as the age at local ascertainment (97%), or when this was not known, age
at genetic testing (2%) or age at last follow-up (1%). Women were
excluded if no information was available about the age at baseline or if
they had developed synchronous contralateral breast cancer. Synchronous
contralateral breast cancer was defined as contralateral breast cancer
within one year after the first primary breast cancer, which was based on
the exact date of cancer diagnosis or, if this was not available, on the age
at diagnosis. A schematic overview of the selection is shown in Fig. S1. In
total, 6,591 women with BRCA1 and 4,208 women with BRCA2 pathogenic
variants were included in this study, among whom 1,402 BRCA1
heterozygotes and 647 BRCA2 heterozygotes have had contralateral breast
cancer. The diagnosis of primary and contralateral breast cancer was
confirmed by pathology records, tumor registry data, or medical records by
the individual studies. Available phenotypic information for all participants
is shown in Table 1, including the number of participants for whom the
information was not available for each of the variables. Information about
the ER status of the first primary breast cancer compared to the
contralateral breast cancer is shown in Table S1.

Genotyping and polygenic risk score calculation
For most of the participants, genotyping was performed with the Illumina
OncoArray.27 The remaining participants were genotyped with the Illumina
iCOGS array.11 Details about the quality control procedures and correlation
between the arrays have been described previously.19,24,28–31 European
ancestry was determined using genetic data and multidimensional scaling.
More detailed information about the genotyping and PRS calculation is
provided in the Supplementary methods.
We used the 313 variant–based PRS for breast cancer developed in an

independent study using data from the general population as described
previously;14 correlation between PRS based on the two genotyping arrays
was high.19 The PRS for overall breast cancer (PRS313) and two ER-specific
PRS, the ER-positive PRS313 and ER-negative PRS313 were calculated. The
variants and their corresponding weights used in the PRS as published
previously14 and the imputation quality are listed in Table S2. The three
PRS were standardized to the mean from all CIMBA participants, including
both unaffected and affected women, and to the SD in Breast Cancer
Association Consortium (BCAC) population controls that were included in
the validation data set.14 Using these SDs, the HR estimates for the
associations of the standardized PRS313 in our study are directly
comparable with the OR estimates reported in the BCAC population-
based study14 and the HR estimates reported for primary breast cancer in
BRCA1 and BRCA2 heterozygotes.24

Statistical analysis
To assess the associations between the three PRS and contralateral breast
cancer risk in BRCA1/2 heterozygotes, Cox regression analyses were
performed. The time at risk was started one year after the first breast
cancer diagnosis based on the exact date, or if not available, on the age of
developing the first breast tumor. Time at risk of participants was censored
at age at baseline, i.e., end of follow-up in these analyses, prophylactic
contralateral mastectomy, or death, whichever was earlier (Fig. S2).
Incidence of a metachronous contralateral breast cancer, invasive or
in situ, before baseline was considered as an event in the main analyses.
The proportional hazard assumption was evaluated by using Schoenfeld
residuals against the transformed time. A sensitivity analysis was
performed considering invasive contralateral breast cancer only as an
event. Women who developed an in situ contralateral breast cancer were
censored at the age at diagnosis of the in situ contralateral breast cancer.
Furthermore, a sensitivity analysis was performed including information
about distant relapse, which was available for 1,725 BRCA1 and 1,450
BRCA2 heterozygotes. In total 55 BRCA1 heterozygotes and 101 BRCA2
heterozygotes were censored at the age of distant relapse of which 13 and
11 women were excluded from the analyses, respectively, because they
developed distant relapse in the year before the baseline age.
Analyses were stratified by country (Table S3), adjusted for birth cohort

(quartiles of the observed distribution), and clustered on family member-
ship using a unique family identifier to account for the inclusion of related
individuals. For BRCA1 and BRCA2 respectively, there were 5,923 and 3,752
clusters, of which 554 and 362 clusters had more than one participant. The
main analyses assessed the association with the PRS as a continuous
covariate. We evaluated the linearity of the association using restricted
cubic splines with three knots, which showed no evidence for violation of
the linearity assumption. The discriminatory ability of the best-performing
PRS was evaluated by Harrell’s C-index.32 C-indexes were calculated
stratified by country and clustered on family membership.
The influence of possible confounding variables on the observed

associations was assessed using the PRS exhibiting the largest associations.
Possible confounding variables included breast cancer family history, age
at diagnosis of the first breast cancer, pathological characteristics, and
treatment of the first breast cancer. Each variable was added to the model
one by one and in addition, a full model that included all possible
confounders together was fitted. If the addition of a variable resulted in a
change of more than 10% in the log HR, the variable was retained as a
covariate in the final Cox regression model. To avoid excluding many
participants with missing data for one of these included variables (Table 1),
missing data were imputed using multiple imputation by chained
equations (MICE).33 Imputation was started with the least missing variable
and progressed in order of increased amount of missing data. Using this
method, ten complete data sets for analyses were created and mean
parameter estimates were derived.
Secondary analyses were performed for ER-positive and ER-negative

cases only, based on the ER status of the contralateral breast cancer, after
imputation as described above. The average number of ER-positive and ER-
negative cases in the ten imputed data sets is shown in Table S4. In these
analyses the event of interest was either ER-positive or ER-negative
contralateral breast cancer. Contralateral breast cancer cases with the
alternative ER status were censored at the age of contralateral breast
cancer.
The interaction between the PRS with the age at first breast cancer

diagnosis was tested in the final model, treating the PRS as a continuous
variable. Furthermore, the effect size of the PRS was evaluated for groups
based on the age at first primary breast cancer diagnosis (<40 years; 40 to
50 years; ≥50 years).1,20 The association of the PRS and contralateral breast
cancer risk was tested separately for heterozygotes of pathogenic variants
that lead to unstable or no protein (class I) and heterozygotes of
pathogenic variants that lead to mutant stable protein (class II). Finally,
analyses were performed to test the association between a categorized
PRS and contralateral breast cancer risk to establish whether the results
were consistent with those under a continuous PRS model. The categories
were defined on the basis of the distribution of the PRS in unilateral
breast cancer cases, using PRS percentiles (0–5th, 5th−10th, 10th−20th,
20th−40th, 40th−60th [reference], 60th−80th, 80th−90th, 90th−95th,
95th−100th).

Cumulative risks
Absolute contralateral breast cancer risks were calculated at percentiles of
the best-performing continuous PRS for both BRCA1 and BRCA2
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Table 1. Characteristics of the participants.

BRCA1 heterozygotes BRCA2 heterozygotes

UBC, n (%) CBC, n (%) UBC, n (%) CBC, n (%)

N 5,189 1,402 3,561 647

Genotyping array iCOGS 895 (17) 200 (14) 383 (11) 80 (12)

OncoArray 4,294 (83) 1,202 (86) 3,178 (89) 567 (88)

Birth cohort <1920 25 (0.5) 8 (0.6) 23 (0.6) 9 (1)

1920–1929 143 (3) 46 (3) 121 (3) 30 (5)

1930–1939 392 (8) 130 (9) 341 (10) 99 (15)

1940–1949 1,060 (20) 386 (28) 793 (22) 172 (27)

1950–1959 1,540 (30) 452 (32) 1,104 (31) 202 (31)

1960–1969 1,354 (26) 298 (21) 822 (23) 115 (18)

≥1970 675 (13) 82 (6) 357 (10) 20 (3)

Variant classa I 3,354 (65) 904 (64) 3,207 (90) 570 (88)

II 1,345 (26) 374 (27) 125 (4) 25 (4)

III 490 (9) 124 (9) 229 (6) 52 (8)

BRRM 160 (3) 0 101 (3) 0

Deceased N 44 (0.8) 12 (0.9) 19 (0.5) 2 (0.3)

Family historyb No BC 583 (11) 175 (12) 289 (8) 78 (12)

1 BC 906 (17) 270 (19) 760 (21) 127 (20)

≥ 2 BC 1,250 (24) 363 (26) 1,120 (31) 210 (32)

Unknown 2,450 (47) 594 (42) 1,392 (39) 232 (36)

Characteristics of first BC

Age at diagnosis Mean 41.8 38.5 44.5 41.8

Range 19–82 19–68 18–85 21–75

ER status Positive 570 (11) 92 (7) 1,302 (37) 182 (28)

Negative 1,738 (33) 402 (29) 424 (12) 61 (9)

Unknown 2,881 (56) 908 (65) 1,835 (52) 404 (62)

Node status Positive 797 (15) 182 (13) 781 (22) 119 (18)

Negative 1,544 (30) 441 (31) 877 (25) 151 (23)

Unknown 2,848 (55) 779 56) 1,903 (53) 377 (58)

Tumor sizec T1 1,261 (24) 314 (22) 842 (24) 136 (21)

T2 771 (15) 211 (15) 553 (16) 87 (13)

T3 67 (13) 12 (0.9) 78 (2) 8 (1)

T4 16 (0.5) 2 (0.1) 22 (0.6) 2 (0.3)

Unknown 3,074 (59) 863 (62) 2,066 (58) 414 (64)

Chemotherapyd Yes 1,099 (21) 236 (17) 821 (23) 123 (19)

No 576 (11) 212 (15) 503 (14) 129 (20)

Unknown 3,514 (68) 954 (68) 2,237 (63) 395 (61)

Adjuvant hormone therapy Yes 493 (10) 125 (9) 795 (22) 111 (17)

No 1,103 (21) 288 (21) 474 (13) 135 (21)

Unknown 3,593 (69) 989 (71) 2,292 (64) 401 (62)

Adjuvant trastuzumab therapy Yes 11 (0.2) 1 (0.1) 20 (0.6) 0 (0)

No 1,161 (22) 351 (25) 983 (28) 218 (34)

Unknown 4,017 (77) 1,050 (75) 2,558 (72) 429 (66)

Radiotherapy Yes 1,090 (21) 277 (20) 797 (22) 158 (24)

No 535 (10) 141 (10) 420 (12) 84 (13)

Unknown 3,564 (69) 984 (70) 2,344 (66) 405 (63)
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heterozygotes, using the log HR per SD and including an interaction term
with the continuous age at first breast cancer diagnosis (at age 35, 45, and
55 for the corresponding age groups as described below). For this purpose,
we constrained the incidence of contralateral breast cancer, by age at first
breast cancer and in years after the first breast cancer, and averaged over
all PRS categories to agree with external contralateral breast cancer
incidence estimates, as described previously.23 These external incidence
estimates were based on prospective cohort data from three consortia on
heterozygotes of pathogenic BRCA1 and BRCA2 variants,1 the International
BRCA1/2 Carrier Cohort Study (IBCCS), the Breast Cancer Family Registry
(BCFR), and the Kathleen Cunningham Foundation Consortium for
Research Into Familial Breast Cancer (kConFab). Because the contralateral
breast cancer incidences vary with the age of first breast cancer diagnosis,
incidences were calculated for three different groups based on the age of
the first breast cancer diagnosis (<40 years, 40 to 50 years, ≥50 years).1

All statistical tests were performed with R version 3.5.0.34 Statistical
significance was defined as a two-sided p value <0.05.

RESULTS
In the analyses, 6,591 BRCA1 and 4,208 BRCA2 heterozygotes of
European ancestry who had developed an invasive first primary
breast cancer before entry in CIMBA were identified. The median
follow-up time was 6.0 and 5.4 years for BRCA1 and BRCA2
heterozygotes, respectively. In total, 1,402 BRCA1 and 647 BRCA2
heterozygotes were diagnosed with a metachronous contralateral
breast cancer before enrollment in CIMBA. The cumulative 10-year
risk of developing contralateral breast cancer in this cohort was
25%, 95% CI (23.5–26.4%) and 18.8%, 95% CI (17.1–20.5%) for
BRCA1 and BRCA2 heterozygotes, respectively (Fig. S3). Patient and
tumor characteristics as well as the PRS distributions are shown in
Table 1 and Fig. S4.

PRS and contralateral breast cancer risk
Results of the association analyses between the PRS and
contralateral breast cancer risk are shown in Table 2, Table S4,
and Fig. 1.

BRCA1 heterozygotes
For BRCA1 heterozygotes the ER-negative PRS313 showed the
largest association with all contralateral breast cancer, HR per
SD= 1.12, 95% CI (1.06–1.18), p value = 6.0×10−5, C-index 0.53,
95% CI (0.51–0.55). There was no evidence of violation of the
proportional hazard assumption, p value = 0.840.
Neither sequential inclusion of possible confounders nor

including all these confounders in one model changed the log
HR estimate for the ER-negative PRS313 association more than 10%
when compared with the model with no confounders (Table S5).
Considering only invasive contralateral breast cancer as

the event of interest resulted in a similar association with
the ER-negative PRS313, HR per SD= 1.13, 95% CI (1.07–1.20),
p value = 3.2×10−5.
Censoring at distant metastasis relapse, if applicable, did not

change the effect size of the ER-negative PRS313, HR per SD= 1.12,
95% CI (1.06–1.18), p value = 4.9×10-5.
The HR estimates for association with contralateral breast

cancer for different quantiles of the ER-negative PRS313, were
consistent with the predicted HRs from the model using the
continuous ER-negative PRS313 (Table 2 and Fig. 2).
For ER-positive contralateral breast cancer as event, the PRS313

showed the largest association, HR per SD= 1.32, 95% CI
(1.12–1.56), p value = 0.002. For ER-negative contralateral breast
cancer as event, only the ER-negative PRS313 showed a significant
association, HR per SD= 1.07, 95% CI (1.01–1.15), p value = 0.036
(Table S4).

BRCA2 heterozygotes
For BRCA2 heterozygotes the largest association was seen with
the ER-positive PRS313, HR per SD= 1.15, 95% CI (1.07–1.25),
p value = 1.9×10−4, C-index 0.57, 95% CI (0.54–0.59). There was no
evidence of violation of the proportional hazard assumption,
p value = 0.300.
Neither sequential inclusion of possible confounders, nor

including all these confounders in one model, changed the log

Table 1 continued

BRCA1 heterozygotes BRCA2 heterozygotes

UBC, n (%) CBC, n (%) UBC, n (%) CBC, n (%)

Characteristics of CBC

Age at diagnosis Mean – 47.3 – 51.24

Range – 26–80.5 – 23.8–86

Invasiveness Invasive – 1,267 (90) – 545 (84)

Noninvasive – 135 (10) – 102 (16)

ER status Positive – 101 (7) – 197 (30)

Negative – 446 (32) – 50 (8)

Unknown – 855 (61) – 400 (62)

PRS313

Standardized PRS313 mean (SD) Overall BC 0.08 (1.01) 0.13 (1.01) 0.09 (1.02) 0.27 (1.04)

ER-positive BC 0.07 (1.01) 0.09 (1.01) 0.08 (1.01) 0.27 (1.03)

ER-negative BC 0.09 (1.00) 0.23 (0.99) 0.07 (1.02) 0.23 (1.07)

BC breast cancer, BRRM bilateral risk-reducing mastectomy, CBC contralateral breast cancer, ER status estrogen receptor status of the tumor, PRS polygenic
risk score, SD standard deviation, UBC unilateral breast cancer.
aVariant class: I= unstable or no protein, II= stable mutant protein, III= consequence unknown.
bFamily history was defined as the number of first- or second-degree relatives affected with BC, ranging from 0 to ≥2.
cTumor size: T1= ≤ 2 cm (≤0.79 inches), T2= > 2cm-5cm (>0.79–1.97 inches), T3= > 5 cm (>1.97 inches), T4= any size, with direct extension to the chest wall
or skin.
dIncluding neoadjuvant and adjuvant chemotherapy.
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BRCA1 BRCA2

0.75 1.00 1.25 1.50 1.75 0.75 1.00 1.25 1.50 1.75

ER−negative CBC

ER−positive CBC

Invasive CBC

All CBC

HR per SD

ER−negative BC PRS ER−positive BC PRS Overall BC PRS

Fig. 1 Association between the PRS and contralateral breast cancer risk for BRCA1 and BRCA2 heterozygotes. Effect size of the association
between contralateral breast cancer and the three different PRS313 after testing for covariates for the following selections: all contralateral
breast cancer, invasive contralateral breast cancer only, ER-negative contralateral breast cancer, and ER-positive contralateral breast cancer.
The numbers of unilateral and contralateral breast cancer cases and effect sizes are shown in Table 2 and Table S4. CBC contralateral breast
cancer, ER estrogen receptor, HR hazard ratio, PRS polygenic risk score, SD standard deviation.

Table 2. Results of association analyses between the PRS313 and contralateral breast cancer risk.

BRCA1 heterozygotes (ER-negative PRS313) BRCA2 heterozygotes (ER-positive PRS313)

UBC
cases, n

CBC
cases, n

HRa 95% CI P UBC
cases, n

CBC
cases, n

HRa 95% CI P

PRS continuous All CBC 5,189 1,402 1.12 1.06–1.18 5.98×10-5 3,561 647 1.15 1.07–1.25 1.94×10-4

Invasive CBC 5,324 1,267 1.13 1.07–1.20 3.15×10-5 3,663 545 1.15 1.06–1.25 6.02×10-4

Categorical PRS
percentiles

0–5 260 48 0.81 0.59–1.11 0.188 166 28 1.06 0.71–1.58 0.782

5–10 259 54 0.77 0.57–1.03 0.082 198 26 0.68 0.44–1.04 0.074

10–20 519 131 0.94 0.76–1.15 0.544 355 51 0.91 0.66–1.25 0.554

20–40 1,038 230 0.83 0.70–0.98 0.031 697 108 0.87 0.68–1.13 0.295

40–60 (reference) 1,037 282 1.00 695 123 1.00

60–80 1,038 313 1.04 0.88–1.22 0.664 734 128 0.96 0.75–1.23 0.748

80–90 519 170 1.11 0.92–1.34 0.255 358 90 1.35 1.03–1.77 0.030

90–95 259 82 1.18 0.92–1.51 0.185 178 46 1.35 0.96–1.90 0.082

95–100 260 92 1.24 0.98–1.56 0.074 180 47 1.31 0.94–1.82 0.116

PRS*age BC1
continuous

Main effect 5,189 1,402 1.48 1.15–1.89 2.03×10-3 3,561 647 1.53 1.11–2.12 0.010

Interaction effect 0.99 0.99–1.00 0.025 0.99 0.99–1.00 0.089

PRS effect per
age group

<40 2,339 815 1.22 1.14–1.31 4.79×10-8 1,238 268 1.23 1.09–1.38 5.78×10-4

40–50 1,821 456 0.99 0.90–1.09 0.785 1,306 261 1.19 1.05–1.34 6.91×10-3

≥50 1,029 131 1.03 0.86–1.24 0.715 1,017 118 0.97 0.81–1.15 0.698

Variant classb Class I 3,354 904 1.11 1.03–1.18 4.32×10-3 3,207 570 1.16 1.07–1.26 1.99×10-4

Class II 1,345 374 1.15 1.04–1.28 4.75×10-3 125 25 0.91 0.65–1.28 0.594

BC1 first primary breast cancer, CBC contralateral breast cancer, CI confidence interval, HR hazard ratio, PRS polygenic risk score, UBC unilateral breast cancer.
aHRs for association with breast cancer and the continuous PRS313 are reported per standard deviation of the PRS in population-based controls.
bClass I pathogenic variants result in an unstable or no protein. Class II pathogenic variants yield stable mutant proteins.
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HR estimate for the ER-positive PRS313 association more than 10%
when compared with the model with no confounders (Table S5).
Considering only invasive contralateral breast cancer as the

event of interest resulted in a similar association, HR per SD for the
ER-positive PRS313= 1.15, 95% CI (1.06–1.25), p value = 6.0×10−4.
Censoring at distant metastasis relapse, if applicable, did not

change the effect size of the ER-positive PRS313, HR per SD= 1.15,
95% CI (1.07–1.24), p value = 2.1×10-4.
The HR estimates for association with contralateral breast

cancer for different quantiles of the ER-positive PRS313, were
consistent with the predicted estimates using the continuous
PRS313 (Table 2 and Fig. 2).
The ER-positive PRS313 showed the largest association with ER-

positive contralateral breast cancer for BRCA2 heterozygotes, HR
per SD= 1.22, 95% CI (1.11–1.33), p value = 2.2×10−5 (Table S4).
None of the PRS showed significant associations with ER-negative
contralateral breast cancer for BRCA2 heterozygotes, but the ER-
negative PRS313 exhibited the largest HR estimate, HR per SD=
1.10, 95% CI (0.91–1.32), p value = 0.346.

Interaction with age at first breast cancer diagnosis
A significant interaction between the age at first breast cancer
diagnosis and the ER-negative PRS313 was found for BRCA1
heterozygotes: HR per year= 0.99, 95% CI (0.99–1.00), p value =
0.025. For BRCA2 heterozygotes a similar magnitude of interaction
was observed with the ER-positive PRS313, although the interac-
tion was not significant, HR per year= 0.99, 95% CI (0.99–1.00),
p value = 0.09.
Categorizing age at first breast cancer diagnosis for BRCA1

heterozygotes resulted in HRs per SD of the ER-negative PRS313 of
1.22, 95% CI (1.14–1.31); 0.99, 95% CI (0.90–1.09);, and 1.03, 95% CI
(0.86–1.24) for ages <40 years, 40–50 years, and ≥50 year
respectively. For BRCA2 heterozygotes the corresponding esti-
mates for ER-positive PRS313 were 1.23, 95% CI (1.09–1.38); 1.19,
95% CI (1.05–1.34); and 0.97, 95% CI (0.81–1.15) respectively
(Table 2).

Analyses by predicted variant effect on protein expression
For BRCA1 heterozygotes, the HRs for association between the ER-
negative PRS313 and contralateral breast cancer risk were similar
for heterozygotes of pathogenic variants, which lead to a stable
mutant protein (class II) compared with those leading to no
protein or an unstable protein (class I). For BRCA2 heterozygotes,
the ER-positive PRS313 effect size for the association with
contralateral breast cancer risk was nonsignificantly smaller
among heterozygotes of a pathogenic variant that lead to a
stable mutant protein, although statistical power to detect these
associations was low and the confidence intervals overlap with the
overall estimate (Table 2).

Cumulative risks
Estimate cumulative contralateral breast cancer risks, by cate-
gories of age at diagnosis of the first breast cancer are shown in
Fig. 3. The largest risk difference was seen for women with a first
breast cancer diagnosis before the age of 40, with BRCA1
heterozygotes at the 5th percentile of the ER-negative PRS313
having a 10- and 20-year risk of 22% and 35% compared with 32%
and 49% at the 95th percentile, respectively. For BRCA2
heterozygotes, the 10- and 20-year risks in this category were
13% and 25% at the 5th percentile of the ER-positive PRS313
compared with 23% and 42% for women at the 95th percentile.

DISCUSSION
In this study we investigated the associations between an
established PRS based on 313 variants for primary first breast
cancer and contralateral breast cancer risks among BRCA1 and
BRCA2 heterozygotes of European ancestry enrolled in the large
international retrospective CIMBA cohort. We showed significant
albeit modest associations among both BRCA1 and BRCA2
heterozygotes between the PRS and contralateral breast cancer
risk. For BRCA1 heterozygotes, the largest association was seen
with the ER-negative PRS313, while for BRCA2 heterozygotes, both
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the PRS313 and ER-positive PRS313 showed similar associations with
contralateral breast cancer risk that were somewhat larger than
the ER-negative PRS313 association. These findings are consistent
with previous studies on the effects of disease-specific PRS on the
first breast cancers in BRCA1 and BRCA2 heterozygotes20,24 and
with the higher relative prevalence of ER-negative and ER-positive
contralateral breast cancers respectively, in this cohort.
For both BRCA1 and BRCA2 heterozygotes, the strength of the

association was greater for ER-positive contralateral breast cancers
compared with ER-negative contralateral breast cancers (in the
case of BRCA1, even if the ER-negative PRS was used), although
most of the confidence intervals overlapped. The effect sizes for
the PRS are also larger for ER-positive disease in the general
population, perhaps because ER-positive disease is commoner and
the power to identify genetic variants has been greater for ER-
positive disease. With larger data sets, it should be possible to
develop better subtype specific PRS for contralateral breast
cancer.
Although we found clear associations between the PRS and

contralateral breast cancer risk, the magnitude of these associa-
tions (expressed in terms of HRs) were smaller than previously
reported for the first breast cancers. For BRCA1 heterozygotes, the
HR per SD for the association between the ER-negative PRS313 and
breast cancer was 1.29, 95% CI (1.25–1.33),24 compared with 1.12,
95% CI (1.06–1.18) for contralateral breast cancer in this study. For
BRCA2 heterozygotes, the HR per SD for the association between
the ER-positive PRS313 and breast cancer was 1.31, 95% CI
(1.26–1.36),24 compared with 1.15, 95% CI (1.07–1.24) for
contralateral breast cancer in this study. This lower relative risk
is consistent with a general pattern of a lower relative risk in a
higher risk population, as seen in the lower relative risk for
contralateral breast cancer than first breast cancer in the general
population,19 and the lower relative risk for the first cancer in
BRCA1/2 heterozygotes than in the general population.24 The
attenuated estimate might be explained by several factors, some

of which are speculative. BRCA1/2 pathogenic variant hetero-
zygotes in this study were selected based on having a first breast
cancer; these women will have on average a higher PRS, but also
higher frequencies of other genetic and nongenetic risk factors
than women who do not develop breast cancer at all. This can
lead to a weaker association with the PRS as women with the
largest PRS may have lower risks due to other factors, a
phenomenon related to index event bias.35 There could also be
negative interactions between the PRS effect and other risk factors
(for example, treatment factors). However, in this study, we have
shown that adjustment for the known contralateral breast cancer
risk factors did not change the effect size of the PRS, which was
also shown in population-based studies.17,19 Finally, although we
tried to exclude potential early metastases misdiagnosed as
second primaries by excluding women who developed a
contralateral breast cancer the first year after the primary
diagnosis, it is possible that a small percentage of contralateral
breast cancers were metastases.36

A limitation of this study is that participants were recruited
through clinical genetic centers, resulting in ascertainment bias, as
individuals are more likely to have a strong family of breast cancer
and/or be affected at a young age to be referred for testing. This
was a historical cohort in which follow-up was prior to entry into
CIMBA, so that all cases are prevalent. Therefore, the breast cancer
patients included in the analyses are likely to be at higher
contralateral breast cancer risk when compared with the general
BRCA1/2 heterozygote breast cancer population. Indeed, the
estimated 20-year risks of developing contralateral breast cancer
in this study were higher compared to a previously published
study with a prospective design:1 47% versus 40% for BRCA1
heterozygotes and 40% versus 26% for BRCA2 heterozygotes,
respectively. While this is unlikely to introduce a significant bias in
the relative risk estimates, a prospective cohort would clearly be
preferably, although this will take several years to achieve. Finally,
the PRS was developed using data sets of women of European
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ancestry, since our data set included insufficient samples of
women of other ancestries, and our results were exclusively based
on women of European ancestry. Therefore, caution is required
when applying this to non-European ancestry populations.
However, a population study found clear associations between
the PRS, based on the same 313 variants or a subset of these
variants, and (contralateral) breast cancer also in women of Asian
ancestry. The effect size of these associations were slightly weaker,
possibly reflecting the fact that this PRS was developed in a cohort
of women of European ancestry.16,19 These results suggest that
there might be an association with the PRS as well in BRCA1/2
heterozygotes of Asian ancestry. Future studies including a
sufficient number of individuals of Asian ancestry are needed to
confirm this statement.
Although the relative risks of the PRS for contralateral breast

cancer were modest, differences in the PRS may still have an
important effect on the absolute risk, which is high. BRCA1 and
BRCA2 heterozygotes under age 40 at first breast cancer, at the 5th
and 95th percentile of the PRS, differed by 10% in 10-year
contralateral breast cancer risk. These absolute risk differences are
modest, but might be of relevance for the choices regarding
preventive surgery if incorporated into a multifactorial model that
includes other predictive factors, such as family history and
adjuvant systemic treatment of the first breast cancer.37,38 In the
context of such a comprehensive model, further research is
needed to investigate whether the PRS would contribute to the
choices that women make for follow-up or preventive surgery.
To summarize, we have investigated the associations between

PRS based on 313 variants with contralateral breast cancer risk in a
large international series of BRCA1/2 heterozygotes. We found that
the PRS is associated with contralateral breast cancer risk in both
BRCA1 and BRCA2 heterozygotes of European ancestry and that
PRS can be used to refine estimates of contralateral breast cancer
risks in these women. However, for women with a first breast
cancer after the age of 50, PRS may be of less value in the
prediction of the contralateral breast cancer risk. Incorporating risk
factors other than PRS and including ER-specific estimates may
further improve contralateral breast cancer risk prediction. Before
implementation in a diagnostic setting, our results should be
validated in a prospective cohort of BRCA1 and BRCA2
heterozygotes.
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